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Introduction

The Keller-Segel equation

The Keller-Segel equation [Patlak ’53], [Keller-Segel ’70], [Nanjundiah ’73]:∂tu = ∆u −∇ · (u∇Φu),

0 = ∆Φu + u,
in Rd . (KS)

Modeling features:
- Describing the chemotaxis in biology, [Hillen-Painter ’09]; interacting stochastic
many-particles system, [Othmer-Stevens ’90], [Stevens ’00]), [Chavanis ’08],
[Hillen-Painter ’08]; as a diffusion limit of a kinetic model
[Chalub-Markowich-Perthame-Schmeiser ’04], model of stellar dynamics under
friction and fluctuations [Wolansky ’92];

- Competition between diffusion of cells and aggregation;
- Rich model from mathematical point of view, [Horstman ’03 & ’04];
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Introduction

A numerical simulation of finite time singularity

A numerical simulation for the 2D Keller-Segel system

∂tu = ∆u −∇.(u∇Φu), −∆Φu = u.
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Introduction

Singularities in natural sciences

Dictyostelium discoideum exhibiting chemotaxis through aggregation (dictybase.org).
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Introduction

Singularity formation in Nonlinear PDEs

� From an applied point of view:
- Understanding the physical limitation of mathematical models.

Can the equations always do their job?

What additional conditions of physical effects to have a proper model.
- Singularities are physically relevant in natural sciences: concentration of laser beam
in media (blowup in NLS), concentration of energy to smaller scales in fluid
mechanics, concentration of density of bacteria population, etc.

� From a mathematical point of view:
- The long-time dynamic of solutions to PDEs is of significant interest. However,
solutions may develop singularities in finite time.

How to extend solutions beyond their singularities?

- The study of singularity formation requests new tools to handle many delicate
problems such as stability of a family of special solutions, classification of all possible
asymptotic behaviors , etc.

- The numerical study of singularities is challenging.
- ...
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Introduction

Framework of studying singularities in PDEs
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Introduction

Underlying problem

Existence and Stability of blowup solutions.
−−−−−−−−−−−−−−−−−−−−−−−−−

� Obstructive argument (Virial law): Existence, no blowup dynamics.

� Constructive approach: Existence + blowup dynamics.

Kenig (Chicago), Rodnianski (Princeton), Merle (Cergy Pontoise & IHES), Raphaël
(Cambridge), Martel (École Polytechnique), del Pino (Bath/Chile), Wei (UBC), Krieger
(EPFL), Schlag (Yale), Tataru (Berkeley), Zaag (CNRS & Paris Nord), Matano (Meiji),
Masmoudi (NYU Courant), Christodoulou (Zürich), Herrero (Madrid), Velázquez
(Bonn), Hozegel (Münster), ...
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The Keller-Segel equation
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Introduction

Basis features ∂tu = ∇ ·
(
∇u − u∇Φu

)
The Keller-Segel equation:

∂tu = ∇ ·
(
u∇(ln u − Φu)

)
,

Φu = W ∗ u, W (x) =


− 1

2π log |x | for d = 2,

Γ(d/2−1)
4πd/2 |x |2−d for d ≥ 3.

- mass conservation: M =
∫
R2

u0(x)dx =
∫
R2

u(x , t)dx ;

- L d
2 -scaling invariance: ∀γ > 0, uγ(x , t) = 1

γ2 u
( x
γ
, t
γ2

)
, ‖uγ‖

L
d
2

= ‖u‖
L

d
2
;

- free energy functional: F(u) =
∫
Rd

u
(

ln u − 1
2Φu

)
,

d
dtF(u) ≤ 0;

- stationary solution for d = 2: Qγ,a(x) = 1
γ2Q

( x−a
γ

)
, where

Q(x) = 8
(1 + |x |2)2 ,

∫
R2

Q = 8π.
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Introduction

Diffusion vs. Aggregation in 2D ∂tu = ∇ ·
(
∇u − u∇Φu

)
� If M < 8π: global existence + spreading, [Blanchet-Dolbeault-Perthame ’06]. The

proof mainly relies on the free energy functional F(u) and the Log HLS inequality.
� If M = 8π and

∫
R2 |x |2u < +∞: blowup in infinite time,

[Blanchet-Carrillo-Masmoudi ’08]. Constructive approaches by [Ghoul-Masmoudi
’18] (radial), [Davila-del Pino-Dolbeault-Musso-Wei ’20] (full nonradial):

‖u(t)‖L∞ ∼ c0 log t as t → +∞.

� If M > 8π: blowup in finite time, [Childress-Percus ’81], [Jager-Luckhaus ’92],
[Nagai-Senba ’98], [Senba-Suzuki ’03]:

(virial identity) d
dt

∫
R2
|x |2u(x , t)dx = M

2π (8π −M).

Constructive approaches in the radial setting by [Herrero-Velázquez ’96],
[Raphaël-Schweyer ’14]:

‖u(t)‖L∞ ∼ C0
e
√

2| log(T−t)|

T − t as t → T .
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Introduction

A numerical simulation of finite time singularity

A numerical simulation of blowup for the 2D Keller-Segel system

∂tu = ∆u −∇.(u∇Φu), −∆Φu = u.

V. T. Nguyen (NYUAD) Singularities in the Keller-Segel equation 14


KS1.mp4
Media File (video/mp4)



Introduction

Diffusion vs. Aggregation in high dimensions d ≥ 3

� A critical threshold in L d
2 for global existence [Calvez-Corrias-Ebde ’12]

‖u(0)‖
L

d
2
<

8
d C
−2(1+2/d)
GN

(
d/2, d

)
=⇒ global existence.

� Existence of self-similar (type I) blowup solutions by [Herrero-Medina-Velázquez ’98]:

u(x , t) = 1
T − t ϕ

(
x√

T − t

)
, ‖u‖L1 =∞.

Asymptotic description of ϕ by [Giga-Mizoguchi-Senba ’11].
� A formal derivation of non self-similar (type II) blowup solutions in the radial setting by
[Herrero-Medina-Velázquez ’97], [Brenner-Constantin-Kadanoff-Schenkel-Venkataramani ’99]:

u(x , t) ∼
1

λ2(t)
w
( |x | − R(t)

λ(t)

)
, R(t) ∼ (T − t)

1
d , λ ∼ Rd−1, ‖u‖L1 <∞.

� Blowup solution can be exhibited with any arbitrary mass by the scaling invariance.
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Blowup in the 2D case

2. Finite-time blowup in 2DKS

∂tu = ∆u −∇ · (u∇Φu),

0 = ∆Φu + u,
in R2. (2DKS)
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Blowup in the 2D case Statement of the result

2.1 - Statement of the result
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Blowup in the 2D case Statement of the result

Finite time blowup for the 2DKS ∂tu = ∇ ·
(
∇u − u∇Φu

)
- Type I does not exist, [Senba-Suzuki ’11]: ∂tu = ∆u −∇u.∇Φu + u2.
- Type II: "∆ dominates ∂t"  profile, unknown blowup rates.

� There exists a set O ⊂ L1 ∩ E , where E = {u :
∑2

k=0 ‖〈x〉
k∇ku‖L2 < +∞}, of

initial data u0 (not necessary radially symmetric) such that

u(x , t) = 1
λ2(t)

[
Q
(
x − a(t)
λ(t)

)
+ ε (x , t)

]
,

where a(t)→ ā ∈ R2 and
∑1

k=0 ‖〈y〉
k∇kε(t)‖L2 → 0 as t → T , and λ is given

by either

λ(t) ∼ 2e−
γ+2
2
√
T − t exp

(
−
√
| log(T − t)|
√
2

)
, (C1)

or
λ(t) ∼ c(u0)(T − t)

`
2 | log(T − t)|−

`
2(`−1) , ` ≥ 2 integer. (C2)

� Case (C1) is stable and Case (C2) is (`− 1)-codimension stable.

Theorem 1 ([Collot-Ghoul-Masmoudi-Nguyen, CPAM’21).
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Blowup in the 2D case Statement of the result

Comments ∂tu = ∇ ·
(
∇u − u∇Φu

)

Fig 1: The form of single-point finite time blowup solutions.
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Blowup in the 2D case Statement of the result

Comments ∂tu = ∇ ·
(
∇u − u∇Φu

)

� Existing results: formal level (numerical observation, formal matching asymptotic
expansions) and in the radial setting to remove the nonlocal structure difficulty, i.e.
u(x , t) = u(r , t),

m(r) =
∫ r

0
u(ζ)ζdζ, u(r) = ∂rm(r)

r , ∂r Φu(r) = −m(r)
r , r = |x |,

∂tu = 1
r ∂r
(
r∂ru − ru∂r Φu

)
=⇒ ∂tm = ∂2r m −

∂rm
r + ∂rm2

2r

Refs: [Herrero-Velázquez ’96 & ’97], [Velázquez ’02], [Schweyer-Raphael ’14],
[Dyachenko-Lushnikov-Vladimirova ’13], ...

� The new result: full nonradial setting, refined description of the stable blowup
mechanism, new (unstable) blowup dynamics, a nature approach via spectral
analysis/robust energy-type method.
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Blowup in the 2D case A formal derivation of the blowup

2.2 - A formal derivation of blowup

V. T. Nguyen (NYUAD) Singularities in the Keller-Segel equation 21



Blowup in the 2D case A formal derivation of the blowup

Formal matched asymptotic expansions ∂tu = ∇ ·
(
∇u − u∇Φu

)
� Formal analysis via matched asymptotic expansions [Velázquez ’02]: working with the
self-similar variables

u(x , t) = 1
T − t w(z, τ), z = x√

T − t
, τ = − log(T − t),

∂τw = ∇ ·
(
∇w − w∇Φw

)
−1
2∇ · (zw)

Fig 2: Understanding of the matched asymptotic expansions
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Blowup in the 2D case A formal derivation of the blowup

Matched asymptotic expansions ∂τw = ∇ ·
(
∇w − w∇Φw

)
− 1

2∇ · (zw)

� Inner approximate solution: w inn(z, τ) = 1
ν(τ)2P

( z
ν
, τ
)
,

ν2∂τP = ∇ · (∇P − P∇ΦP) + σ(τ)∇ · (yP), σ = νντ −
ν2

2 .

- Expanding P: P(y , τ) = Q(y) + σ(τ)T1(y) + T2(y , τ), where

L0T1 = −∇ · (yQ), L0T2 = ν2στT1 − σ2(τ)∇ · (yT1) + lot.

L0f = ∇ · (∇f − f∇ΦQ − Q∇Φf ).

- Inner expansion: for ν � |z| < ε0,

w inn(z, τ) = 8ν2

|z|4︸︷︷︸
Q

− 4σ
|z|2︸ ︷︷ ︸
σT1

−στ
[

log |z| − log ν − 5
4
]

+ σ2

ν2︸ ︷︷ ︸
T2

+lot.
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Blowup in the 2D case A formal derivation of the blowup

Matched asymptotic expansions ∂τw = ∇ ·
(
∇w − w∇Φw

)
− 1

2∇ · (zw)

� Outer approximate solution: wout = O(ν2), ∂ΦQ

∂|z| ∼ −
4
|z| for |z| → 0,

∂τwout = ∆wout + 4
|z|

∂wout

∂|z| −
1
2∇ ·

(
zwout) := H wout .

- Expanding wout : wout = ν2W1 + ντνW2, where H W1 = 0, H W2 = 2W1.
- Outer expansion: for ν � |z| < ε0,

wout(z, τ) = ν2
[ 8
|z|4 + 2

|z|2︸ ︷︷ ︸
W1

]
+ ντν

[
− 4
|z|2 + log |z| − 3

4 −
log 4
2 + γ

2︸ ︷︷ ︸
W2

]
+ lot.

� Matching expansions yields the leading ODE:

στ log ν + 5
4στ + σ2

ν2
= −

(3
4 + log 4

2 − γ

2

)
νντ =⇒ ν(τ) = C0e−

√
τ
2

� Analysis of the stability was formally done by [Velazquez ’02] at the linear level.
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Blowup in the 2D case Sketch of the proof

2.3 - Strategy of the new constructive proof
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Blowup in the 2D case Sketch of the proof

Strategy of the new constructive proof ∂tu = ∇ ·
(
∇u − u∇Φu

)

� Self-similar variables:

u(x , t) = 1
T − t w(z, τ), z = x√

T − t
,

dτ
dt = 1

T − t ,

∂τw = ∇ · (∇w − w∇Φw )− 1
2∇ · (zw).

� Blowup variables: ‖w(τ)‖L∞ →∞ as τ →∞,

w(x , t) = 1
ν2

v(y , τ), y = z
ν
,

where ν(τ)→ 0 as τ →∞ is an unknown parameter function:

ν2∂τv = ∇ · (∇v − v∇Φv ) + σ(τ)∇ · (zv), σ(τ) = O(ν2).

=⇒ A suggestion of the leading term in the expansion of v ∼ Q since σ → 0 as τ →∞.
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Blowup in the 2D case Sketch of the proof

The linearized problem

� Linearized problem: w(z, τ) = Qν(z) + η(z, τ), where Qν(z) = 1
ν2Q
( z
ν

)
and η solves

∂τη = L νη +
(
ντ
ν
− 1

2

)
∇ · (zQν)−∇ ·

(
ηΦη

)
, ν → 0 unknown,

L νη = ∇ ·
(
∇η − η∇ΦQν − Qν∇Φη)︸ ︷︷ ︸

≡L ν
0 η

−1
2∇ · (zη)

- Structure of L ν
0 :

L ν
0 η = ∇ ·

(
Qν∇M νη

)
, M νη = η

Qν
− Φη.

(M ν comes from the linearization of the energy functional F around Qν).
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Blowup in the 2D case Sketch of the proof

A key proposition of the linear analysis in 2DKS

� In the radial setting and in terms of the partial mass, L ν becomes a local
operator,

spec(L ν)|rad =
{
αn,ν = 1− n − 1

2| ln ν| +O
(

1
| ln ν|2

)
, n ∈ N

}
.

The analysis of eigenproblem has been done through a matched asymptotic ex-
pansions technique, where the eigenfunction ϕn,ν is built from iterative kernels of
the linearized operator (think of Neumann series).
 spectral analysis to control the radial part in L2ω.

� For the nonradial part  energy methods: dissipation + coercivity∫
R2

L ν(u√ρ)M ν(u√ρ) ≤ −c0
∫
R2

|∇u|2

Qν
ρ, with ρ(z) = e−

|z|2
4 .

(up to appropriate orthogonality conditions)

Proposition 2 ([Collot-Ghoul-Masmoudi-Nguyen, Ann.PDE ’21).
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Blowup in the 2D case Sketch of the proof

Approximate solution ∂τw = ∇ ·
(
∇w − w∇Φw

)
− 1

2∇ · (zw)

� The approximate solution: for ` ≥ 1 integer,

w app(z, τ) = Qν(z) + a`(τ)
[
ϕ`,ν(|z|)− ϕ0,ν(|z|)

]
.︸ ︷︷ ︸

modification driving the law of blowup

A suitable projection onto ϕ`,ν and compatibility condition:

(` = 1, stable) ντ
ν

= 1
4 ln ν + e2

| ln ν|2 =⇒ ν = C0e−
√
τ
2

(` ≥ 2, unstable) ντ
ν

= 1− `
2 + `+ 1

4 ln ν =⇒ ν = C`e
(1−`)τ

2 τ
`

2(1−`)

� The linearized equation: ε = w − w app,

∂τε = L νε+ Error + SmallLinear + Nonlinear .
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Blowup in the 2D case Sketch of the proof

What happens at the nonlinear analysis?

� The main issue: The perturbation ε can be large near the origin, and the only control
in L2ω does not allow for a use of dissipation. In particular the direction ∇.(z Qν), which
is the kernel of L ν

0 = ∇.
(
Qν∇M ν ·

)
, becomes the leading part of ε in the zone |z| ∼ ν.

� The treatment: Recall that 0 = ∆Qλ −∇.(Qλ∇ΦQλ) for any λ > 0,

0 = d
dλ

[
∆Qλ −∇.(Qλ∇ΦQλ)

]
λ=ν

=⇒ L ν
0
[
∇.(z Qν)

]
= 0.

We introduce ν̃ ∼ ν and impose a local orthogonality condition to eliminate ∇.(z Qν).
It’s crucial that the key proposition still holds true for the linearized operator L ν̃ up to
an admissible error, from which we are able to close the nonlinear analysis.

� An expectation: Such an idea can be successfully applied to other problems in some
critical regimes.
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Collapsing-ring blowup for d ≥ 3

3. Collapsing-ring blowup for d ≥ 3
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Collapsing-ring blowup for d ≥ 3 A formal derivation of the blowup

Radial blowup solutions ∂tu = ∇ ·
(
∇u − u∇Φu

)
, d ≥ 3

� Basis features: mass conservation, scaling symmetry uγ(x , t) = γ2u(γx , γ2t), ∀γ > 0,
=⇒ L1-supercritical, L d

2 -critical.

� Radial setting: u(x , t) = u(r , t), r = |x |,

∂tu = ∂2r u + d − 1
r ∂ru + 1

r d−1 ∂r (u mu) mu(r , t) =
∫ r

0
u(ζ, t)ζd−1dζ.

� Traveling solutions blowing up in finite time:

u(r , t) = 1
λ2(t)w

(
r − R(t)
λ(t)

)
, 0 < λ(t)� R(t)→ 0 as t → T .

� Blowup solutions with arbitrary mass M < +∞, different from the 2D case.
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Collapsing-ring blowup for d ≥ 3 A formal derivation of the blowup

A formal derivation of blowup ∂tu = ∂2
r u + d − 1

r ∂r u + 1
rd−1∂r (u mu)

0

Fig 3: Illustration of a collapsing-ring blowup solution
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Collapsing-ring blowup for d ≥ 3 Statement of the result

Traveling blowup solution in the partial mass setting

The partial mass equation:

∂tmu = ∂2r mu −
d − 1
r ∂rmu + mu∂rmu

r d−1 .

� There exists a set O ⊂W 1,∞(R+) of initial data mu(0) such that

mu(r , t) = M(t)
[
Q
( r − R(t)

λ(t)

)
+ mε(r , t)

]
, Q(ξ) = e

ξ
2

1 + e
ξ
2
,

where ‖mε(t)‖W 1,∞(R+) → 0 as t → T ,

M → M0, λ = Rd−1

M , R(t) ∼
[
(d/2)M(T − t)

] 1
d .

� The constructed solution is stable under small perturbation in O.

Theorem 3 ([Collot-Ghoul-Masmoudi-Nguyen, ArXiv ’21]).
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Collapsing-ring blowup for d ≥ 3 Statement of the result

Traveling shock solutions in the partial mass setting

The partial mass equation:

∂tmu = ∂2r mu −
d − 1
r ∂rmu + mu∂rmu

r d−1 .

Fig 4: Illustration of a traveling shock solution to the partial mass equation.
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Collapsing-ring blowup for d ≥ 3 Statement of the result

A numerical simulation for d = 3

Fig 5: (horizontally zoomed solution) The initial data mu(r , 0) = MQ
(
r −M 1

3 ε

M− 1
3 ε2

)
, where

M = 27 and ε = 0.7. With ε = 0.7, the theoretical blowup time is T = ε3 ≈ 0.343. Maple
solver gives an approximation of the blowup time by saying "could not compute solution
for t > 0.32: Newton iteration is not converging".
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Collapsing-ring blowup for d ≥ 3 Sketch of the proof

Change of variables ∂tmu = ∂2
r mu − d−1

r ∂r mu + mu∂r mu
rd−1

� Inviscid variables (fix the shock location):

mu(r , t) = M(t)mw (ζ, τ), ζ = r
R(t) ,

dτ
dt = M(t)

R(t)d , and ν = Rd−1

M ,

to fix the location of the shock at ζ = 1,

∂τmw =
(

mw

ζd−1 −
1
2ζ
)
∂ζmw + ν∆ζ,2−d mw +

(Rτ
R + 1

2

)
ζ∂ζmw −

Mτ

M mw .

� Blowup variables (zoom at the shock):

mw (ζ, τ) = mv (ξ, s), ξ = ζ − 1
ν

,
ds
dτ = 1

ν
,

where mv solves the new equation

∂smv = ∂2ξmv + mv∂ξmv −
1
2∂ξmv +

(Rτ
R + 1

2

)
∂ξmv −

Ms

M mv + l .o.t

� The blowup profile is connected to the traveling solution to Burgers equation:

Q′′ − 1
2Q
′ + QQ′ = 0, lim

ξ→−∞
Q(ξ) = 0.

V. T. Nguyen (NYUAD) Singularities in the Keller-Segel equation 37



Collapsing-ring blowup for d ≥ 3 Sketch of the proof

The linearized problem ∂tmu = ∂2
r mu − d−1

r ∂r mu + mu∂r mu
rd−1

� Introducing mq(ξ, s) = mv (ξ, s)− Q(ξ) yields

∂smq = L0mq + L(mq) + NL(mq) + Ψ,

where L0 = ∂2ξ − (1/2− Q)∂ξ + Q′ is the linearied operator appearing in the study of
stability of traveling wave solutions to Burgers equation.〈

L0g , g
〉

L2ω0
≤ −δ0‖g‖2H1

ω0
+ C

〈
g ,Q′

〉2
L2ω0
, ω0 = Q−1e

ξ
2 .

� Introducing mε(ζ, τ) = mw (ζ, τ)− Qν(ζ) yields

mε,1 = ∂ζmε, ∂τmε,1 = A1mε,1 + Pmε,1 + E , ζ ≥ 1,

where
A1 = −

(
d − 1
ζd + 1

2

)
+
(

1
ζd−1 −

1
2ζ
)
∂ζ + ν∂2ζ .

An observation (constructive approach): 0 < κ� 1,

φ1 = e−κτe−
3
8

(
|ζ−1|−4ν| ln ν|

ν

)
, ∂τφ1 −A1φ1 ≥

c0
ν
φ1, ζ ∈ [1, 2

1
d ).
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Collapsing-ring blowup for d ≥ 3 Sketch of the proof

A design of the bootstrap regime

� Inner-outer estimates: A� 1, 0 < κ� 1,

‖χ4| ln ν|+Amq(τ)‖L2ω0
. e−κτ , ‖∂ζmε(τ)‖L∞(|ζ−1|≥4ν| ln ν|) . e−κτ

� The coercivity of L0 to control the inner norm.

� A delay estimate for a transport-type equation helps to construct φ1(ζ, τ).
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Conclusion & Perspectives

4. Conclusion & Perspectives
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Conclusion & Perspectives

Interesting problems

• multiple-collapse phenomena/ interaction-collision of multi-solitons;
• classification of blowup dynamics (rates & profiles);
• Numerical methods for blowup problems (detection, rates & profiles).

A multiple-collapse phenomenon in the 2D Keller-Segel system
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