Quantisation of spectral curves of arbitrary rank and genus via topological recursion

Elba Garcia-Failde

Sorbonne Université (Institut de Mathématiques de Jussieu - Paris Rive Gauche)
(based on joint work with B. Eynard, O. Marchal and N. Orantin)

Workshop on QUANTUM GEOMETRY, IHES

$$
\text { April 27, } 2022
$$

(1) Topological recursion and quantum curves

- Topological recursion and its ramifications
- Example: Witten's conjecture, Kontsevich's theorem and Airy
- Quantum curves, history, context and examples
(2) Spectral curves
(3) Topological recursion and loop equations

4 Perturbative wave function and KZ equations
(5) Non-perturbative wave functions and Lax system
(C) Questions and future work
(7) Bonus: Link with isomonodromic systems
(1) Topological recursion and quantum curves

- Topological recursion and its ramifications
- Example: Witten's conjecture, Kontsevich's theorem and Airy
- Quantum curves, history, context and examples
(2) Spectral curvesTopological recursion and loop equationsPerturbative wave function and KZ equationsNon-perturbative wave functions and Lax systemQuestions and future workBonus: Link with isomonodromic systems

Outline

(2) Topological recursion and quantum curves

- Topological recursion and its ramifications
- Example: Witten's conjecture, Kontsevich's theorem and Airy
- Quantum curves, history, context and examplesSpectral curvesTopological recursion and loop equationsPerturbative wave function and $K Z$ equationsNon-perturbative wave functions and Lax systemQuestions and future workBonus: Link with isomonodromic systems

Topological recursion (TR, Chekhov-Eynard-Orantin '04-'07)

Goal: "Count surfaces $S_{g, n}$ of genus g with n boundaries (topology (g, n))."

Spectral curve

- x finitely many simple ramification points $(\operatorname{Cr}(x))$ and y holomorphic around $a \in \operatorname{Cr}(x)$ and $d y(a) \neq 0 \Rightarrow$ Local involution σ around every ramification point: $x(z)=x(\sigma(z))$.
- $\omega_{0,2}$ symmetric bi-differential on $\Sigma \times \Sigma$ with only double poles along the diagonal and vanishing residues, that is when $z_{1} \rightarrow z_{2}$

$$
\omega_{0,2}\left(z_{1}, z_{2}\right)=\frac{d z_{1} d z_{2}}{\left(z_{1}-z_{2}\right)^{2}}+\overbrace{h\left(z_{1}, z_{2}\right)}^{\text {holomorphic }} .
$$

$\omega_{g, n}\left(z_{1}, \ldots, z_{n}\right)$
$=\sum_{a \in \operatorname{Cr}(x)} \operatorname{Res}_{\substack{z=a}}$

$$
\left.K_{a}\left(z_{1}, z\right) \quad \omega_{g-1, n+1}\left(z, \sigma_{a}(z), z_{2}, \ldots, z_{n}\right)\right)
$$

- Terms in correspondence with the ways of cutting a pair of pants $(0,3)$ from $S_{g, n}$.

Properties and examples

- Interesting/powerful properties: $\omega_{g, n}$ are symmetric with poles at ramifications points, controlled deformations along families, dilaton equation, symplectic invariance, loop equations, modularity, integrability...
- For the Lambert curve $x=y e^{-y}$, TR provides simple Hurwitz numbers (Eynard-Mulase-Safnuk, '09, arXiv:0907.5224).
- For $y=\frac{-\sin (2 \pi \sqrt{x})}{2 \pi}$, TR gives Mirzakhani's recursion for Weil-Petersson volumes (of the moduli space of bordered hyperbolic surfaces), (Eynard-Orantin, '07, arXiv:0705.3600).
- TR on mirror curve of a toric CY3 computes its open Gromov-Witten theory (Bouchard-Klemm-Mariño-Pasquetti, '07, arXiv:0709.1453), (Fang-Liu-Zong, '16, arXiv:1604.07123).
- Chern-Simons theory on S^{3} is governed by TR. Gopakumar-Ooguri-Vafa correspondence gives an A-model picture: GW of the resolved conifold, and B-model can be seen as TR on its Hori-lqbal-Vafa mirror curve. (Brini, '17, hal-01474196).
- Statistical physics models on random maps: 1-hermitian matrix model, Ising model, Potts model, $O(n)$-loop model (Borot-Eynard, '09, arXiv:0910.5896), (Borot-Eynard-Orantin, '13, arXiv:1303.5808)...
- Semi-simple cohomological field theories and topological recursion (Dunin-Barkowski-Orantin-Shadrin-Spitz, '14, arXiv:1211.4021).
- Reconstruction of formal WKB expansions, integrability, isomonodromic systems (Borot-Eynard, '11, arXiv:1110.4936), (Eynard, '17, arXiv:1706.04938), (Eynard-G-F-Marchal-Orantin, '21, arXiv:2106.04339)...
- Conjecturally, for the A-polynomial of a knot as a spectral curve, TR computes the colored Jones polynomial of the knot (Borot-Eynard, '12, arXiv:1205.2261)).
- Extension to the non-perturbative world, resurgence theory: work in progress!
(2) Topological recursion and quantum curves
- Topological recursion and its ramifications
- Example: Witten's conjecture, Kontsevich's theorem and Airy
- Quantum curves, history, context and examplesSpectral curvesTopological recursion and loop equationsPerturbative wave function and KZ equationsNon-perturbative wave functions and Lax systemQuestions and future workBonus: Link with isomonodromic systems

Witten's conjecture \rightsquigarrow Kontsevich's theorem

1. Kontsevich maps and matrix model

Witten's conjecture \rightsquigarrow Kontsevich's theorem

TR applied to the Airy curve $(x, y)=\left(\frac{z^{2}}{2}, z\right)$ produces

$$
\omega_{g, n}\left(z_{1}, \ldots, z_{n}\right)=2^{2-2 g-n} \sum_{\sum_{i} d_{i}=3 g-3+n}\left(\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{d_{1}} \cdots \psi_{n}^{d_{n}}\right) \prod_{i=1}^{n} \frac{\left(2 d_{i}+1\right)!!d z_{i}}{z_{i}^{2 d_{i}+2}} .
$$

Airy differential equation

- Airy function $\operatorname{Ai}(\lambda) \rightsquigarrow\left(\frac{d^{2}}{d \lambda^{2}}-\lambda\right) \operatorname{Ai}(\lambda)=0$. Asymptotic expansion (g.s. of intersection numbers), as $\lambda \rightarrow \infty$, of the form

$$
\log \operatorname{Ai}(\lambda)-S_{0}(\lambda)-S_{1}(\lambda)=\sum_{m=2}^{\infty} S_{m}(\lambda)
$$

where $S_{0}(\lambda):=-\frac{2}{3} \lambda^{\frac{3}{2}}, S_{1}(\lambda):=-\frac{1}{4} \log \lambda-\log (2 \sqrt{\pi})$ and $\forall m \geq 2$

$$
S_{m}(\lambda):=\frac{\lambda^{-\frac{3}{2}(m-1)}}{2^{m-1}} \sum_{\substack{h \geq 0, n>0 \\ 2 h-2+n=m-1}} \frac{(-1)^{n}}{n!} \sum_{\mathbf{d} \in \mathbb{N}^{n}}\left\langle\tau_{d_{1}} \ldots \tau_{d_{n}}\right\rangle_{h, n} \prod_{i=1}^{n}\left(2 d_{i}-1\right)!!
$$

Airy differential equation

- Airy function $\operatorname{Ai}(\lambda) \rightsquigarrow\left(\frac{d^{2}}{d \lambda^{2}}-\lambda\right) \operatorname{Ai}(\lambda)=0$. Asymptotic expansion (g.s. of intersection numbers), as $\lambda \rightarrow \infty$, of the form

$$
\log \operatorname{Ai}(\lambda)-S_{0}(\lambda)-S_{1}(\lambda)=\sum_{m=2}^{\infty} S_{m}(\lambda)
$$

where $S_{0}(\lambda):=-\frac{2}{3} \lambda^{\frac{3}{2}}, S_{1}(\lambda):=-\frac{1}{4} \log \lambda-\log (2 \sqrt{\pi})$ and $\forall m \geq 2$

$$
S_{m}(\lambda):=\frac{\lambda^{-\frac{3}{2}(m-1)}}{2^{m-1}} \sum_{\substack{h \geq 0, n>0 \\ 2 h-2+n=m-1}} \frac{(-1)^{n}}{n!} \sum_{\mathbf{d} \in \mathbb{N}^{n}}\left\langle\tau_{d_{1}} \ldots \tau_{d_{n}}\right\rangle_{h, n} \prod_{i=1}^{n}\left(2 d_{i}-1\right)!!
$$

- Keep track of the Euler characteristics of the surfaces enumerated by introducing a formal parameter \hbar through a rescaling of $\lambda \rightsquigarrow \psi^{\text {Kont }}(\lambda, \hbar):=\operatorname{Ai}\left(\hbar^{-\frac{2}{3}} \lambda\right)$ satisfies

$$
\left(\hbar^{2} \frac{d^{2}}{d \lambda^{2}}-\lambda\right) \psi^{\mathrm{Kont}}(\lambda, \hbar)=0
$$

and admits an asymptotic expansion of the form

$$
\log \psi^{\mathrm{Kont}}(\lambda, \hbar)-\hbar^{-1} S_{0}(\lambda)-S_{1}(\lambda)=\sum_{m=2}^{\infty} \hbar^{m-1} S_{m}(\lambda)
$$

Airy differential equation

- Airy function $\mathrm{Ai}(\lambda) \rightsquigarrow\left(\frac{d^{2}}{d \lambda^{2}}-\lambda\right) \mathrm{Ai}(\lambda)=0$. Asymptotic expansion (g.s. of intersection numbers), as $\lambda \rightarrow \infty$, of the form

$$
\log \operatorname{Ai}(\lambda)-S_{0}(\lambda)-S_{1}(\lambda)=\sum_{m=2}^{\infty} S_{m}(\lambda)
$$

where $S_{0}(\lambda):=-\frac{2}{3} \lambda^{\frac{3}{2}}, S_{1}(\lambda):=-\frac{1}{4} \log \lambda-\log (2 \sqrt{\pi})$ and $\forall m \geq 2$

$$
S_{m}(\lambda):=\frac{\lambda^{-\frac{3}{2}(m-1)}}{2^{m-1}} \sum_{\substack{h \geq 0, n>0 \\ 2 h-2 \\ 2 \\ m=m-1}} \frac{(-1)^{n}}{n!} \sum_{\mathbf{d} \in \mathbb{N}^{n}}\left\langle\tau_{d_{1}} \ldots \tau_{d_{n}}\right\rangle_{h, n} \prod_{i=1}^{n}\left(2 d_{i}-1\right)!!
$$

- Keep track of the Euler characteristics of the surfaces enumerated by introducing a formal parameter \hbar through a rescaling of $\lambda \rightsquigarrow \psi^{\text {Kont }}(\lambda, \hbar):=\operatorname{Ai}\left(\hbar^{-\frac{2}{3}} \lambda\right)$ satisfies

$$
\left(\hbar^{2} \frac{d^{2}}{d \lambda^{2}}-\lambda\right) \psi^{\text {Kont }}(\lambda, \hbar)=0
$$

and admits an asymptotic expansion of the form

$$
\log \psi^{\text {Kont }}(\lambda, \hbar)-\hbar^{-1} S_{0}(\lambda)-S_{1}(\lambda)=\sum_{m=2}^{\infty} \hbar^{m-1} S_{m}(\lambda)
$$

- TR on the Airy spectral curve $y^{2}-x=0$ computes $Z^{\text {Kont }}(\hbar, \mathbf{t})$ and $\psi^{\text {Kont }}(\lambda, \hbar)$. The quantum curve $\left(\hbar^{2} \frac{d^{2}}{d \lambda^{2}}-\lambda\right) \psi^{\text {Kont }}(\lambda, \hbar)=0$ can be constructed out of TR. Is this a general phenomenon?
(1) Topological recursion and quantum curves
- Topological recursion and its ramifications
- Example: Witten's conjecture, Kontsevich's theorem and Airy
- Quantum curves, history, context and examplesSpectral curvesTopological recursion and loop equationsPerturbative wave function and KZ equationsNon-perturbative wave functions and Lax systemQuestions and future workBonus: Link with isomonodromic systems

Presentation of the quantum curve conjecture

$$
P \in \mathbb{C}[x, y] \text { and } \Sigma=\left\{(x, y) \in \mathbb{C}^{2} \mid P(x, y)=0\right\} \text { plane curve of genus } \hat{g} .
$$

A quantization of Σ is a differential operator \widehat{P} of the form

$$
\widehat{P}(\widehat{x}, \widehat{y} ; \hbar)=P_{0}(\widehat{x}, \widehat{y})+O(\hbar)
$$

where $\widehat{x}=x \cdot \widehat{y}=\hbar \frac{d}{d x}$, such that $P_{0}(x, y)=P(x, y) Q(x, y)$, for some $Q \in \mathbb{C}[x, y]$ (often 1).

- The operators \widehat{x} and \widehat{y} satisfy $[\widehat{y}, \widehat{x}]=\hbar$.
- $\widehat{P}(\widehat{x}, \widehat{y}) \psi(x, \hbar)=0$. Schrödinger equation: $\left(\hbar^{2} \frac{d^{2}}{d x^{2}}-\widehat{R}(\widehat{x}, \hbar)\right) \psi(x, \hbar)=0$.

WKB asymptotic expansion $\rightsquigarrow \log \psi(x, \hbar)=\sum_{k \geq-1} \hbar^{k} S_{k}(x) \in \hbar^{-1} \mathbb{C}[[\hbar]]$.

Presentation of the quantum curve conjecture

$$
P \in \mathbb{C}[x, y] \text { and } \Sigma=\left\{(x, y) \in \mathbb{C}^{2} \mid P(x, y)=0\right\} \text { plane curve of genus } \hat{g} .
$$

A quantization of Σ is a differential operator \widehat{P} of the form

$$
\widehat{P}(\widehat{x}, \widehat{y} ; \hbar)=P_{0}(\widehat{x}, \widehat{y})+O(\hbar),
$$

where $\widehat{x}=x \cdot \widehat{y}=\hbar \frac{d}{d x}$, such that $P_{0}(x, y)=P(x, y) Q(x, y)$, for some $Q \in \mathbb{C}[x, y]$ (often 1).

- The operators \widehat{x} and \widehat{y} satisfy $[\widehat{y}, \widehat{x}]=\hbar$.
- $\widehat{P}(\widehat{x}, \widehat{y}) \psi(x, \hbar)=0$. Schrödinger equation: $\left(\hbar^{2} \frac{d^{2}}{d x^{2}}-\widehat{R}(\widehat{x}, \hbar)\right) \psi(x, \hbar)=0$.

WKB asymptotic expansion $\rightsquigarrow \log \psi(x, \hbar)=\sum_{k \geq-1} \hbar^{k} S_{k}(x) \in \hbar^{-1} \mathbb{C}[[\hbar]]$.
Question: Can we construct the operator \widehat{P} and the solution ψ from P ?

Presentation of the quantum curve conjecture

$$
P \in \mathbb{C}[x, y] \text { and } \Sigma=\left\{(x, y) \in \mathbb{C}^{2} \mid P(x, y)=0\right\} \text { plane curve of genus } \hat{g} .
$$

A quantization of Σ is a differential operator \widehat{P} of the form

$$
\widehat{P}(\widehat{x}, \widehat{y} ; \hbar)=P_{0}(\widehat{x}, \widehat{y})+O(\hbar)
$$

where $\widehat{x}=x \cdot \widehat{y}=\hbar \frac{d}{d x}$, such that $P_{0}(x, y)=P(x, y) Q(x, y)$, for some $Q \in \mathbb{C}[x, y]$ (often 1).

- The operators \widehat{x} and \widehat{y} satisfy $[\widehat{y}, \widehat{x}]=\hbar$.
- $\widehat{P}(\widehat{x}, \widehat{y}) \psi(x, \hbar)=0$. Schrödinger equation: $\left(\hbar^{2} \frac{d^{2}}{d x^{2}}-\widehat{R}(\widehat{x}, \hbar)\right) \psi(x, \hbar)=0$.

WKB asymptotic expansion $\rightsquigarrow \log \psi(x, \hbar)=\sum_{k \geq-1} \hbar^{k} S_{k}(x) \in \hbar^{-1} \mathbb{C}[[\hbar]]$.
Question: Can we construct the operator \widehat{P} and the solution ψ from P ?

Conjecture

Both \widehat{P} and ψ can be constructed from Σ using topological recursion.

Presentation of the quantum curve conjecture

$$
P \in \mathbb{C}[x, y] \text { and } \Sigma=\left\{(x, y) \in \mathbb{C}^{2} \mid P(x, y)=0\right\} \text { plane curve of genus } \hat{g} .
$$

A quantization of Σ is a differential operator \widehat{P} of the form

$$
\widehat{P}(\widehat{x}, \widehat{y} ; \hbar)=P_{0}(\widehat{x}, \widehat{y})+O(\hbar),
$$

where $\widehat{x}=x \cdot \widehat{y}=\hbar \frac{d}{d x}$, such that $P_{0}(x, y)=P(x, y) Q(x, y)$, for some $Q \in \mathbb{C}[x, y]$ (often 1).

- The operators \widehat{x} and \widehat{y} satisfy $[\widehat{y}, \widehat{x}]=\hbar$.
- $\widehat{P}(\widehat{x}, \widehat{y}) \psi(x, \hbar)=0$. Schrödinger equation: $\left(\hbar^{2} \frac{d^{2}}{d x^{2}}-\widehat{R}(\widehat{x}, \hbar)\right) \psi(x, \hbar)=0$.

WKB asymptotic expansion $\rightsquigarrow \log \psi(x, \hbar)=\sum_{k \geq-1} \hbar^{k} S_{k}(x) \in \hbar^{-1} \mathbb{C}[[\hbar]]$.
Question: Can we construct the operator \widehat{P} and the solution ψ from P ?

Conjecture

Both \widehat{P} and ψ can be constructed from Σ using topological recursion.
Subtlety: We want \widehat{P} to have a controlled pole structure, more precisely, to have the same pole structure as P.

$$
\begin{aligned}
\widehat{P}(\widehat{x}, \widehat{y}) \psi(z, \hbar) & =\left(\hbar^{2} \frac{d^{2}}{d x^{2}}-\widehat{R}(\widehat{x}, \hbar)\right) \psi(z, \hbar)=0, \quad x: \Sigma \rightarrow \mathbb{C} P^{1} \\
\log \psi(z, \hbar) & =\sum_{k \geq-1} \hbar^{k} S_{k}(z) \in \hbar^{-1} \mathbb{C}[[\hbar]], \quad z \in \Sigma, x=x(z) \in \mathbb{C} P^{1}
\end{aligned}
$$

- $S_{k}(z)$ meromorphic functions on Σ, where $S_{0}(z)=\int^{z} y d x$ may be multi-valued.

$$
\begin{aligned}
\widehat{P}(\widehat{x}, \widehat{y}) \psi(z, \hbar) & =\left(\hbar^{2} \frac{d^{2}}{d x^{2}}-\widehat{R}(\widehat{x}, \hbar)\right) \psi(z, \hbar)=0, \quad x: \Sigma \rightarrow \mathbb{C} P^{1} \\
\log \psi(z, \hbar) & =\sum_{k \geq-1} \hbar^{k} S_{k}(z) \in \hbar^{-1} \mathbb{C}[[\hbar]], \quad z \in \Sigma, x=x(z) \in \mathbb{C} P^{1}
\end{aligned}
$$

- $S_{k}(z)$ meromorphic functions on Σ, where $S_{0}(z)=\int^{z} y d x$ may be multi-valued.
- Semi-classical limit \rightsquigarrow From the quantum curve to the plane curve:

$$
\widehat{x} \mapsto x \quad \text { and } \quad \widehat{y}=\hbar \frac{d}{d x} \mapsto y
$$

$$
\begin{aligned}
\widehat{P}(\widehat{x}, \widehat{y}) \psi(z, \hbar) & =\left(\hbar^{2} \frac{d^{2}}{d x^{2}}-\widehat{R}(\widehat{x}, \hbar)\right) \psi(z, \hbar)=0, \quad x: \Sigma \rightarrow \mathbb{C} P^{1} \\
\log \psi(z, \hbar) & =\sum_{k \geq-1} \hbar^{k} S_{k}(z) \in \hbar^{-1} \mathbb{C}[[\hbar]], \quad z \in \Sigma, x=x(z) \in \mathbb{C} P^{1}
\end{aligned}
$$

- $S_{k}(z)$ meromorphic functions on Σ, where $S_{0}(z)=\int^{z} y d x$ may be multi-valued.
- Semi-classical limit \rightsquigarrow From the quantum curve to the plane curve:

$$
\widehat{x} \mapsto x \quad \text { and } \quad \widehat{y}=\hbar \frac{d}{d x} \mapsto y
$$

- Action of $\widehat{y}=\hbar \frac{d}{d x}$ on $\exp \left(\hbar^{-1} \int^{z} y d x\right)$ is multiplication by y :

$$
\widehat{P}(\widehat{x}, \widehat{y}) \psi(z, \hbar)=(P(x, y)+O(\hbar)) \psi(z, \hbar) .
$$

First subtleties and comments

$$
\begin{aligned}
\widehat{P}(\widehat{x}, \widehat{y}) \psi(z, \hbar) & =\left(\hbar^{2} \frac{d^{2}}{d x^{2}}-\widehat{R}(\widehat{x}, \hbar)\right) \psi(z, \hbar)=0, \quad x: \Sigma \rightarrow \mathbb{C} P^{1} \\
\log \psi(z, \hbar) & =\sum_{k \geq-1} \hbar^{k} S_{k}(z) \in \hbar^{-1} \mathbb{C}[[\hbar]], \quad z \in \Sigma, x=x(z) \in \mathbb{C} P^{1}
\end{aligned}
$$

- $S_{k}(z)$ meromorphic functions on Σ, where $S_{0}(z)=\int^{z} y d x$ may be multi-valued.
- Semi-classical limit \rightsquigarrow From the quantum curve to the plane curve:

$$
\widehat{x} \mapsto x \quad \text { and } \quad \widehat{y}=\hbar \frac{d}{d x} \mapsto y
$$

- Action of $\widehat{y}=\hbar \frac{d}{d x}$ on $\exp \left(\hbar^{-1} \int^{z} y d x\right)$ is multiplication by y :

$$
\widehat{P}(\widehat{x}, \widehat{y}) \psi(z, \hbar)=(P(x, y)+O(\hbar)) \psi(z, \hbar)
$$

\Rightarrow differential equation only satisfied on the curve $P(x, y)=y^{2}-R(x, 0)=0$.

- Higher order corrections in \hbar are needed since $\left(\hbar \frac{d}{d x}\right)^{2} \mapsto y^{2}+O(\hbar)$ when acting on $\psi_{0}(z, \hbar)=\exp \left(\hbar^{-1} S_{0}(z)\right)=\exp \left(\hbar^{-1} \int^{z} y d x\right)$.
- Proved for many particular cases \rightsquigarrow genus $\hat{g}=0$ spectral curves.
- Bouchard-Eynard '17 \rightsquigarrow spectral curves whose Newton polygon has $N_{I}:=\#\{$ interior points $\}=0\left(\right.$ Fact: $\left.\hat{g} \leq N_{I}\right)$.
- Proved for many particular cases \rightsquigarrow genus $\hat{g}=0$ spectral curves.
- Bouchard-Eynard '17 \rightsquigarrow spectral curves whose Newton polygon has $N_{I}:=\#\{$ interior points $\}=0\left(\right.$ Fact: $\left.\hat{g} \leq N_{I}\right)$.
- Mariño-Eynard '08 \rightsquigarrow Holomorphic, modular and background independent, non-perturbative partition functions.
- Borot-Eynard '12 \rightsquigarrow Only non-perturbative wave functions can obey "good" quantum curves (for $\hat{g}>0$).
- Eynard ' $17 \rightsquigarrow$ General idea to construct integrable systems and their τ-functions from the geometry of the spectral curve.
- Proved for many particular cases \rightsquigarrow genus $\hat{g}=0$ spectral curves.
- Bouchard-Eynard '17 \rightsquigarrow spectral curves whose Newton polygon has $N_{I}:=\#\{$ interior points $\}=0\left(\right.$ Fact: $\left.\hat{g} \leq N_{I}\right)$.
- Mariño-Eynard '08 \rightsquigarrow Holomorphic, modular and background independent, non-perturbative partition functions.
- Borot-Eynard '12 \rightsquigarrow Only non-perturbative wave functions can obey "good" quantum curves (for $\hat{g}>0$).
- Eynard ' $17 \rightsquigarrow$ General idea to construct integrable systems and their τ-functions from the geometry of the spectral curve.
- Chidambaram-Bouchard-Dauphinee ' $18 \rightsquigarrow \hat{g}=1$, but bad properties (infinitely many \hbar corrections with poles at ramification points, not even functions of x)!
- Iwaki-Marchal-Saenz '18, Marchal-Orantin '19 (reversed approach) \rightsquigarrow Lax pairs associated with \hbar-dependent Painlevé equations and any
$\hbar \partial_{x} \Psi(x, \hbar)=\mathcal{L}(x, \hbar) \Psi(x, \hbar)$, with $\mathcal{L}(x, \hbar) \in \mathfrak{s l}_{2}(\mathbb{C})$, satisfy the topological type property from Bergère-Borot-Eynard '15 $(\hat{g}=0)$.
- Iwaki-Saenz '16, Iwaki '19 Painlevé I and elliptic curves $(\hat{g}=1)$.
- Proved for many particular cases \rightsquigarrow genus $\hat{g}=0$ spectral curves.
- Bouchard-Eynard '17 \rightsquigarrow spectral curves whose Newton polygon has $N_{I}:=\#\{$ interior points $\}=0\left(\right.$ Fact: $\left.\hat{g} \leq N_{I}\right)$.
- Mariño-Eynard '08 \rightsquigarrow Holomorphic, modular and background independent, non-perturbative partition functions.
- Borot-Eynard '12 \rightsquigarrow Only non-perturbative wave functions can obey "good" quantum curves (for $\hat{g}>0$).
- Eynard ' $17 \rightsquigarrow$ General idea to construct integrable systems and their τ-functions from the geometry of the spectral curve.
- Chidambaram-Bouchard-Dauphinee ' $18 \rightsquigarrow \hat{g}=1$, but bad properties (infinitely many \hbar corrections with poles at ramification points, not even functions of x)!
- Iwaki-Marchal-Saenz '18, Marchal-Orantin '19 (reversed approach) \rightsquigarrow Lax pairs associated with \hbar-dependent Painlevé equations and any
$\hbar \partial_{x} \Psi(x, \hbar)=\mathcal{L}(x, \hbar) \Psi(x, \hbar)$, with $\mathcal{L}(x, \hbar) \in \mathfrak{s l}_{2}(\mathbb{C})$, satisfy the topological type property from Bergère-Borot-Eynard '15 $(\hat{g}=0)$.
- Iwaki-Saenz '16, Iwaki '19 Painlevé I and elliptic curves $(\hat{g}=1)$.
- Marchal-Orantin '19, Eynard-GF '19 Hyperelliptic (any \hat{g}).
- Proved for many particular cases \rightsquigarrow genus $\hat{g}=0$ spectral curves.
- Bouchard-Eynard '17 \rightsquigarrow spectral curves whose Newton polygon has $N_{I}:=\#\{$ interior points $\}=0\left(\right.$ Fact: $\left.\hat{g} \leq N_{I}\right)$.
- Mariño-Eynard '08 \rightsquigarrow Holomorphic, modular and background independent, non-perturbative partition functions.
- Borot-Eynard '12 \rightsquigarrow Only non-perturbative wave functions can obey "good" quantum curves (for $\hat{g}>0$).
- Eynard ' $17 \rightsquigarrow$ General idea to construct integrable systems and their τ-functions from the geometry of the spectral curve.
- Chidambaram-Bouchard-Dauphinee '18 $\rightsquigarrow \hat{g}=1$, but bad properties (infinitely many \hbar corrections with poles at ramification points, not even functions of x)!
- Iwaki-Marchal-Saenz '18, Marchal-Orantin '19 (reversed approach) \rightsquigarrow Lax pairs associated with \hbar-dependent Painlevé equations and any
$\hbar \partial_{x} \Psi(x, \hbar)=\mathcal{L}(x, \hbar) \Psi(x, \hbar)$, with $\mathcal{L}(x, \hbar) \in \mathfrak{s l}_{2}(\mathbb{C})$, satisfy the topological type property from Bergère-Borot-Eynard '15 $(\hat{g}=0)$.
- Iwaki-Saenz '16, Iwaki '19 Painlevé I and elliptic curves $(\hat{g}=1)$.
- Marchal-Orantin '19, Eynard-GF '19 \rightsquigarrow Hyperelliptic (any \hat{g}).
- Eynard-GF-Marchal-Orantin '21 \rightsquigarrow any algebraic curve with simple ramifications.

Beyond Airy: some meaningful generalisations

- $y^{2}=x \rightsquigarrow$ Witten (conj) '90, Kontsevich
'91, Airy, KW KdV tau function

$$
\begin{gathered}
\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{d_{1}} \cdots \psi_{n}^{d_{n}} \\
\left(\hbar^{2} \frac{d^{2}}{d x^{2}}-x\right) \psi(z, \hbar)=0
\end{gathered}
$$

- $y^{r}=x \rightsquigarrow$ Witten '93,

Faber-Shadrin-Zvonkine, '10, rAiry, rKdV

$$
\int_{\overline{\mathcal{M}}_{g, n}} W_{g, n}^{r}\left(a_{1}, \ldots, a_{n}\right) \psi_{1}^{d_{1}} \cdots \psi_{n}^{d_{n}}
$$

$$
\left(\hbar^{r} \frac{d^{r}}{d x^{r}}-x\right) \psi(z, \hbar)=0
$$

- $y^{2} x=1 \rightsquigarrow$ Norbury (conj) ' 17 ,
[Chidambaram, Giacchetto, G-F, '22], Bessel, BGW KdV tau function

$$
\begin{gathered}
\int_{\overline{\mathcal{M}}_{g, n}} \Theta_{g, n} \psi_{1}^{d_{1}} \cdots \psi_{n}^{d_{n}} \\
\left(\hbar^{2} \frac{d}{d x} x \frac{d}{d x}-1\right) \psi(z, \hbar)=0
\end{gathered}
$$

- $y^{2}=x^{3}+t x+V \rightsquigarrow$ Painlevé \mathbf{I}, elliptic curve ($\hat{g}=1$)

$$
\int_{\overline{\mathcal{M}}_{g, n+m}} \psi_{n+1}^{2} \cdots \psi_{n+m}^{2} \psi_{1}^{d_{1}} \cdots \psi_{n}^{d_{n}}
$$

$$
\left(\hbar^{2} \frac{d^{2}}{d x^{2}}-\left(x^{3}+t x+V+\frac{\partial}{\partial t}\right)\right) \psi=0
$$

Outline

Topological recursion and quantum curves- Topological recursion and its ramifications
- Example: Witten's conjecture, Kontsevich's theorem and Airy
- Quantum curves, history, context and examples

2 Spectral curvesTopological recursion and loop equationsPerturbative wave function and $K Z$ equationsNon-perturbative wave functions and Lax systemQuestions and future workBonus: Link with isomonodromic systems

Spectral curves

N distinct points $\Lambda_{1}, \ldots, \Lambda_{N} \in \mathbb{P}^{1} \backslash\{\infty\}$. Let $\mathcal{H}_{d}\left(\Lambda_{1}, \ldots, \Lambda_{N}, \infty\right)$ be the Hurwitz space of degree d ramified coverings $x: \Sigma \rightarrow \mathbb{P}^{1}$, where Σ is the Riemann surface:

$$
\Sigma:=\overline{\{(\lambda, y) \mid P(\lambda, y)=0\}}
$$

of genus \hat{g}, where $x(\lambda, y):=\lambda$ and

$$
P(\lambda, y)=\sum_{l=0}^{d}(-1)^{l} y^{d-l} P_{l}(\lambda), \quad P_{0}(\lambda)=1,
$$

P_{l} being a rational function with possible poles at $\lambda \in \mathcal{P}:=\left\{\Lambda_{i}\right\}_{i=1}^{N} \cup\{\infty\}$.
Classical spectral curve: $\rightsquigarrow(\Sigma, x)$.

Spectral curves

N distinct points $\Lambda_{1}, \ldots, \Lambda_{N} \in \mathbb{P}^{1} \backslash\{\infty\}$. Let $\mathcal{H}_{d}\left(\Lambda_{1}, \ldots, \Lambda_{N}, \infty\right)$ be the Hurwitz space of degree d ramified coverings $x: \Sigma \rightarrow \mathbb{P}^{1}$, where Σ is the Riemann surface:

$$
\Sigma:=\overline{\{(\lambda, y) \mid P(\lambda, y)=0\}}
$$

of genus \hat{g}, where $x(\lambda, y):=\lambda$ and

$$
P(\lambda, y)=\sum_{l=0}^{d}(-1)^{l} y^{d-l} P_{l}(\lambda), \quad P_{0}(\lambda)=1,
$$

P_{l} being a rational function with possible poles at $\lambda \in \mathcal{P}:=\left\{\Lambda_{i}\right\}_{i=1}^{N} \cup\{\infty\}$.
Classical spectral curve: $\rightsquigarrow(\Sigma, x)$.

- Local coordinates (in the base): $\left\{\xi_{q}(\lambda)\right\}_{q \in \mathcal{P}}$ around $q \in \mathcal{P}$ are defined by

$$
\forall i \in \llbracket 1, N \rrbracket: \xi_{\Lambda_{i}}(\lambda):=\left(\lambda-\Lambda_{i}\right) \quad \text { and } \quad \xi_{\infty}(\lambda):=\lambda^{-1} .
$$

- Local coordinates (in the cover): near any $p \in x^{-1}(q)$, let $d_{p}:=\operatorname{ord}_{p}\left(\xi_{q}\right)$

$$
\zeta_{p}(z)=\xi_{q}(x(z))^{\frac{1}{d_{p}}}
$$

$\left\{d_{p}\right\}_{p \in x^{-1}(q)}$ is called the ramification profile of q. We have $\sum_{p \in x^{-1}(q)} d_{p}=d$.

Admissible spectral curves

Expansion of the 1-form $\omega_{0,1}=y d x$ around any pole $p \in x^{-1}(\mathcal{P})$:

$$
y d x=\sum_{k=0}^{r_{p}-1} t_{p, k} \zeta_{p}^{-k-1} d \zeta_{p}+\text { analytic at } p
$$

The $t_{p, k}$'s are called the spectral times (or KP times).
Ramification points: $\mathcal{R}_{0}:=\left\{p \in \Sigma \mid 1+\operatorname{order}_{p} d x \neq \pm 1\right\}$,

$$
\mathcal{R}:=\{p \in \Sigma \mid d x(p)=0, x(p) \notin \mathcal{P}\}=\mathcal{R}_{0} \backslash x^{-1}(\mathcal{P})
$$

Critical values: $x(\mathcal{R})$.

Admissible spectral curves

Expansion of the 1-form $\omega_{0,1}=y d x$ around any pole $p \in x^{-1}(\mathcal{P})$:

$$
y d x=\sum_{k=0}^{r_{p}-1} t_{p, k} \zeta_{p}^{-k-1} d \zeta_{p}+\text { analytic at } p
$$

The $t_{p, k}$'s are called the spectral times (or KP times).
Ramification points: $\mathcal{R}_{0}:=\left\{p \in \Sigma \mid 1+\operatorname{order}_{p} d x \neq \pm 1\right\}$,

$$
\mathcal{R}:=\{p \in \Sigma \mid d x(p)=0, x(p) \notin \mathcal{P}\}=\mathcal{R}_{0} \backslash x^{-1}(\mathcal{P})
$$

Critical values: $x(\mathcal{R})$.

Definition (Admissible classical spectral curves)

A classical spectral curve (Σ, x) is admissible if:

- $P(\lambda, y)=0$ is an irreducible algebraic curve;
- $a \in \mathcal{R}$ are simple, i.e. $d x$ has only a simple zero at $a \in \mathcal{R}$;
- $\forall\left(a_{i}, a_{j}\right) \in \mathcal{R} \times \mathcal{R}$ with $a_{i} \neq a_{j}, x\left(a_{i}\right) \neq x\left(a_{j}\right)$;
- $\forall a \in \mathcal{R}, d y(a) \neq 0$;
- $\forall p \in x^{-1}(\mathcal{P})$ ramified, the 1-form $y d x$ has a pole of degree $r_{p} \geq 3$ at p and $t_{p, r_{p}-2} \neq 0$.

Torelli marking and filling fractions

For any symplectic basis $\left(\mathcal{A}_{i}, \mathcal{B}_{i}\right)_{i=1}^{\hat{g}}$ of $H_{1}(\Sigma, \mathbb{Z})$, let

$$
B^{\left(\mathcal{A}_{i}, \mathcal{B}_{i}\right)_{i=1}^{\hat{g}} \in H^{0}\left(\Sigma^{2}, K_{\Sigma}^{\boxtimes 2}(2 \Delta)\right)^{\mathfrak{S}_{2}} \subset \mathcal{M}_{2}\left(\Sigma^{2}\right)}
$$

be the unique symmetric bidifferential on Σ^{2} with a unique double pole on the diagonal Δ, without residue, bi-residue equal to 1 and normalized on the \mathcal{A}-cycles by

$$
\forall i \in \llbracket 1, \hat{g} \rrbracket, \oint_{z_{1} \in \mathcal{A}_{i}} B^{\left(\mathcal{A}_{i}, \mathcal{B}_{i}\right)_{i=1}^{\hat{g}}\left(z_{1}, z_{2}\right)=0 .}
$$

Remark

Choice of Torelli marking can be thought of as a choice of polarisation from a geometric quantisation point of view.

Let $\left((\Sigma, x),\left(\mathcal{A}_{i}, \mathcal{B}_{i}\right)_{i=1}^{\hat{g}}\right)$ be some admissible initial data. We define the tuple $\left(\epsilon_{i}\right)_{i=1}^{\hat{g}}$ of filling fractions by

$$
\forall i \in \llbracket 1, \hat{g} \rrbracket, \quad \epsilon_{i}:=\frac{1}{2 \pi i} \oint_{\mathcal{A}_{i}} y d x .
$$

Outline

2 Topological recursion and quantum curves

- Topological recursion and its ramifications
- Example: Witten's conjecture, Kontsevich's theorem and Airy
- Quantum curves, history, context and examples
(2) Spectral curves
(3) Topological recursion and loop equationsPerturbative wave function and $K Z$ equationsNon-perturbative wave functions and Lax systemQuestions and future workBonus: Link with isomonodromic systems
- $\omega_{g, n}$ are invariant under permutations of their n arguments.
- $\omega_{0,1}\left(z_{1}\right)$ may only have poles at $x^{-1}(\mathcal{P})$. $\omega_{0,2}\left(z_{1}, z_{2}\right)$ may only have poles at $z_{1}=z_{2}$. For $(h, n) \in \mathbb{N} \times \mathbb{N}^{*} \backslash\{(0,1),(0,2)\}, \omega_{h, n}\left(z_{1}, \ldots, z_{n}\right)$ may only have poles at $z_{i} \in \mathcal{R}$, for $i \in \llbracket 1, n \rrbracket$.
- For all $i \in \llbracket 1, \hat{g} \rrbracket$,

$$
\frac{\partial}{\partial \epsilon_{i}} \omega_{h, n}\left(z_{1}, \ldots, z_{n}\right)=\oint_{z \in \mathcal{B}_{i}} \omega_{h, n+1}\left(z, z_{1}, \ldots, z_{n}\right)
$$

Properties of TR

- $\omega_{g, n}$ are invariant under permutations of their n arguments.
- $\omega_{0,1}\left(z_{1}\right)$ may only have poles at $x^{-1}(\mathcal{P})$. $\omega_{0,2}\left(z_{1}, z_{2}\right)$ may only have poles at $z_{1}=z_{2}$. For $(h, n) \in \mathbb{N} \times \mathbb{N}^{*} \backslash\{(0,1),(0,2)\}, \omega_{h, n}\left(z_{1}, \ldots, z_{n}\right)$ may only have poles at $z_{i} \in \mathcal{R}$, for $i \in \llbracket 1, n \rrbracket$.
- For all $i \in \llbracket 1, \hat{g} \rrbracket$,

$$
\frac{\partial}{\partial \epsilon_{i}} \omega_{h, n}\left(z_{1}, \ldots, z_{n}\right)=\oint_{z \in \mathcal{B}_{i}} \omega_{h, n+1}\left(z, z_{1}, \ldots, z_{n}\right)
$$

Ramification points at poles:

- In the definition of TR, residues at $a \in \mathcal{R}=\mathcal{R}_{0} \backslash x^{-1}(\mathcal{P})$.
- But the points of \mathcal{P} could also be ramified (many interesting examples, like the Airy curve $y^{2}=x$).
- Bouchard-Eynard ('17) also included residues at the ramification points in $x^{-1}(\mathcal{P})$ to derive the quantum curve (in the case $\hat{g} \leq N_{I}=0$).

Properties of TR

- $\omega_{g, n}$ are invariant under permutations of their n arguments.
- $\omega_{0,1}\left(z_{1}\right)$ may only have poles at $x^{-1}(\mathcal{P}) \cdot \omega_{0,2}\left(z_{1}, z_{2}\right)$ may only have poles at $z_{1}=z_{2}$. For $(h, n) \in \mathbb{N} \times \mathbb{N}^{*} \backslash\{(0,1),(0,2)\}, \omega_{h, n}\left(z_{1}, \ldots, z_{n}\right)$ may only have poles at $z_{i} \in \mathcal{R}$, for $i \in \llbracket 1, n \rrbracket$.
- For all $i \in \llbracket 1, \hat{g} \rrbracket$,

$$
\frac{\partial}{\partial \epsilon_{i}} \omega_{h, n}\left(z_{1}, \ldots, z_{n}\right)=\oint_{z \in \mathcal{B}_{i}} \omega_{h, n+1}\left(z, z_{1}, \ldots, z_{n}\right)
$$

Ramification points at poles:

- In the definition of TR, residues at $a \in \mathcal{R}=\mathcal{R}_{0} \backslash x^{-1}(\mathcal{P})$.
- But the points of \mathcal{P} could also be ramified (many interesting examples, like the Airy curve $y^{2}=x$).
- Bouchard-Eynard ('17) also included residues at the ramification points in $x^{-1}(\mathcal{P})$ to derive the quantum curve (in the case $\hat{g} \leq N_{I}=0$).

Lemma (Ramified poles don't contribute for admissible curves)

Let $\omega_{h, n}^{\prime}$ be the topological recursion differential forms defined by taking residues at all $a \in \mathcal{R}_{0}$ (including $a \in x^{-1}(\mathcal{P})$). If $\forall p \in x^{-1}(\mathcal{P})$, we have $r_{p} \geq 3$ and $t_{p, r_{p}-2} \neq 0$, then $\omega_{h, n}^{\prime}=\omega_{h, n}$, and $\omega_{h, n}$ with $(h, n) \neq(0,1),(0,2)$ have poles only at $\mathcal{R}=\mathcal{R}_{0} \backslash x^{-1}(\mathcal{P})$.

Loop equations

For $(h, n, l) \in \mathbb{N}^{3}, \lambda \in \mathbb{P}^{1}$ and $\mathbf{z}:=\left(z_{1}, \ldots, z_{n}\right) \in \Sigma^{n}$,

$$
Q_{h, n+1}^{(l)}(\lambda ; \mathbf{z}):=\sum_{\beta \subseteq x^{-1}(\lambda)} \sum_{\mu \in \mathcal{S}(\beta)} \sum_{\substack{l(\mu) \\ \bigcup_{i=1}^{l} J_{i}=\mathbf{z}}} \sum_{\substack{l(\mu) \\ \sum_{i=1}^{l} g_{i}=h+l(\mu)-l}}\left[\prod_{i=1}^{l(\mu)} \omega_{g_{i},\left|\mu_{i}\right|+\left|J_{i}\right|}\left(\mu_{i}, J_{i}\right)\right],
$$

differential with possible poles at $\lambda \in \mathcal{P} \cup x(\mathcal{R}), z_{i} \in \mathcal{R}$ and $z_{i} \in x^{-1}(\lambda)$.

$$
Q_{h, n+1}^{(l)}(\lambda ; \mathbf{z})=0, \text { for } l \geq d+1
$$

Loop equations

For $(h, n, l) \in \mathbb{N}^{3}, \lambda \in \mathbb{P}^{1}$ and $\mathbf{z}:=\left(z_{1}, \ldots, z_{n}\right) \in \Sigma^{n}$,

$$
Q_{h, n+1}^{(l)}(\lambda ; \mathbf{z}):=\sum_{\beta \subseteq x^{-1}(\lambda)} \sum_{\mu \in \mathcal{S}(\beta)} \sum_{\substack{l(\mu) \\ \bigcup_{i=1}^{l} J_{i}=\mathbf{z}}} \sum_{\substack{l(\mu) \\ \sum_{i=1}^{l} g_{i}=h+l(\mu)-l}}\left[\prod_{i=1}^{l(\mu)} \omega_{g_{i},\left|\mu_{i}\right|+\left|J_{i}\right|}\left(\mu_{i}, J_{i}\right)\right],
$$

differential with possible poles at $\lambda \in \mathcal{P} \cup x(\mathcal{R}), z_{i} \in \mathcal{R}$ and $z_{i} \in x^{-1}(\lambda)$.

$$
Q_{h, n+1}^{(l)}(\lambda ; \mathbf{z})=0, \text { for } l \geq d+1
$$

Particular cases:

$$
\begin{aligned}
& -Q_{0,1}^{(l)}(\lambda)=\sum_{\beta \subseteq x^{-1}(\lambda)} \prod_{z \in \beta} \omega_{0,1}(z)=P_{l}(\lambda)(d \lambda)^{l} \\
& -Q_{0,2}^{(l)}\left(\lambda ; z_{1}\right)=\sum_{\beta \subseteq x^{-1}(\lambda)} \sum_{z \in \beta} \omega_{0,2}\left(z, z_{1}\right) \prod_{\substack{\tilde{z} \in \beta \\
\tilde{z} \neq z}} \omega_{0,1}(\tilde{z})
\end{aligned}
$$

Loop equations

For $(h, n, l) \in \mathbb{N}^{3}, \lambda \in \mathbb{P}^{1}$ and $\mathbf{z}:=\left(z_{1}, \ldots, z_{n}\right) \in \Sigma^{n}$,

$$
Q_{h, n+1}^{(l)}(\lambda ; \mathbf{z}):=\sum_{\beta \subseteq x^{-1}(\lambda)} \sum_{\mu \in \mathcal{S}(\beta)} \sum_{\substack{l(\mu) \\ \bigcup_{i=1}^{l} J_{i}=\mathbf{z}}} \sum_{\substack{l(\mu) \\ \sum_{i=1} g_{i}=h+l(\mu)-l}}\left[\prod_{i=1}^{l(\mu)} \omega_{g_{i},\left|\mu_{i}\right|+\left|J_{i}\right|}\left(\mu_{i}, J_{i}\right)\right],
$$

differential with possible poles at $\lambda \in \mathcal{P} \cup x(\mathcal{R}), z_{i} \in \mathcal{R}$ and $z_{i} \in x^{-1}(\lambda)$.

$$
Q_{h, n+1}^{(l)}(\lambda ; \mathbf{z})=0, \text { for } l \geq d+1
$$

Particular cases:

$$
\begin{aligned}
& -Q_{0,1}^{(l)}(\lambda)=\sum_{\beta \subseteq x^{-1}(\lambda)} \prod_{z \in \beta} \omega_{0,1}(z)=P_{l}(\lambda)(d \lambda)^{l} \\
& -Q_{0,2}^{(l)}\left(\lambda ; z_{1}\right)=\sum_{\beta \subseteq x^{-1}(\lambda)} \sum_{z \in \beta} \omega_{0,2}\left(z, z_{1}\right) \prod_{\substack{\tilde{z} \in \beta \\
\tilde{z} \neq z}} \omega_{0,1}(\tilde{z})
\end{aligned}
$$

Theorem (Loop equations)

The function $\lambda \mapsto \frac{Q_{h, n+1}^{(l)}(\lambda ; \mathbf{z})}{(d \lambda)^{l}}$ has no poles at $\lambda \in x(\mathcal{R}), \forall \mathbf{z} \in(\Sigma \backslash \mathcal{R})^{n}$.

- $Q_{h, n+1}^{(1)}(\lambda ; \mathbf{z})=\sum_{z \in x^{-1}(\lambda)} \omega_{h, n+1}(z, \mathbf{z})=\delta_{n, 0} \delta_{h, 0} P_{1}(\lambda) d \lambda+\delta_{n, 1} \delta_{h, 0} \frac{d \lambda d x\left(z_{1}\right)}{\left(\lambda-x\left(z_{1}\right)\right)^{2}}$.

Loop equations

$$
\hat{Q}_{h, n+1}^{(l)}(z ; \mathbf{z}):=\sum_{\beta \subseteq\left(x^{-1}(x(z)) \backslash\{z\}\right)} \sum_{\mu \in \mathcal{S}(\beta)} \sum_{\substack{l(\mu) \\ \bigcup_{i=1}^{\lfloor } J_{i}=\mathbf{z}}} \sum_{\substack{l(\mu)}}^{l} \prod_{i=1}^{l(\mu)} \omega_{g_{i},\left|\mu_{i}\right|+\left|J_{i}\right|}\left(\mu_{i}, J_{i}\right)
$$

Possible poles $\rightsquigarrow z$ with $x(z) \in x(\mathcal{R}), z \in x^{-1}(\mathcal{P})$, and $z_{i} \in \mathcal{R} \cup\left(x^{-1}(x(z)) \backslash\{z\}\right)$.

Lemma

For $\mathbf{z}:=\left(z_{1}, \ldots, z_{n}\right) \in \Sigma^{n}$ such that $x\left(z_{i}\right) \neq x\left(z_{j}\right)$ for any $i \neq j$, the functions

$$
\widetilde{Q}_{h, n+1}^{(l)}(\lambda ; \mathbf{z}):=\frac{Q_{h, n+1}^{(l)}(\lambda ; \mathbf{z})}{(d \lambda)^{l}}-\sum_{j=1}^{n} d_{z_{j}}\left(\frac{1}{\lambda-x\left(z_{j}\right)} \frac{\hat{Q}_{h, n}^{(l-1)}\left(z_{j} ; \mathbf{z} \backslash\left\{z_{j}\right\}\right)}{\left(d x\left(z_{j}\right)^{l-1}\right.}\right)
$$

are rational functions of λ with no poles at $\lambda \in x(\mathcal{R})$ and at $\lambda \in \bigcup_{i=1}^{n}\left\{x\left(z_{i}\right)\right\}$.
For $z \in \Sigma \backslash\left(\mathcal{R} \bigcup x^{-1}(\mathcal{P})\right)$ and $\mathbf{z} \in\left[\Sigma \backslash\left(\mathcal{R} \bigcup x^{-1}(x(z))\right)\right]^{n}$, we have

$$
\begin{aligned}
Q_{h ; n+1}^{(l)}(x(z) ; \mathbf{z}) & =\hat{Q}_{h ; n+1}^{(l)}(z ; \mathbf{z})+\hat{Q}_{h-1 ; n+2}^{(l-1)}(z ; z, \mathbf{z}) \\
& +\sum_{A \sqcup B=\mathbf{z}} \sum_{h_{1}+h_{2}=h} \hat{Q}_{h_{1},|A|+1}^{(l-1)}(z ; A) \omega_{h_{2},|B|+1}(z, B) .
\end{aligned}
$$

Outline

(2) Topological recursion and quantum curves

- Topological recursion and its ramifications
- Example: Witten's conjecture, Kontsevich's theorem and Airy
- Quantum curves, history, context and examples
(3) Spectral curvesTopological recursion and loop equations

4. Perturbative wave function and $K Z$ equations
(5) Non-perturbative wave functions and Lax systemQuestions and future workBonus: Link with isomonodromic systems

Perturbative wave function over a divisor

$D=\sum_{i=1}^{s} \alpha_{i}\left[p_{i}\right]$ a generic divisor (of degree $=\sum_{i} \alpha_{i}=0$) on $\widetilde{\Sigma_{\mathcal{P}}}, \Sigma_{\mathcal{P}}:=\Sigma \backslash x^{-1}(\mathcal{P})$.
Perturbative wave function $\psi(D, \hbar)=\psi_{0, i}(D, \hbar)$ associated to D :

$$
\begin{gathered}
\exp \left(\sum_{h \geq 0} \sum_{n \geq 0} \frac{\hbar^{2 h-2+n}}{n!} \int_{D} \cdots \int_{D}\left(\omega_{h, n}\left(z_{1}, \ldots, z_{n}\right)-\delta_{h, 0} \delta_{n, 2} \frac{d x\left(z_{1}\right) d x\left(z_{2}\right)}{\left(x\left(z_{1}\right)-x\left(z_{2}\right)\right)^{2}}\right)\right) . \\
e^{-\hbar^{-2} \omega_{0,0}} e^{-\hbar^{-1} \int_{D} \omega_{0,1}} \psi(D, \hbar) \in \mathbb{C}[[\hbar]] .
\end{gathered}
$$

Perturbative wave function over a divisor

$D=\sum_{i=1}^{s} \alpha_{i}\left[p_{i}\right]$ a generic divisor (of degree $=\sum_{i} \alpha_{i}=0$) on $\widetilde{\Sigma_{\mathcal{P}}}, \Sigma_{\mathcal{P}}:=\Sigma \backslash x^{-1}(\mathcal{P})$.
Perturbative wave function $\psi(D, \hbar)=\psi_{0, i}(D, \hbar)$ associated to D :

$$
\begin{gathered}
\exp \left(\sum_{h \geq 0} \sum_{n \geq 0} \frac{\hbar^{2 h-2+n}}{n!} \int_{D} \cdots \int_{D}\left(\omega_{h, n}\left(z_{1}, \ldots, z_{n}\right)-\delta_{h, 0} \delta_{n, 2} \frac{d x\left(z_{1}\right) d x\left(z_{2}\right)}{\left(x\left(z_{1}\right)-x\left(z_{2}\right)\right)^{2}}\right)\right) \\
e^{-\hbar^{-2} \omega_{0,0}} e^{-\hbar^{-1} \int_{D} \omega_{0,1}} \psi(D, \hbar) \in \mathbb{C}[[\hbar]]
\end{gathered}
$$

$$
\forall i \in \llbracket 1, s \rrbracket, l \geq 1: \psi_{l, i}(D, \hbar):=[\sum_{h \geq 0} \sum_{n \geq 0} \frac{\hbar^{2 h+n}}{n!} \overbrace{\int_{D} \ldots \int_{D}}^{n} \frac{\hat{Q}_{h, n+1}^{(l)}\left(p_{i} ; \cdot\right)}{\left(d x\left(p_{i}\right)\right)^{l}}] \psi(D, \hbar) .
$$

Perturbative partition function $Z(\hbar)=\psi(D=\emptyset, \hbar)$:

$$
Z(\hbar):=\exp \left(\sum_{h \geq 0} \hbar^{2 h-2} \omega_{h, 0}\right), \text { with } e^{-\hbar^{-2} \omega_{0,0}} Z(\hbar) \in \mathbb{C}[[\hbar]]
$$

Remark

Wave functions are meant to be solutions to a differential equation; the partition function is expected to play the role of an associated tau function from the point of view of isomonodromic or integrable systems.

KZ equations

Loop equations \Rightarrow Knizhnik-Zamolodchikov (KZ) equations:

Theorem (General KZ equations)

For $i \in \llbracket 1, s \rrbracket$ and $l \in \llbracket 0, d-1 \rrbracket$,

$$
\begin{array}{r}
\frac{\hbar}{\alpha_{i}} \frac{d \psi_{l, i}(D, \hbar)}{d x\left(p_{i}\right)}=-\psi_{l+1, i}(D, \hbar)-\hbar \sum_{j \in \llbracket 1, s \rrbracket \backslash\{i\}} \alpha_{j} \frac{\psi_{l, i}(D, \hbar)-\psi_{l, j}(D, \hbar)}{x\left(p_{i}\right)-x\left(p_{j}\right)} \\
+\sum_{h \geq 0} \sum_{n \geq 0} \frac{\hbar^{2 h+n}}{n!} \int_{z_{1} \in D} \ldots \int_{z_{n} \in D} \widetilde{Q}_{h, n+1}^{(l+1)}\left(x\left(p_{i}\right) ; \mathbf{z}\right) \psi(D, \hbar) \\
+\left(\frac{1}{\alpha_{i}}-\alpha_{i}\right)[\sum_{(h, n) \in \mathbb{N}^{2}} \frac{\hbar^{2 h+n+1}}{n!} \overbrace{\int_{D} \cdots \int_{D}}^{n} \frac{d}{d x\left(p_{i}\right)}\left(\frac{\hat{Q}_{h, n+1}^{(l)}\left(p_{i} ; \cdot\right)}{\left(d x\left(p_{i}\right)\right)^{l}}\right)] \psi(D, \hbar) .
\end{array}
$$

If $\alpha_{i}= \pm 1$,

$$
\begin{aligned}
\frac{\hbar}{\alpha_{i}} \frac{d \psi_{l, i}(D, \hbar)}{d x\left(p_{i}\right)} & =-\psi_{l+1, i}(D, \hbar)-\hbar \sum_{j \in \llbracket 1, s \rrbracket \backslash\{i\}} \alpha_{j} \frac{\psi_{l, i}(D, \hbar)-\psi_{l, j}(D, \hbar)}{x\left(p_{i}\right)-x\left(p_{j}\right)} \\
& +\sum_{h \geq 0} \sum_{n \geq 0} \frac{\hbar^{2 h+n}}{n!} \int_{z_{1} \in D} \ldots \int_{z_{n} \in D} \widetilde{Q}_{h, n+1}^{(l+1)}\left(x\left(p_{i}\right) ; \mathbf{z}\right) \psi(D, \hbar) .
\end{aligned}
$$

Regularised KZ equations

Let $z \in \widetilde{\Sigma_{\mathcal{P}}}$ be a generic point and $x^{-1}(\infty)=\left\{\infty^{(\alpha)}\right\}_{\alpha \in \llbracket 1, \ell_{\infty} \rrbracket}$.
When $D=[z]-\left[p_{2}\right], \psi(D, \hbar)$ has an essential singularity as $p_{2} \rightarrow \infty^{(\alpha)}$.
Need to regularise the wave functions: $\psi_{l}^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right)$.

Theorem (KZ equations for regularized wave functions)

For $\alpha \in \llbracket 1, \ell_{\infty} \rrbracket, l \in \llbracket 0, d-1 \rrbracket$, the regularised wave functions satisfy

$$
\begin{aligned}
& \hbar \frac{d}{d x(z)} \psi_{l}^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right)+\psi_{l+1}^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right) \\
= & {\left[\sum_{h \geq 0} \sum_{n \geq 0} \frac{\hbar^{2 h+n}}{n!} \sum_{P \in \mathcal{P}} \sum_{k \in S_{P}^{(l+1)}} \xi_{P}(x(z))^{-k} \operatorname{Res}_{\lambda \rightarrow P} \xi_{P}(\lambda)^{k-1} d \xi_{P}(\lambda)\right.} \\
& \left.\int_{z_{1}=\infty^{(\alpha)}}^{z_{1}=z} \cdots \int_{z_{n}=\infty^{(\alpha)}}^{z_{n}=z} \frac{Q_{h, n+1}^{(l+1)}(\lambda ; \mathbf{z})}{(d \lambda)^{l+1}}\right] \psi^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right) .
\end{aligned}
$$

Regularised KZ equations

Let $z \in \widetilde{\Sigma_{\mathcal{P}}}$ be a generic point and $x^{-1}(\infty)=\left\{\infty^{(\alpha)}\right\}_{\alpha \in \llbracket 1, \ell_{\infty} \rrbracket}$.
When $D=[z]-\left[p_{2}\right], \psi(D, \hbar)$ has an essential singularity as $p_{2} \rightarrow \infty^{(\alpha)}$.
Need to regularise the wave functions: $\psi_{l}^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right)$.

Theorem (KZ equations for regularized wave functions)

For $\alpha \in \llbracket 1, \ell_{\infty} \rrbracket, l \in \llbracket 0, d-1 \rrbracket$, the regularised wave functions satisfy

$$
\begin{aligned}
& \hbar \frac{d}{d x(z)} \psi_{l}^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right)+\psi_{l+1}^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right) \\
= & {\left[\sum_{h \geq 0} \sum_{n \geq 0} \frac{\hbar^{2 h+n}}{n!} \sum_{P \in \mathcal{P}} \sum_{k \in S_{P}^{(l+1)}} \xi_{P}(x(z))^{-k} \operatorname{Res}_{\lambda \rightarrow P} \xi_{P}(\lambda)^{k-1} d \xi_{P}(\lambda)\right.} \\
& \left.\int_{z_{1}=\infty^{(\alpha)}}^{z_{1}=z} \cdots \int_{z_{n}=\infty^{(\alpha)}}^{z_{n}=z} \frac{Q_{h, n+1}^{(l+1)}(\lambda ; \mathbf{z})}{(d \lambda)^{l+1}}\right] \psi^{\mathrm{reg}}\left(D=[z]-\left[\infty^{(\alpha)}\right], \hbar\right) .
\end{aligned}
$$

- RHS of KZ equations uses residues, i.e. integrals.
- Can be re-written using generalised integrals, i.e. linear operators $\mathcal{I}_{\mathcal{C}_{p, k}}$.
- $\mathcal{I}_{\mathcal{C}_{p, k}}$ is expected to correspond to $\partial_{t_{p, k}}$. Valid for $d=2$.
- Action of these operators defined only on a sub-algebra generated by $\int_{\mathcal{C}_{1}} \cdots \int_{\mathcal{C}_{n}} \omega_{h, n}$: algebra of symbols.
- Need to check that these operators never act on something else.
- Avoid the technicality of defining the action on all differentials on Σ.

Generalised cycles and algebra of symbols

Generalized cycles: $\mathcal{E}:=\left\{\mathcal{C}_{p, k}\right\}_{p \in \Sigma, k \in \mathbb{Z}} \cup\left\{\mathcal{C}_{o}^{p}\right\}_{p \in \Sigma} \cup\left\{\mathcal{A}_{i}, \mathcal{B}_{i}\right\}_{i=1}^{g}$, where the integration of a meromorphic form ω along such cycles is defined as:

- $\forall p \in \Sigma$, and $\forall k \in \mathbb{Z}$,

$$
\int_{\mathcal{C}_{p, k}}: \quad \omega \mapsto \operatorname{Res}_{p} \zeta_{p}^{-k} \omega
$$

- Let γ be a Jordan arc from a point $o \in \Sigma$ to a point $p \in \Sigma$.

$$
\int_{\mathcal{C}_{o}^{p}}: \quad \omega \mapsto \int_{\gamma} \omega
$$

Generalised cycles and algebra of symbols

Generalized cycles: $\mathcal{E}:=\left\{\mathcal{C}_{p, k}\right\}_{p \in \Sigma, k \in \mathbb{Z}} \cup\left\{\mathcal{C}_{o}^{p}\right\}_{p \in \Sigma} \cup\left\{\mathcal{A}_{i}, \mathcal{B}_{i}\right\}_{i=1}^{g}$, where the integration of a meromorphic form ω along such cycles is defined as:

- $\forall p \in \Sigma$, and $\forall k \in \mathbb{Z}$,

$$
\int_{\mathcal{C}_{p, k}}: \quad \omega \mapsto \operatorname{Res}_{p} \zeta_{p}^{-k} \omega
$$

- Let γ be a Jordan arc from a point $o \in \Sigma$ to a point $p \in \Sigma$.

$$
\int_{\mathcal{C}_{o}^{p}}: \omega \mapsto \int_{\gamma} \omega
$$

Commutative algebra freely generated by a set of symbols consisting of a pair (h, n) and a symbol $\int_{C_{1}} \cdots \int_{C_{n}}$, labeled by generalised cycles $C_{i} \in \mathcal{E}$:

$$
\check{\mathcal{W}}=\mathbb{C}\left[\left\{\int_{C_{1}} \cdots \int_{C_{n}} \omega_{h, n}\right\}_{h, n \geq 0}\right] \quad /(\text { cycle linearity relations). }
$$

Evaluation map:

$$
\text { ev : } \begin{aligned}
\check{\mathcal{W}} & \rightarrow \mathbb{C} \\
\int_{C_{1}} \cdots \int_{C_{n}} \omega_{h, n} & \mapsto \int_{z_{1} \in C_{1}} \cdots \int_{z_{n} \in C_{n}} \omega_{h, n}\left(z_{1}, \ldots, z_{n}\right) .
\end{aligned}
$$

$\mathcal{W} \rightsquigarrow$ extension to formal Laurent power series in \hbar, exponentials and inverses.

KZ equations with linear operators

Operators $\left(\mathcal{I}_{C}\right)_{C \in \mathcal{E}}$ acting on \mathcal{W} :

$$
\forall(h, n) \in \mathbb{N}^{2}: \mathcal{I}_{C}\left[\int_{C_{1}} \cdots \int_{C_{n}} \omega_{h, n}\right]:=\int_{C_{1}} \cdots \int_{C_{n}} \int_{C} \omega_{h, n+1}
$$

Re-writing the RHS of the KZ equations with a multi-linear operator $\widetilde{\mathcal{L}}_{l}(x(z))$ that uses $\mathcal{I}_{\mathcal{C}_{p, k}} \rightsquigarrow$ new system of KZ equations, for $\alpha \in \llbracket 1, \ell_{\infty} \rrbracket, l \in \llbracket 0, d-1 \rrbracket$:

$$
\begin{aligned}
& \hbar \frac{d}{d x(z)} \psi_{l}^{\mathrm{reg}}\left([z]-\left[\infty^{(\alpha)}\right]\right)+\psi_{l+1}^{\mathrm{reg}}\left([z]-\left[\infty^{(\alpha)}\right]\right) \\
& \quad=\text { ev. } \widetilde{\mathcal{L}}_{l}(x(z))\left[\psi^{\mathrm{reg} \text { symbol }}\left([z]-\left[\infty^{(\alpha)}\right]\right)\right] .
\end{aligned}
$$

KZ equations with linear operators

Operators $\left(\mathcal{I}_{C}\right)_{C \in \mathcal{E}}$ acting on \mathcal{W} :

$$
\forall(h, n) \in \mathbb{N}^{2}: \mathcal{I}_{C}\left[\int_{C_{1}} \cdots \int_{C_{n}} \omega_{h, n}\right]:=\int_{C_{1}} \cdots \int_{C_{n}} \int_{C} \omega_{h, n+1}
$$

Re-writing the RHS of the KZ equations with a multi-linear operator $\widetilde{\mathcal{L}}_{l}(x(z))$ that uses $\mathcal{I}_{\mathcal{C}_{p, k}} \rightsquigarrow$ new system of KZ equations, for $\alpha \in \llbracket 1, \ell_{\infty} \rrbracket, l \in \llbracket 0, d-1 \rrbracket$:

$$
\begin{aligned}
& \hbar \frac{d}{d x(z)} \psi_{l}^{\mathrm{reg}}\left([z]-\left[\infty^{(\alpha)}\right]\right)+\psi_{l+1}^{\mathrm{reg}}\left([z]-\left[\infty^{(\alpha)}\right]\right) \\
& \quad=\text { ev. } \widetilde{\mathcal{L}}_{l}(x(z))\left[\psi^{\mathrm{reg} \text { symbol }}\left([z]-\left[\infty^{(\alpha)}\right]\right)\right]
\end{aligned}
$$

Degree 2 case (hyperelliptic):

$$
P(x, y)=R(x)-y^{2}=0, \text { with } R(x) \in \mathbb{C}(x)
$$

$x: \Sigma \rightarrow \mathbb{C P}^{1}$ is a double cover and we have a global involution

$$
(x, y) \mapsto(x,-y)
$$

Remark

In degree 2, the operators $\mathcal{I}_{\mathcal{C}_{p, k}}$ can be interpreted as derivatives with respect to the moduli of the classical spectral curve $\partial_{t_{p, k}}$.

KZ equations for $d=2 \rightsquigarrow$ system of PDEs

Theorem (Eynard-GF,'19)

For $k=1,2$,

$$
\hbar^{2}\left(\frac{d^{2}}{d x_{k}^{2}}+\sum_{i \neq k} \frac{\frac{d}{d x_{k}}-\frac{d}{d x_{i}}}{x_{k}-x_{i}}\right) \psi=\left(R\left(x_{k}\right)+\mathcal{L}\left(x_{k}\right)\right) \psi
$$

$\zeta_{\infty} \in x^{-1}(\infty)$ and $\zeta_{l} \in x^{-1}\left(\Lambda_{l}\right)$ poles of $\omega_{0,1}$ of orders m_{∞} and $m_{l}, l=1, \ldots, N$, respectively. Let $d_{\infty}:=\operatorname{ord}_{\zeta_{\infty}}(x)$. Operator $\mathcal{L}(x)=\mathcal{L}_{\infty}(x)+\mathcal{L}_{\Lambda}(x)$:

$$
\begin{gathered}
\mathcal{L}_{\infty}(x)=\sum_{j=1-2 d_{\infty}}^{m_{\infty}} t_{\zeta_{\infty}, j} \sum_{k=0}^{\frac{1-j}{d_{\infty}}-2} x^{k}\left(-\frac{j}{d_{\infty}}-k-2\right) \frac{\partial}{\partial t_{\zeta_{\infty}, j+d_{\infty}(k+2)}}, \\
\mathcal{L}_{\Lambda}(x)=\sum_{l=1}^{N}\left(\frac{1}{x-\lambda_{l}} \frac{\partial}{\partial \lambda_{l}}+\sum_{j=1}^{m_{l}-1} t_{\zeta_{l}, j} \sum_{k=1}^{j}\left(x-\lambda_{l}\right)^{-(k+1)}(j+1-k) \frac{\partial}{\partial t_{\zeta_{l}, j+1-k}}\right) .
\end{gathered}
$$

Example

In the Airy case, $y^{2}=x$, we have only one pole, at $\zeta_{i}=\infty$, of degree $m_{i}=3$, with $d_{i}=-2$. The sum is empty and $\mathcal{L}(x)=0$.

Divisor $D=\left[z_{1}\right]-\left[z_{2}\right]$:

- PDEs for Airy curve: $y^{2}=x$. We had $\mathcal{L}(x)=0$.

$$
\left\{\begin{array}{l}
\hbar^{2}\left(\frac{d^{2}}{d x_{1}^{2}}+\frac{\frac{d}{d x_{1}}-\frac{d}{d x_{2}}}{x_{1}-x_{2}}\right) \psi=x_{1} \psi \\
\hbar^{2}\left(\frac{d^{2}}{d x_{2}^{2}}+\frac{\frac{d}{d x_{1}}-\frac{d}{d x_{2}}}{x_{1}-x_{2}}\right) \psi=x_{2} \psi
\end{array}\right.
$$

Divisor $D=\left[z_{1}\right]-\left[z_{2}\right]$:

- PDEs for Airy curve: $y^{2}=x$. We had $\mathcal{L}(x)=0$.

$$
\left\{\begin{array}{l}
\hbar^{2}\left(\frac{d^{2}}{d x_{1}^{2}}+\frac{\frac{d}{d x_{1}}-\frac{d}{d x_{2}}}{x_{1}-x_{2}}\right) \psi=x_{1} \psi \\
\hbar^{2}\left(\frac{d^{2}}{d x_{2}^{2}}+\frac{\frac{d}{d x_{1}}-\frac{d}{d x_{2}}}{x_{1}-x_{2}}\right) \psi=x_{2} \psi
\end{array}\right.
$$

More generally, admissible curves considered in Bouchard-Eynard, '17 (empty Newton polygon) are those for which $\mathcal{L}(x)=0$.

Airy and elliptic cases for two-point divisors

Divisor $D=\left[z_{1}\right]-\left[z_{2}\right]$:

- PDEs for Airy curve: $y^{2}=x$. We had $\mathcal{L}(x)=0$.

$$
\begin{cases}\hbar^{2}\left(\frac{d^{2}}{d x_{1}^{2}}+\frac{\frac{d}{d x_{1}}-\frac{d}{d x_{2}}}{x_{1}-x_{2}}\right) \psi & =x_{1} \psi \\ \hbar^{2}\left(\frac{d^{2}}{d x_{2}^{2}}+\frac{\frac{d}{d x_{1}}-\frac{d}{d x_{2}}}{x_{1}-x_{2}}\right) \psi & =x_{2} \psi\end{cases}
$$

More generally, admissible curves considered in Bouchard-Eynard, '17 (empty Newton polygon) are those for which $\mathcal{L}(x)=0$.

- PDEs for elliptic curve: $R(x(z))=y(z)^{2}=x^{3}+t x+V$, with

$$
-V=\int_{\mathcal{B}_{\infty, 1}} \omega_{0,1}=\frac{\partial}{\partial t_{\infty, 1}} \omega_{0,0}=-\frac{\partial}{\partial t} \omega_{0,0}
$$

$$
\Rightarrow R(x(z))=x^{3}+t x+\frac{\partial}{\partial t} \omega_{0,0}
$$

We have $\mathcal{L}(x)=\frac{\partial}{\partial t}$.

$$
\left(\hbar^{2} \frac{d^{2}}{d x_{k}^{2}}+\hbar^{2} \frac{\frac{d}{d x_{1}}-\frac{d}{d x_{2}}}{x_{1}-x_{2}}\right) \psi=\left(x_{k}^{3}+t x_{k}+V+\frac{\partial}{\partial t}\right) \psi
$$

for $k=1,2$.

Monodromies of the perturbative wave function \rightsquigarrow bad monodromies

Problem for genus $\hat{g}>0: \int_{o}^{z} \cdots \int_{o}^{z} \omega_{g, n}$ are not invariant after z goes around a cycle. Very bad monodromies when z goes around a \mathcal{B}_{i} (first type cycle).

Lemma

$$
\begin{gathered}
\forall p \in x^{-1}(\mathcal{P}): \psi_{l}\left(\left[z+\mathcal{C}_{p}\right]-\left[\infty^{(\alpha)}\right], \hbar\right)=(-1)^{\delta_{p, \infty}(\alpha)} e^{\frac{2 \pi i t_{p, 0}}{\hbar}} \psi_{l}\left([z]-\left[\infty^{(\alpha)}\right], \hbar\right), \\
\forall j \in \llbracket 1, \hat{g} \rrbracket: \psi_{l}\left(\left[z+\mathcal{A}_{j}\right]-\left[\infty^{(\alpha)}\right], \hbar\right)=e^{\frac{2 \pi i \epsilon_{j}}{\hbar}} \psi_{l}\left([z]-\left[\infty^{(\alpha)}\right], \hbar\right),
\end{gathered}
$$

where $\mathcal{C}_{p}\left(=\mathcal{C}_{p, 0}\right)$ is a small circle around p, and

$$
\psi\left(D+\mathcal{B}_{j}, \hbar\right)=\exp (\sum_{(h, n, m) \in \mathbb{N}^{3}} \frac{\hbar^{2 h-2+n+m}}{n!m!} \overbrace{\int_{D} \cdots \int_{D}}^{n} \overbrace{\int_{\mathcal{B}_{j}} \cdots \int_{\mathcal{B}_{j}}}^{m} \omega_{h, n+m}) .
$$

Since the \mathcal{B}_{j} period of $\omega_{h, n+1}$ is equal to the variation of $\omega_{h, n}$ wrt $\epsilon_{j}:=\oint_{\mathcal{A}_{j}} \omega_{0,1}$,

$$
\begin{gathered}
\psi\left(D+\mathcal{B}_{j}, \hbar\right)=\exp (\sum_{(h, n) \in \mathbb{N}^{2}} \frac{\hbar^{2 h-2+n}}{n!} \overbrace{\int_{D} \cdots \int_{D}}^{n} \sum_{m \geq 0} \frac{1}{m!}\left(\hbar \frac{\partial}{\partial \epsilon_{j}}\right)^{m} \omega_{h, n}) \Rightarrow \\
\psi_{l}\left(\left[z+\mathcal{B}_{j}\right]-\left[\infty^{(\alpha)}\right], \hbar\right)=e^{\hbar \frac{\partial}{\partial \epsilon_{j}}} \psi_{l}\left([z]-\left[\infty^{(\alpha)}\right], \hbar\right)=\psi_{l}\left([z]-\left[\infty^{(\alpha)}\right], \hbar, \epsilon_{j} \rightarrow \epsilon_{j}+\hbar\right) .
\end{gathered}
$$

Outline

(2) Topological recursion and quantum curves

- Topological recursion and its ramifications
- Example: Witten's conjecture, Kontsevich's theorem and Airy
- Quantum curves, history, context and examples
(3) Spectral curvesTopological recursion and loop equationsPerturbative wave function and $K Z$ equations
(5) Non-perturbative wave functions and Lax systemQuestions and future workBonus: Link with isomonodromic systems

Summing over the lattice

Remark

Our $K Z$ equations do not depend on $z \in \widetilde{\Sigma}$ but only on its image $x(z) \Rightarrow$ For any finite family of c_{γ}, the following sum satisfies the same $K Z$ equations

$$
\psi_{l}\left([z]-\left[\infty^{(\alpha)}\right], \hbar,\left\{c_{\gamma}\right\}\right):=\sum_{\gamma \in \pi_{1}\left(\Sigma \backslash x^{-1}(\mathcal{P})\right)} c_{\gamma} \psi_{l}\left([z]+\gamma-\left[\infty^{(\alpha)}\right], \hbar\right) .
$$

Goal: Build solutions to the same KZ equations but with better monodromies along the \mathcal{B}_{i}-cycles.

Summing over the lattice

Remark

Our $K Z$ equations do not depend on $z \in \widetilde{\Sigma}$ but only on its image $x(z) \Rightarrow$ For any finite family of c_{γ}, the following sum satisfies the same $K Z$ equations

$$
\psi_{l}\left([z]-\left[\infty^{(\alpha)}\right], \hbar,\left\{c_{\gamma}\right\}\right):=\sum_{\gamma \in \pi_{1}\left(\Sigma \backslash x^{-1}(\mathcal{P})\right)} c_{\gamma} \psi_{l}\left([z]+\gamma-\left[\infty^{(\alpha)}\right], \hbar\right)
$$

Goal: Build solutions to the same KZ equations but with better monodromies along the \mathcal{B}_{i}-cycles.

Strategy: Sum over $\gamma=\sum_{i=1}^{g} n_{i} \mathcal{B}_{i}$, i.e. $\epsilon_{i} \rightarrow \epsilon_{i}+\hbar$. Formally \rightsquigarrow discrete Fourier transform of the perturbative wave function:

$$
\psi_{l}^{\infty^{(\alpha)}}(z, \hbar ; \boldsymbol{\epsilon}, \boldsymbol{\rho}):=\sum_{\mathbf{n} \in \mathbb{Z}^{g}} e^{\frac{2 \pi i}{\hbar} \sum_{j=1}^{g} \rho_{j} n_{j}} \psi_{l}\left([z]-\left[\infty^{(\alpha)}\right], \hbar, \epsilon+\hbar \mathbf{n}\right)
$$

Trans-series with special ordering

Strategy: Sum over $\gamma=\sum_{i=1}^{\hat{g}} n_{i} \mathcal{B}_{i}$, i.e. $\epsilon_{i} \rightarrow \epsilon_{i}+\hbar$. Formally \rightsquigarrow discrete Fourier transform of the perturbative wave function:

$$
\psi_{l}^{\infty^{(\alpha)}}(z, \hbar ; \boldsymbol{\epsilon}, \boldsymbol{\rho}):=\sum_{\mathbf{n} \in \mathbb{Z}^{g}} e^{\frac{2 \pi i}{\hbar} \sum_{j=1}^{\hat{g}} \rho_{j} n_{j}} \psi_{l}\left([z]-\left[\infty^{(\alpha)}\right], \hbar, \epsilon+\hbar \mathbf{n}\right) .
$$

Remark (Limitations)

- Filling fraction $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{g}\right) \rightsquigarrow$ not a global coordinate on the space of classical spectral curves with fixed spectral times (only a local coordinate).
- Not a finite sum \rightsquigarrow not necessarily defined in \mathcal{W}.

Trans-series with special ordering

Strategy: Sum over $\gamma=\sum_{i=1}^{\hat{g}} n_{i} \mathcal{B}_{i}$, i.e. $\epsilon_{i} \rightarrow \epsilon_{i}+\hbar$. Formally \rightsquigarrow discrete Fourier transform of the perturbative wave function:

$$
\psi_{l}^{\infty^{(\alpha)}}(z, \hbar ; \boldsymbol{\epsilon}, \boldsymbol{\rho}):=\sum_{\mathbf{n} \in \mathbb{Z}^{g}} e^{\frac{2 \pi i}{\hbar} \sum_{j=1}^{\hat{g}} \rho_{j} n_{j}} \psi_{l}\left([z]-\left[\infty^{(\alpha)}\right], \hbar, \epsilon+\hbar \mathbf{n}\right) .
$$

Remark (Limitations)

- Filling fraction $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{g}\right) \rightsquigarrow$ not a global coordinate on the space of classical spectral curves with fixed spectral times (only a local coordinate).
- Not a finite sum \rightsquigarrow not necessarily defined in \mathcal{W}.

We need a special ordering of the trans-monomials:

$$
\sum_{r \geq 0} \sum_{\mathbf{n} \in \mathbb{Z}_{\mathcal{G}}} F_{\mathbf{n}, r} \hbar^{r} e^{\frac{1}{\hbar} \sum_{j=1}^{\hat{g}} n_{j} v_{j}}
$$

The partial sums $\sum_{\mathbf{n} \in \mathbb{Z} \hat{g}} F_{\mathbf{n}, r} e^{\frac{1}{\hbar} \sum_{j=1}^{\hat{g}} n_{j} v_{j}}$ will give rise to theta functions (through convergent series in the spirit of the trans-asymptotics of Costin-Costin, '10). Equalities: coefficient by coefficient in the trans-monomials.

Non-perturbative wave functions

Riemann matrix of periods of $\Sigma: \tau_{i, j}=\frac{1}{2 \pi \mathrm{i}} \int_{\mathcal{B}_{i}} \int_{\mathcal{B}_{j}} \omega_{0,2}, \forall(i, j) \in \llbracket 1, \hat{g} \rrbracket^{2}$.
Riemann theta function (analytic function of $\mathbf{v} \in \mathbb{C}^{\hat{g}}$) and its derivatives:

$$
\Theta^{\left(i_{1}, \ldots, i_{k}\right)}(\mathbf{v}, \tau)=\sum_{\left(n_{1}, \ldots, n_{\hat{g}}\right) \in \mathbb{Z} \hat{g}} e^{2 \pi \mathrm{i} \sum_{i=1}^{\hat{g}} n_{i} v_{i}} e^{\pi \mathrm{i} \sum_{(i, j) \in \llbracket 1, \hat{g} \rrbracket^{2}} n_{i} \tau_{i, j} n_{j}} \prod_{j=1}^{k} n_{i j}
$$

Non-perturbative wave functions

Riemann matrix of periods of $\Sigma: \tau_{i, j}=\frac{1}{2 \pi \mathrm{i}} \int_{\mathcal{B}_{i}} \int_{\mathcal{B}_{j}} \omega_{0,2}, \forall(i, j) \in \llbracket 1, \hat{g} \rrbracket^{2}$.
Riemann theta function (analytic function of $\mathbf{v} \in \mathbb{C}^{\hat{g}}$) and its derivatives:

$$
\Theta^{\left(i_{1}, \ldots, i_{k}\right)}(\mathbf{v}, \tau)=\sum_{\left(n_{1}, \ldots, n_{\hat{g}}\right) \in \mathbb{Z}^{\hat{g}}} e^{2 \pi \mathrm{i} \sum_{i=1}^{\hat{g}} n_{i} v_{i}} e^{{ }^{\pi \mathrm{i}} \sum_{(i, j) \in \llbracket 1, \hat{g} \rrbracket^{2}} n_{i} \tau_{i, j} n_{j}} \prod_{j=1}^{k} n_{i_{j}}
$$

For $D=[z]-\left[\infty^{(\alpha)}\right]$, we define the non-perturbative wave function

$$
\psi_{\mathrm{NP}}(D ; \hbar, \boldsymbol{\rho}):=e^{\hbar^{-2} \omega_{0,0}+\omega_{1,0}} e^{\hbar^{-1}} \int_{D} \omega_{0,1} \frac{1}{E(D)} \quad \sum_{r=0}^{\infty} \hbar^{r} G^{(r)}(D ; \boldsymbol{\rho}),
$$

where E is the prime form on Σ,

$$
G^{(r)}(D ; \boldsymbol{\rho}):=\sum_{k=0}^{3 r} \sum_{i_{1}, \ldots, i_{k} \in \llbracket 1, \hat{g} \rrbracket^{k}} \Theta^{\left(i_{1}, \ldots, i_{k}\right)}(\mathbf{v}, \tau) G_{\left(i_{1}, \ldots, i_{k}\right)}^{(r)}(D)
$$

and where $v_{j}:=\frac{\rho_{j}+\varphi_{j}}{\hbar}+\mu_{j}^{(\alpha)}(z), \mathbf{v}=\left(v_{1}, \ldots, v_{\hat{g}}\right)$, with

$$
\varphi_{j}:=\frac{1}{2 \pi i} \oint_{\mathcal{B}_{j}} \omega_{0,1} \quad \text { and } \quad \mu_{j}^{(\alpha)}(z):=\frac{1}{2 \pi i} \int_{D} \oint_{\mathcal{B}_{j}} \omega_{0,2} .
$$

Same KZ equations and good monodromies

- Non-perturbative wave functions satisfy the same KZ equations as their perturbative partners.

$$
\begin{gathered}
\hbar \frac{d \psi_{l, \mathrm{NP}}^{\infty^{(\alpha)}}(z, \hbar, \boldsymbol{\rho})}{d x(z)}+\psi_{l+1, \mathrm{NP}}^{\infty^{(\alpha)}}(z, \hbar, \boldsymbol{\rho})= \\
\sum_{P \in \mathcal{P}} \sum_{k \in S_{P}^{(l+1)}} \xi_{P}^{-k}(x(z)) \mathrm{ev} \cdot\left[\widetilde{\mathcal{L}}_{P, k, l} \psi_{0, \mathrm{NP}}^{\left.\infty^{(\alpha)}, \text { symbol }(z, \hbar, \boldsymbol{\rho})\right]} .\right.
\end{gathered}
$$

- Non-perturbative wave functions \rightsquigarrow simple monodromy properties.

For $j \in \llbracket 1, \hat{g} \rrbracket$, we have

$$
\begin{aligned}
& \psi_{l, \mathrm{NP}}^{\infty^{(\alpha)}}\left(z+\mathcal{A}_{j}, \hbar, \boldsymbol{\rho}\right)=e^{\frac{2 \pi i \epsilon_{j}}{\hbar}} \psi_{l, \mathrm{NP}}^{\infty^{(\alpha)}}(z, \hbar, \boldsymbol{\rho}) \\
& \psi_{l, \mathrm{NP}}^{\infty^{(\alpha)}}\left(z+\mathcal{B}_{j}, \hbar, \boldsymbol{\rho}\right)=e^{-\frac{2 \pi i \rho_{j}}{\hbar}} \psi_{l, \mathrm{NP}}^{\infty^{(\alpha)}}(z, \hbar, \boldsymbol{\rho})
\end{aligned}
$$

and $\forall p \in x^{-1}(\mathcal{P})$

$$
\psi_{l, \mathrm{NP}}^{\infty^{(\alpha)}}\left(z+\mathcal{C}_{p}, \hbar, \boldsymbol{\rho}\right)=(-1)^{\delta_{p, \infty}(\alpha)} e^{\frac{2 \pi i t_{p, 0}}{\hbar}} \psi_{l, \mathrm{NP}}^{\infty^{(\alpha)}}(z, \hbar, \boldsymbol{\rho}) .
$$

For $l \geq 0$, we define

$$
\psi_{l, \mathrm{NP}}^{\infty^{(\alpha)}}(z, \hbar, \boldsymbol{\rho}):=\mathrm{ev} . \sum_{\beta \subseteq\left(x^{-1}(x(z)) \backslash\{z\}\right)} \frac{1}{l!}\left(\prod_{j=1}^{l} \mathcal{I}_{\mathcal{C}_{\beta_{j}, 1}}\right) \psi_{\mathrm{NP}}^{\mathrm{symbol}}(D ; \hbar, \boldsymbol{\rho})
$$

For $l \geq 0$, we define

$$
\psi_{l, \mathrm{NP}}^{\infty^{(\alpha)}}(z, \hbar, \boldsymbol{\rho}):=\mathrm{ev} . \sum_{\beta \subseteq\left(x^{-1}(x(z)) \backslash\{z\}\right)} \frac{1}{l!}\left(\prod_{j=1}^{l} \mathcal{I}_{\mathcal{C}_{\beta_{j}, 1}}\right) \psi_{\mathrm{NP}}^{\mathrm{symbol}}(D ; \hbar, \boldsymbol{\rho})
$$

We use them to define a $d \times d$ matrix

$$
\widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar, \boldsymbol{\rho}):=\left[\psi_{l-1, \mathrm{NP}}^{(\alpha)}\left(z^{(\beta)}(\lambda), \hbar, \boldsymbol{\rho}\right)\right]_{1 \leq l, \beta \leq d}
$$

where $z^{(\beta)}(\lambda)$ denotes the $\beta^{\text {th }}$ preimage by x of λ.

$$
\widetilde{\mathcal{L}}_{l}(x(z))=\sum_{P \in \mathcal{P}} \sum_{k \in S_{P}^{(l+1)}} \xi_{P}(x(z))^{-k} \widetilde{\mathcal{L}}_{P, k, l}, \quad \mathcal{L}_{P, k, l}:=\widetilde{\mathcal{L}}_{P, k, l}-P_{P, k}^{(l+1)}
$$

Theorem (ODE and Lax system)

Let $\hat{L}(\lambda, \hbar):=-\widehat{P}(\lambda)+\hbar \sum_{P \in \mathcal{P}} \sum_{k \in \mathbb{N}} \xi_{P}^{-k}(\lambda) \widehat{\Delta}_{P, k}(\lambda, \hbar)$. Then,

$$
\hbar \frac{d \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar)}{d \lambda}=\hat{L}(\lambda, \hbar) \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar),
$$

where

$$
\widehat{P}(\lambda):=\left[\begin{array}{ccccc}
-P_{1}(\lambda) & 1 & 0 & \ldots & 0 \\
-P_{2}(\lambda) & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-P_{d-1}(\lambda) & 0 & 0 & \ldots & 1 \\
-P_{d}(\lambda) & 0 & 0 & \ldots & 0
\end{array}\right]
$$

For any $P \in \mathcal{P}, k \in \mathbb{N}, l \in \llbracket 0, d-1 \rrbracket$, one has the auxiliary systems

$$
\hbar^{-1} \mathrm{ev} \cdot \mathcal{L}_{P, k, l} \widehat{\Psi}_{\mathrm{NP}}^{\text {symbol }}(\lambda, \hbar)=\widehat{A}_{P, k, l}(\lambda, \hbar) \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar)
$$

where $\hat{L}(\lambda, \hbar)$ and $\widehat{A}_{P, k, l}(\lambda, \hbar)$ are \hbar-trans-series functions that are rational functions of λ, with no poles at critical values $\lambda \in x(\mathcal{R})$.

Lax systems

Theorem (ODE and Lax system)

Let $\hat{L}(\lambda, \hbar):=-\widehat{P}(\lambda)+\hbar \sum_{P \in \mathcal{P}} \sum_{k \in \mathbb{N}} \xi_{P}^{-k}(\lambda) \widehat{\Delta}_{P, k}(\lambda, \hbar)$. Then,

$$
\begin{equation*}
\hbar \frac{d \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar)}{d \lambda}=\hat{L}(\lambda, \hbar) \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar) \tag{1}
\end{equation*}
$$

where

$$
\widehat{P}(\lambda):=\left[\begin{array}{ccccc}
-P_{1}(\lambda) & 1 & 0 & \ldots & 0 \\
-P_{2}(\lambda) & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-P_{d-1}(\lambda) & 0 & 0 & \ldots & 1 \\
-P_{d}(\lambda) & 0 & 0 & \ldots & 0
\end{array}\right]
$$

For any $P \in \mathcal{P}, k \in \mathbb{N}, l \in \llbracket 0, d-1 \rrbracket$, one has the auxiliary systems

$$
\hbar^{-1} \mathrm{ev} \cdot \mathcal{L}_{P, k, l} \widehat{\Psi}_{\mathrm{NP}}^{\text {symbol }}(\lambda, \hbar)=\widehat{A}_{P, k, l}(\lambda, \hbar) \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar)
$$

where $\hat{L}(\lambda, \hbar)$ and $\widehat{A}_{P, k, l}(\lambda, \hbar)$ are \hbar-trans-series functions that are rational functions of λ, with no poles at critical values $\lambda \in x(\mathcal{R})$.

- (1) \rightsquigarrow linear differential system of size $d \times d$ whose formal fundamental solution can be computed by TR, with poles at the poles of the leading WKB term...
- $\hat{L}(\lambda, \hbar)$ has poles only at $\lambda \in \mathcal{P}$ and at zeros of the Wronskian $\operatorname{det} \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar)$, apparent singularities of the system (can be computed thanks to the KZ eqns).

Theorem (ODE and Lax system)

Let $\hat{L}(\lambda, \hbar):=-\widehat{P}(\lambda)+\hbar \sum_{P \in \mathcal{P}} \sum_{k \in \mathbb{N}} \xi_{P}^{-k}(\lambda) \widehat{\Delta}_{P, k}(\lambda, \hbar)$. Then,

$$
\begin{equation*}
\hbar \frac{d \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar)}{d \lambda}=\hat{L}(\lambda, \hbar) \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar) \tag{2}
\end{equation*}
$$

where

$$
\widehat{P}(\lambda):=\left[\begin{array}{ccccc}
-P_{1}(\lambda) & 1 & 0 & \ldots & 0 \\
-P_{2}(\lambda) & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-P_{d-1}(\lambda) & 0 & 0 & \ldots & 1 \\
-P_{d}(\lambda) & 0 & 0 & \ldots & 0
\end{array}\right]
$$

For any $P \in \mathcal{P}, k \in \mathbb{N}, l \in \llbracket 0, d-1 \rrbracket$, one has the auxiliary systems

$$
\hbar^{-1} \mathrm{ev} \cdot \mathcal{L}_{P, k, l} \widehat{\Psi}_{\mathrm{NP}}^{\mathrm{symbol}}(\lambda, \hbar)=\widehat{A}_{P, k, l}(\lambda, \hbar) \widehat{\Psi}_{\mathrm{NP}}(\lambda, \hbar)
$$

where $\hat{L}(\lambda, \hbar)$ and $\widehat{A}_{P, k, l}(\lambda, \hbar)$ are \hbar-trans-series functions that are rational functions of λ, with no pole at critical values $\lambda \in x(\mathcal{R})$.

- Most technical proof \rightsquigarrow by induction on the order of the transseries.
- Proof uses admissibility conditions (distinct critical values, smooth simple ramification points) \rightsquigarrow should adapt without them but involving more technical computations.

4 different interesting gauges

None of the gauge transformations modify the first line of the wave functions matrix (used to define the quantum curve).

- Gauge $\widehat{\Psi}$: Natural gauge coming from KZ equations and provides compatible auxiliary systems $\left(\mathcal{L}_{P, k, l}\right)_{P \in \mathcal{P}, l \in \llbracket 0, d-1 \rrbracket, k \in S_{P}^{(l+1)} \text {. }}$.
- Gauge $\widetilde{\Psi}\left(\hbar^{0}\right.$ gauge transformation from $\left.\widehat{\Psi}\right)$: Leading order in \hbar of \widetilde{L} is companion-like \rightsquigarrow the classical spectral curve is directly recovered from its last line.
- Gauge Ψ : Corresponding Lax matrix L is companion-like at all orders in $\hbar \rightsquigarrow$ both the quantum and classical curves are directly read from the last line of L and its $\hbar \rightarrow 0$ limit. Natural framework for Darboux coordinates and isomonodromic deformations.
- Gauge $\check{\Psi}$: Lax matrix \check{L} has no apparent singularities. This allows to interpret $\check{L}(\lambda, \hbar) d \lambda$ as an \hbar-familly of Higgs fields giving rise to a flow in the corresponding Hitchin system.

Practical computations to quantise a classical spectral curve

(1) Write down the $K Z$ equations satisfied by the non-perturbative wave function.
(2) Expand these KZ equations around each pole $\lambda \rightarrow P \in \mathcal{P} \rightsquigarrow$ expression of the coefficients of the asymptotic expansion of $\psi_{0, \mathrm{NP}}^{\left(\infty^{(\alpha)}\right)}$ in terms of the action of the operators \mathcal{I}_{C}.
O Use the latter expressions to compute the Wronskian of the system thanks to its expansion around its poles. This allows to compute the position of the apparent singularities $\left(q_{i}(\hbar)\right)_{i=1}^{d}$.

- Write down the linear system and the associated quantum curve, and use the compatibility of the system to recover its properties.

Example

- Reconstruction via TR of a 2-parameter family of formal transseries solutions to Painlevé 2 and quantisation. Classical spectral curve: $y^{2}-P_{1}(\lambda) y+P_{2}(\lambda)=0$, where $P_{1}(\lambda)=P_{\infty, 2}^{(1)} \lambda^{2}+P_{\infty, 1}^{(1)} \lambda+P_{\infty, 0}^{(1)}$ and

$$
P_{2}(\lambda)=P_{\infty, 4}^{(2)} \lambda^{4}+P_{\infty, 3}^{(2)} \lambda^{3}+P_{\infty, 2}^{(2)} \lambda^{2}+P_{\infty, 1}^{(2)} \lambda+P_{\infty, 0}^{(2)}
$$

- Quantisation of a degree 3, genus 1 classical spectral curve with a single singularity at infinity: $y^{3}-\left(P_{\infty, 1}^{(1)} \lambda+P_{\infty, 0}^{(1)}\right) y^{2}+\left(P_{\infty, 2}^{(2)} \lambda^{2}+P_{\infty, 1}^{(2)} \lambda+P_{\infty, 0}^{(2)}\right) y-$ $P_{\infty, 3}^{(3)} \lambda^{3}-P_{\infty, 2}^{(3)} \lambda^{2}-P_{\infty, 1}^{(3)} \lambda-P_{\infty, 0}^{(3)}=0$.

Outline

(2) Topological recursion and quantum curves

- Topological recursion and its ramifications
- Example: Witten's conjecture, Kontsevich's theorem and Airy
- Quantum curves, history, context and examplesSpectral curvesTopological recursion and loop equationsPerturbative wave function and $K Z$ equations
(5) Non-perturbative wave functions and Lax system
(6) Questions and future workBonus: Link with isomonodromic systems
- Ongoing: More conceptual proof of the QC conjecture?
- Explore the connection with summability, exact WKB, Stokes phenomenon and resurgence. Conjecture: There exist values of ε and \hbar making the transseries involved summable.
- Conjecture: The non-perturbative partition function is a tau function.
- How does the connection built as $d-\mathcal{L}(x, \hbar) d x / \hbar$ depend on the choice of cycles $\left(\mathcal{A}_{i}, \mathcal{B}_{i}\right)$?
- Interesting enumerative geometry in higher genus TR problems?
- Get rid of admissibility conditions?
- Relation to the topological type property approach (can that be proved for higher genus spectral curves?).
- Extend the result to ramified coverings of surfaces other than $\mathbb{C} P^{1}$.
- Generalization to difference equations? (Subtleties including K_{2} condition of Gukov-Sułkowski '12?). Non-algebraic curves, such as $P\left(e^{x}, e^{y}\right)$ (important for volume conjecture).
- General relation between Virasoro constraints (or even Kontsevich-Soibelman '17, ABCD of Andersen-Borot-Chekhov-Orantin '17) and quantum curves.

Merci beaucoup pour votre attention!

Articles:

- From topological recursion to wave functions and PDEs quantizing hyperelliptic curves, with B. Eynard, arXiv:1911. 07795 (2019)
- Quantizing generic algebraic spectral curves via topological recursion, with B. Eynard, O. Marchal, N. Orantin, arXiv:2106.04339 (2021)

Outline

(2) Topological recursion and quantum curves

- Topological recursion and its ramifications
- Example: Witten's conjecture, Kontsevich's theorem and Airy
- Quantum curves, history, context and examplesSpectral curvesTopological recursion and loop equationsPerturbative wave function and $K Z$ equationsNon-perturbative wave functions and Lax systemQuestions and future work
(7) Bonus: Link with isomonodromic systems

Spectral curves from integrable systems

Definition

Let $\hbar \frac{\partial}{\partial x} \Psi(x, \hbar)=\mathcal{L}(x, \hbar) \Psi(x, \hbar)$ be a (2×2) differential system (with $\operatorname{det} \Psi=1$). We define the classical spectral curve associated to it by

$$
P(x, y):=\lim _{\hbar \rightarrow 0} \operatorname{det}(y \operatorname{Id}-\mathcal{L}(x, \hbar))=0,
$$

which gives a polynomial equation. For a non-zero genus curve, this must be completed with a choice of symplectic basis of cycles and a bidifferential B.

Spectral curves from integrable systems

Definition

Let $\hbar \frac{\partial}{\partial x} \Psi(x, \hbar)=\mathcal{L}(x, \hbar) \Psi(x, \hbar)$ be a (2×2) differential system (with $\operatorname{det} \Psi=1$). We define the classical spectral curve associated to it by

$$
P(x, y):=\lim _{\hbar \rightarrow 0} \operatorname{det}(y \operatorname{Id}-\mathcal{L}(x, \hbar))=0,
$$

which gives a polynomial equation. For a non-zero genus curve, this must be completed with a choice of symplectic basis of cycles and a bidifferential B.

Different approach:

- \hbar-differential system.
- Define the classical spectral curve associated to it.
- Show that interesting quantities from the point of view of the differential system may be reconstructed from topological recursion applied to this classical spectral curve.
- Proof by showing that the differential system satisfies the topological type property (Bergère-Borot-Eynard '15).

Isomonodromic deformations

We consider isomonodromic deformations of the linear differential equation $\partial_{x}-\mathcal{L}(x)$, which depend on a number of continuous parameters t_{k} (times):

$$
\left\{\begin{aligned}
\hbar \frac{\partial}{\partial x} \Psi\left(x, t_{k} ; \hbar\right) & =\mathcal{L}\left(x, t_{k} ; \hbar\right) \Psi\left(x, t_{k} ; \hbar\right) \\
\hbar \frac{\partial}{\partial t_{k}} \Psi\left(x, t_{k} ; \hbar\right) & =\mathcal{R}_{k}\left(x, t_{k} ; \hbar\right) \Psi\left(x, t_{k} ; \hbar\right)
\end{aligned}\right.
$$

We call such a (compatible integrable) system an isomonodromic system.

$$
\frac{\partial^{2}}{\partial t_{k} \partial x} \Psi=\frac{\partial^{2}}{\partial x \partial t_{k}} \Psi \Leftrightarrow \hbar \frac{\partial \mathcal{L}}{\partial t_{k}}-\hbar \frac{\partial \mathcal{R}_{k}}{\partial x}+\left[\mathcal{L}, \mathcal{R}_{k}\right]=0 \text { (zero-curvature equation). }
$$

Isomonodromic deformations

We consider isomonodromic deformations of the linear differential equation $\partial_{x}-\mathcal{L}(x)$, which depend on a number of continuous parameters t_{k} (times):

$$
\left\{\begin{aligned}
\hbar \frac{\partial}{\partial x} \Psi\left(x, t_{k} ; \hbar\right) & =\mathcal{L}\left(x, t_{k} ; \hbar\right) \Psi\left(x, t_{k} ; \hbar\right) \\
\hbar \frac{\partial}{\partial t_{k}} \Psi\left(x, t_{k} ; \hbar\right) & =\mathcal{R}_{k}\left(x, t_{k} ; \hbar\right) \Psi\left(x, t_{k} ; \hbar\right)
\end{aligned}\right.
$$

We call such a (compatible integrable) system an isomonodromic system.

$$
\frac{\partial^{2}}{\partial t_{k} \partial x} \Psi=\frac{\partial^{2}}{\partial x \partial t_{k}} \Psi \Leftrightarrow \hbar \frac{\partial \mathcal{L}}{\partial t_{k}}-\hbar \frac{\partial \mathcal{R}_{k}}{\partial x}+\left[\mathcal{L}, \mathcal{R}_{k}\right]=0 \text { (zero-curvature equation). }
$$

Consider the deformed spectral curve

$$
P(x, y ; \hbar)=\operatorname{det}\left(y \operatorname{Id}-\mathcal{L}\left(x, t_{k} ; \hbar\right)\right)=P_{0}(x, y)+\sum_{m \geq 1} \hbar^{m} P_{m}(x, y)
$$

Classical spectral curve $\rightsquigarrow P_{0}(x, y)$ (family of curves parametrized by t_{k} 's).

Isomonodromic deformations

We consider isomonodromic deformations of the linear differential equation $\partial_{x}-\mathcal{L}(x)$, which depend on a number of continuous parameters t_{k} (times):

$$
\left\{\begin{aligned}
\hbar \frac{\partial}{\partial x} \Psi\left(x, t_{k} ; \hbar\right) & =\mathcal{L}\left(x, t_{k} ; \hbar\right) \Psi\left(x, t_{k} ; \hbar\right) \\
\hbar \frac{\partial}{\partial t_{k}} \Psi\left(x, t_{k} ; \hbar\right) & =\mathcal{R}_{k}\left(x, t_{k} ; \hbar\right) \Psi\left(x, t_{k} ; \hbar\right)
\end{aligned}\right.
$$

We call such a (compatible integrable) system an isomonodromic system.

$$
\frac{\partial^{2}}{\partial t_{k} \partial x} \Psi=\frac{\partial^{2}}{\partial x \partial t_{k}} \Psi \Leftrightarrow \hbar \frac{\partial \mathcal{L}}{\partial t_{k}}-\hbar \frac{\partial \mathcal{R}_{k}}{\partial x}+\left[\mathcal{L}, \mathcal{R}_{k}\right]=0 \text { (zero-curvature equation). }
$$

Consider the deformed spectral curve

$$
P(x, y ; \hbar)=\operatorname{det}\left(y \operatorname{Id}-\mathcal{L}\left(x, t_{k} ; \hbar\right)\right)=P_{0}(x, y)+\sum_{m \geq 1} \hbar^{m} P_{m}(x, y)
$$

Classical spectral curve $\rightsquigarrow P_{0}(x, y)$ (family of curves parametrized by t_{k} 's).

Remark

Painlevé equations \rightsquigarrow Isomonodromic deformations. Painlevé property \rightsquigarrow Solutions have no movable singularities other than poles. Classification of all second order differential equations with the Painlevé property $\rightsquigarrow 50$ solutions and only 6 which could not be integrated from already known functions.

In the family of elliptic curves $y^{2}=x^{3}+t x+V$, taking $t=-3 u_{0}^{2}$ and $V=2 u_{0}^{3}$, amounts to pinching the \mathcal{B}-cycle (first kind). So in this case, we have genus $\hat{g}=0$ and the spectral curve admits a rational parametrization:

$$
\begin{cases}\Sigma=\mathbb{C} P^{1}, & x(z)=z^{2}-2 u_{0}, y(z)=z^{3}-3 u_{0} z \\ y d x=\left(z^{3}-3 u_{0} z\right) 2 z d z, & B\left(z_{1}, z_{2}\right)=\frac{d z_{1} d z_{2}}{\left(z_{1}-z^{2}\right)^{2}}\end{cases}
$$

TR: Witten-Kontsevich intersection numbers $\rightsquigarrow \omega_{g, n}\left(z_{1}, \ldots, z_{n}\right)=$
$\sum_{d_{1}, \ldots, d_{n}} \frac{6^{2-2 g-n} u_{0}^{5-5 g-2 n}}{\left(3 g-3+n-\sum_{i} d_{i}\right)!}\left\langle\tau_{2}^{3 g-3+n-\sum_{i} d_{i}} \tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle_{g} \prod_{i=1}^{n} \frac{u_{0}^{d_{i}}\left(2 d_{i}+1\right)!!d z_{i}}{z_{i}^{2 d_{i}+1}}$.
$n=0 \rightsquigarrow \mathcal{F}_{g}=\omega_{g, 0}=u_{0}^{5-5_{g}} \frac{6^{2-2 g}}{(3 g-3)!}\left\langle\tau_{2}^{3 g-3}\right\rangle_{g}=(-t / 3)^{\frac{5-5 g}{2}} \frac{6^{2-2 g}}{(3 g-3)!}\left\langle\tau_{2}^{3 g-3}\right\rangle_{g}$.

Painlevé I

In the family of elliptic curves $y^{2}=x^{3}+t x+V$, taking $t=-3 u_{0}^{2}$ and $V=2 u_{0}^{3}$, amounts to pinching the \mathcal{B}-cycle (first kind). So in this case, we have genus $\hat{g}=0$ and the spectral curve admits a rational parametrization:

$$
\begin{cases}\Sigma=\mathbb{C} P^{1}, & x(z)=z^{2}-2 u_{0}, y(z)=z^{3}-3 u_{0} z \\ y d x=\left(z^{3}-3 u_{0} z\right) 2 z d z, & B\left(z_{1}, z_{2}\right)=\frac{d z_{1} d z_{2}}{\left(z_{1}-z^{2}\right)^{2}}\end{cases}
$$

TR: Witten-Kontsevich intersection numbers $\rightsquigarrow \omega_{g, n}\left(z_{1}, \ldots, z_{n}\right)=$
$\sum_{d_{1}, \ldots, d_{n}} \frac{6^{2-2 g-n} u_{0}^{5-5 g-2 n}}{\left(3 g-3+n-\sum_{i} d_{i}\right)!}\left\langle\tau_{2}^{3 g-3+n-\sum_{i} d_{i}} \tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle_{g} \prod_{i=1}^{n} \frac{u_{0}^{d_{i}}\left(2 d_{i}+1\right)!!d z_{i}}{z_{i}^{2 d_{i}+1}}$.
$n=0 \rightsquigarrow \mathcal{F}_{g}=\omega_{g, 0}=u_{0}^{5-5_{g}} \frac{6^{2-2 g}}{(3 g-3)!}\left\langle\tau_{2}^{3 g-3}\right\rangle_{g}=(-t / 3)^{\frac{5-5_{g}}{2}} \frac{6^{2-2 g}}{(3 g-3)!}\left\langle\tau_{2}^{3 g-3}\right\rangle_{g}$.
Then $U(t)=u_{0}+\frac{\hbar^{2}}{48 t^{2}}+\sum_{g \geq 2} \hbar^{2 g} \frac{\partial^{2} \mathcal{F}_{g}}{\partial t^{2}}$ satisfies the Painlevé I equation $\frac{\hbar^{2}}{2} \frac{\partial^{2}}{\partial t^{2}} U+3 U^{2}=-t$, which is the compatibility equation of the Lax pair

$$
\mathcal{L}(x, t ; \hbar):=\left(\begin{array}{cc}
\frac{\hbar}{2} \dot{U} & x-U \\
(x-U)(x+2 U)+\frac{\hbar^{2}}{2} \ddot{U} & -\frac{\hbar}{2} \dot{U}
\end{array}\right) \text { and } \mathcal{R}(x, t ; \hbar):=\left(\begin{array}{cc}
0 & 1 \\
x+2 U & 0
\end{array}\right) .
$$

From the PDE found we can get that $\psi_{ \pm}(x)=e^{\sum_{g, n} \frac{(\pm 1)^{n} \hbar^{2 g-2+n}}{n!} \int \ldots \int \omega_{g, n}}$:

$$
\left(\hbar \frac{\partial}{\partial x}-\mathcal{L}(x, t ; \hbar)\right)\binom{\psi_{+}}{\psi_{-}}=0, \quad\left(\hbar \frac{\partial}{\partial t}-\mathcal{R}(x, t ; \hbar)\right)\binom{\psi_{+}}{\psi_{-}}=0 .
$$

