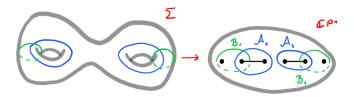
Quantisation of spectral curves of arbitrary rank and genus via topological recursion

Elba Garcia-Failde

Sorbonne Université (Institut de Mathématiques de Jussieu - Paris Rive Gauche)

(based on joint work with B. Eynard, O. Marchal and N. Orantin)



Workshop on QUANTUM GEOMETRY, IHES

April 27, 2022

- Topological recursion and quantum curves
 - Topological recursion and its ramifications
 - Example: Witten's conjecture, Kontsevich's theorem and Airy
 - Quantum curves, history, context and examples
- Spectral curves
- 3 Topological recursion and loop equations
- Perturbative wave function and KZ equations
- Non-perturbative wave functions and Lax system
- Questions and future work
- Bonus: Link with isomonodromic systems

- Topological recursion and quantum curves
 - Topological recursion and its ramifications
 - Example: Witten's conjecture, Kontsevich's theorem and Airy
 - Quantum curves, history, context and examples
- Spectral curves
- Topological recursion and loop equations
- Perturbative wave function and KZ equations
- Non-perturbative wave functions and Lax system
- Questions and future work
- Bonus: Link with isomonodromic systems

- Topological recursion and quantum curves
 - Topological recursion and its ramifications
 - Example: Witten's conjecture, Kontsevich's theorem and Airy
 - Quantum curves, history, context and example
- Spectral curves
- Topological recursion and loop equations
- Perturbative wave function and KZ equations
- Non-perturbative wave functions and Lax syster
- Questions and future work
- Bonus: Link with isomonodromic systems

Topological recursion (TR, Chekhov–Eynard–Orantin '04-'07)

<u>Goal:</u> "Count surfaces $S_{g,n}$ of genus g with n boundaries (topology (g,n))."

Spectral curve

$$\mathsf{TR}: \begin{cases} \Sigma \text{ Riemann surface} & \mathsf{Differential \ forms} \\ x\colon \Sigma \to \mathbb{C}\mathrm{P}^1 & & \omega_{g,n}(z_1,\dots,z_n), z_i \in \Sigma, \\ \omega_{0,1} = y \, dx \text{ 1-form } \text{ (discs)} & \underset{\mathsf{recursion \ on}}{\mathsf{recursion \ on}} & \forall g,n \geq 0. \\ \omega_{0,2} & (1,1)\text{-form} & (\mathsf{cylinders}) & |\chi(S_{g,n})| = 2g-2+n \end{cases}$$

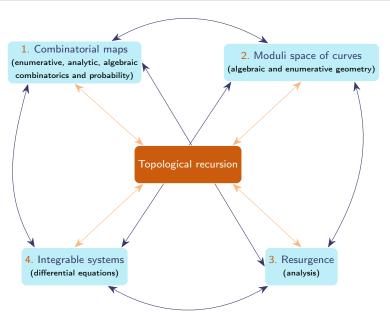
- x finitely many simple ramification points $(\operatorname{Cr}(x))$ and y holomorphic around $a \in \operatorname{Cr}(x)$ and $dy(a) \neq 0 \Rightarrow$ Local involution σ around every ramification point: $x(z) = x(\sigma(z))$.
- $\omega_{0,2}$ symmetric bi-differential on $\Sigma \times \Sigma$ with only double poles along the diagonal and vanishing residues, that is when $z_1 \to z_2$

$$\omega_{0,2}(z_1,z_2) = \frac{dz_1dz_2}{(z_1-z_2)^2} + \overbrace{h(z_1,z_2)}^{\text{holomorphic}}.$$

$$\underbrace{z_1}_{z_n} = \sum_{a \in \operatorname{Cr}(x)} \operatorname{Res}_{z=a} \left(\underbrace{z_1}_{\sigma_a(z)} \underbrace{z_2}_{\sigma_a(z)} \underbrace{z_1}_{\sigma_a(z)} \underbrace{z_2}_{\sigma_a(z)} \underbrace{z_1}_{\sigma_a(z)} \underbrace{z_2}_{\sigma_a(z)} \underbrace{z_1}_{\sigma_a(z)} \underbrace{z_2}_{\sigma_a(z)} \underbrace{z_1}_{\sigma_a(z)} \underbrace{z_2}_{\sigma_a(z)} \underbrace{z_2}_{\sigma_a($$

 Terms in correspondence with the ways of cutting a pair of pants (0, 3) from S_{q,n}.

Connections

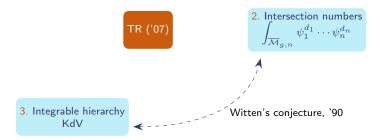


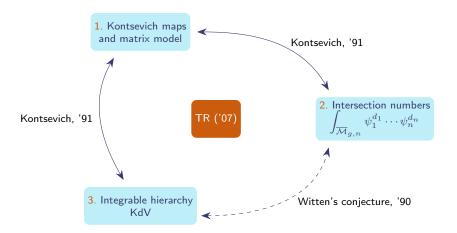
Properties and examples

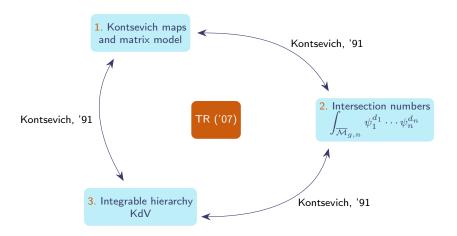
- ullet Interesting/powerful properties: $\omega_{g,n}$ are symmetric with poles at ramifications points, controlled deformations along families, dilaton equation, symplectic invariance, loop equations, modularity, integrability...
- For the Lambert curve $x=ye^{-y}$, TR provides simple Hurwitz numbers (Eynard–Mulase–Safnuk, '09, arXiv:0907.5224).
- For $y=\frac{-\sin(2\pi\sqrt{x})}{2\pi}$, TR gives Mirzakhani's recursion for Weil–Petersson volumes (of the moduli space of bordered hyperbolic surfaces), (Eynard–Orantin, '07, arXiv:0705.3600).
- TR on mirror curve of a toric CY3 computes its open Gromov-Witten theory (Bouchard-Klemm-Mariño-Pasquetti, '07, arXiv:0709.1453), (Fang-Liu-Zong, '16, arXiv:1604.07123).
- Chern-Simons theory on S³ is governed by TR. Gopakumar-Ooguri-Vafa correspondence gives an A-model picture: GW of the resolved conifold, and B-model can be seen as TR on its Hori-Iqbal-Vafa mirror curve. (Brini, '17, hal-01474196).
- Statistical physics models on random maps: 1-hermitian matrix model, Ising model, Potts model, O(n)-loop model (Borot-Eynard, '09, arXiv:0910.5896), (Borot-Eynard-Orantin, '13, arXiv:1303.5808)...
- Semi-simple cohomological field theories and topological recursion (Dunin-Barkowski-Orantin-Shadrin-Spitz, '14, arXiv:1211.4021).
- Reconstruction of formal WKB expansions, integrability, isomonodromic systems (Borot-Eynard, '11, arXiv:1110.4936), (Eynard, '17, arXiv:1706.04938), (Eynard-G-F-Marchal-Orantin, '21, arXiv:2106.04339)...
- Conjecturally, for the A-polynomial of a knot as a spectral curve, TR computes the colored Jones polynomial of the knot (Borot-Eynard, '12, arXiv:1205.2261)).
- Extension to the non-perturbative world, resurgence theory: work in progress!

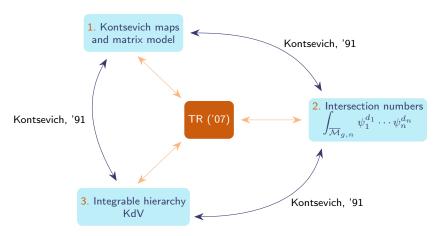
- Topological recursion and quantum curves
 - Topological recursion and its ramifications
 - Example: Witten's conjecture, Kontsevich's theorem and Airy
 - Quantum curves, history, context and examples
- Spectral curves
- Topological recursion and loop equations
- Perturbative wave function and KZ equations
- Non-perturbative wave functions and Lax syster
- Questions and future work
- Bonus: Link with isomonodromic systems

1. Kontsevich maps and matrix model









TR applied to the Airy curve $(x,y)=\left(\frac{z^2}{2},z\right)$ produces

$$\omega_{g,n}(z_1,\ldots,z_n) = 2^{2-2g-n} \sum_{\sum_i d_i = 3g-3+n} \left(\int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1} \cdots \psi_n^{d_n} \right) \prod_{i=1}^n \frac{(2d_i+1)!! dz_i}{z_i^{2d_i+2}}.$$

Airy differential equation

• Airy function $\operatorname{Ai}(\lambda) \leadsto \left(\frac{d^2}{d\lambda^2} - \lambda\right) \operatorname{Ai}(\lambda) = 0$. Asymptotic expansion (g.s. of intersection numbers), as $\lambda \to \infty$, of the form

$$\log \operatorname{Ai}(\lambda) - S_0(\lambda) - S_1(\lambda) = \sum_{m=2}^{\infty} S_m(\lambda),$$

where
$$S_0(\lambda)\coloneqq -\frac23\lambda^{\frac32}$$
, $S_1(\lambda)\coloneqq -\frac14\log\lambda - \log(2\sqrt\pi)$ and $\forall m\geq 2$

$$S_m(\lambda) := \frac{\lambda^{-\frac{3}{2}(m-1)}}{2^{m-1}} \sum_{\substack{h \ge 0, n > 0 \\ 2h-2+n=m-1}} \frac{(-1)^n}{n!} \sum_{\mathbf{d} \in \mathbb{N}^n} \left\langle \tau_{d_1} \dots \tau_{d_n} \right\rangle_{h,n} \prod_{i=1}^n (2d_i - 1)!!.$$

Airy differential equation

• Airy function $\operatorname{Ai}(\lambda) \leadsto \left(\frac{d^2}{d\lambda^2} - \lambda\right) \operatorname{Ai}(\lambda) = 0$. Asymptotic expansion (g.s. of intersection numbers), as $\lambda \to \infty$, of the form

$$\log \operatorname{Ai}(\lambda) - S_0(\lambda) - S_1(\lambda) = \sum_{m=2}^{\infty} S_m(\lambda),$$

where $S_0(\lambda):=-\frac23\lambda^{\frac32}$, $S_1(\lambda):=-\frac14\log\lambda-\log(2\sqrt\pi)$ and $\forall m\geq 2$

$$S_m(\lambda) := \frac{\lambda^{-\frac{3}{2}(m-1)}}{2^{m-1}} \sum_{\substack{h \geq 0, n > 0 \\ 2h-2+n=m-1}} \frac{(-1)^n}{n!} \sum_{\mathbf{d} \in \mathbb{N}^n} \left\langle \tau_{d_1} \dots \tau_{d_n} \right\rangle_{h,n} \prod_{i=1}^n (2d_i - 1)!!.$$

• Keep track of the Euler characteristics of the surfaces enumerated by introducing a formal parameter \hbar through a rescaling of $\lambda \leadsto \psi^{\mathsf{Kont}}(\lambda,\hbar) \coloneqq \mathsf{Ai}(\hbar^{-\frac{2}{3}}\lambda)$ satisfies

$$\left(\hbar^2 \frac{d^2}{d\lambda^2} - \lambda\right) \psi^{\mathsf{Kont}}(\lambda, \hbar) = 0$$

and admits an asymptotic expansion of the form

$$\log \psi^{\mathsf{Kont}}(\lambda, \hbar) - \hbar^{-1} S_0(\lambda) - S_1(\lambda) = \sum_{m=2}^{\infty} \hbar^{m-1} S_m(\lambda).$$

Airy differential equation

• Airy function $\operatorname{Ai}(\lambda) \leadsto \left(\frac{d^2}{d\lambda^2} - \lambda\right) \operatorname{Ai}(\lambda) = 0$. Asymptotic expansion (g.s. of intersection numbers), as $\lambda \to \infty$, of the form

$$\log \operatorname{Ai}(\lambda) - S_0(\lambda) - S_1(\lambda) = \sum_{m=2}^{\infty} S_m(\lambda),$$

where $S_0(\lambda) := -\frac{2}{3}\lambda^{\frac{3}{2}}$, $S_1(\lambda) := -\frac{1}{4}\log\lambda - \log(2\sqrt{\pi})$ and $\forall m \geq 2$

$$S_m(\lambda) := \frac{\lambda^{-\frac{3}{2}(m-1)}}{2^{m-1}} \sum_{\substack{h \ge 0, n > 0 \\ 2h-2+n=m-1}} \frac{(-1)^n}{n!} \sum_{\mathbf{d} \in \mathbb{N}^n} \left\langle \tau_{d_1} \dots \tau_{d_n} \right\rangle_{h,n} \prod_{i=1}^n (2d_i - 1)!!.$$

• Keep track of the Euler characteristics of the surfaces enumerated by introducing a formal parameter \hbar through a rescaling of $\lambda \leadsto \psi^{\mathsf{Kont}}(\lambda,\hbar) \coloneqq \mathsf{Ai}(\hbar^{-\frac{2}{3}}\lambda)$ satisfies

$$\left(\hbar^2 \frac{d^2}{d\lambda^2} - \lambda\right) \psi^{\mathsf{Kont}}(\lambda, \hbar) = 0$$

and admits an asymptotic expansion of the form

$$\log \psi^{\mathsf{Kont}}(\lambda, \hbar) - \hbar^{-1} S_0(\lambda) - S_1(\lambda) = \sum_{m=2}^{\infty} \hbar^{m-1} S_m(\lambda).$$

• TR on the Airy spectral curve $y^2-x=0$ computes $Z^{\mathsf{Kont}}(\hbar,\mathbf{t})$ and $\psi^{\mathsf{Kont}}(\lambda,\hbar)$. The *quantum curve* $(\hbar^2 \frac{d^2}{d\lambda^2} - \lambda)\psi^{\mathsf{Kont}}(\lambda,\hbar) = 0$ can be constructed out of TR. Is this a general phenomenon?

- Topological recursion and quantum curves
 - Topological recursion and its ramifications
 - Example: Witten's conjecture, Kontsevich's theorem and Airy
 - Quantum curves, history, context and examples
- Spectral curves
- Topological recursion and loop equations
- Perturbative wave function and KZ equations
- Non-perturbative wave functions and Lax system
- Questions and future work
- Bonus: Link with isomonodromic systems

 $P \in \mathbb{C}[x,y]$ and $\Sigma = \{(x,y) \in \mathbb{C}^2 \mid P(x,y) = 0\}$ plane curve of genus \hat{g} .

A quantization of Σ is a differential operator \widehat{P} of the form

$$\widehat{P}(\widehat{x},\widehat{y};\hbar) = P_0(\widehat{x},\widehat{y}) + O(\hbar),$$

where $\widehat{x}=x$, $\widehat{y}=\hbar\frac{d}{dx}$, such that $P_0(x,y)=P(x,y)Q(x,y)$, for some $Q\in\mathbb{C}[x,y]$ (often 1).

- The operators \widehat{x} and \widehat{y} satisfy $[\widehat{y},\widehat{x}]=\hbar$.
- $\bullet \ \ \widehat{P}(\widehat{x},\widehat{y})\psi(x,\hbar)=0. \ \ \text{Schrödinger equation:} \ \left(\hbar^2\frac{d^2}{dx^2}-\widehat{R}(\widehat{x},\hbar)\right)\psi(x,\hbar)=0.$

WKB asymptotic expansion
$$\leadsto \log \psi(x,\hbar) = \sum_{k>-1} \hbar^k S_k(x) \in \hbar^{-1}\mathbb{C}[[\hbar]].$$

 $P \in \mathbb{C}[x,y]$ and $\Sigma = \{(x,y) \in \mathbb{C}^2 \mid P(x,y) = 0\}$ plane curve of genus \hat{g} .

A quantization of Σ is a differential operator \widehat{P} of the form

$$\widehat{P}(\widehat{x},\widehat{y};\hbar) = P_0(\widehat{x},\widehat{y}) + O(\hbar),$$

where $\widehat{x}=x\cdot$, $\widehat{y}=\hbar\frac{d}{dx}$, such that $P_0(x,y)=P(x,y)Q(x,y)$, for some $Q\in\mathbb{C}[x,y]$ (often 1).

- The operators \widehat{x} and \widehat{y} satisfy $[\widehat{y},\widehat{x}]=\hbar$.
- $\bullet \ \ \widehat{P}(\widehat{x},\widehat{y})\psi(x,\hbar)=0. \ \ \text{Schrödinger equation:} \ \left(\hbar^2\frac{d^2}{dx^2}-\widehat{R}(\widehat{x},\hbar)\right)\psi(x,\hbar)=0.$

WKB asymptotic expansion
$$\leadsto \log \psi(x,\hbar) = \sum_{k \geq -1} \hbar^k S_k(x) \in \hbar^{-1}\mathbb{C}[[\hbar]].$$

Question: Can we construct the operator \widehat{P} and the solution ψ from P?

 $P\in\mathbb{C}[x,y] \text{ and } \Sigma=\{(x,y)\in\mathbb{C}^2\mid P(x,y)=0\} \text{ plane curve of genus } \hat{g}.$

A quantization of Σ is a differential operator \widehat{P} of the form

$$\widehat{P}(\widehat{x},\widehat{y};\hbar) = P_0(\widehat{x},\widehat{y}) + O(\hbar),$$

where $\widehat{x}=x$, $\widehat{y}=\hbar\frac{d}{dx}$, such that $P_0(x,y)=P(x,y)Q(x,y)$, for some $Q\in\mathbb{C}[x,y]$ (often 1).

- The operators \widehat{x} and \widehat{y} satisfy $[\widehat{y},\widehat{x}]=\hbar.$
- $\bullet \ \widehat{P}(\widehat{x},\widehat{y})\psi(x,\hbar) = 0. \ \text{Schrödinger equation:} \ \Big(\hbar^2\frac{d^2}{dx^2} \widehat{R}(\widehat{x},\hbar)\Big)\psi(x,\hbar) = 0.$

WKB asymptotic expansion
$$\leadsto \log \psi(x,\hbar) = \sum_{k \geq -1} \hbar^k S_k(x) \in \hbar^{-1} \mathbb{C}[[\hbar]].$$

Question: Can we construct the operator \widehat{P} and the solution ψ from P?

Conjecture

Both \widehat{P} and ψ can be constructed from Σ using topological recursion.

 $P \in \mathbb{C}[x,y]$ and $\Sigma = \{(x,y) \in \mathbb{C}^2 \mid P(x,y) = 0\}$ plane curve of genus \hat{g} .

A quantization of Σ is a differential operator \widehat{P} of the form

$$\widehat{P}(\widehat{x},\widehat{y};\hbar) = P_0(\widehat{x},\widehat{y}) + O(\hbar),$$

where $\widehat{x}=x\cdot$, $\widehat{y}=\hbar\frac{d}{dx}$, such that $P_0(x,y)=P(x,y)Q(x,y)$, for some $Q\in\mathbb{C}[x,y]$ (often 1).

- The operators \widehat{x} and \widehat{y} satisfy $[\widehat{y},\widehat{x}]=\hbar.$
- $\bullet \ \widehat{P}(\widehat{x},\widehat{y})\psi(x,\hbar) = 0. \ \text{Schrödinger equation:} \ \Big(\hbar^2\frac{d^2}{dx^2} \widehat{R}(\widehat{x},\hbar)\Big)\psi(x,\hbar) = 0.$

WKB asymptotic expansion
$$\leadsto \log \psi(x,\hbar) = \sum_{k \geq -1} \hbar^k S_k(x) \in \hbar^{-1}\mathbb{C}[[\hbar]].$$

Question: Can we construct the operator \widehat{P} and the solution ψ from P?

Conjecture

Both \widehat{P} and ψ can be constructed from Σ using topological recursion.

Subtlety: We want \widehat{P} to have a controlled pole structure, more precisely, to have the same pole structure as P.

$$\begin{split} \widehat{P}(\widehat{x},\widehat{y})\psi(z,\hbar) &= \Big(\hbar^2 \frac{d^2}{dx^2} - \widehat{R}(\widehat{x},\hbar)\Big)\psi(z,\hbar) = 0, \quad x \colon \Sigma \to \mathbb{C}P^1 \\ &\log \psi(z,\hbar) = \sum_{k \geq -1} \hbar^k S_k(z) \in \hbar^{-1}\mathbb{C}[[\hbar]], \quad z \in \Sigma, \ x = x(z) \in \mathbb{C}P^1. \end{split}$$

• $S_k(z)$ meromorphic functions on Σ , where $S_0(z)=\int^z y dx$ may be multi-valued.

$$\widehat{P}(\widehat{x},\widehat{y})\psi(z,\hbar) = \left(\hbar^2 \frac{d^2}{dx^2} - \widehat{R}(\widehat{x},\hbar)\right)\psi(z,\hbar) = 0, \quad x \colon \Sigma \to \mathbb{C}P^1$$
$$\log \psi(z,\hbar) = \sum_{k \ge -1} \hbar^k S_k(z) \in \hbar^{-1}\mathbb{C}[[\hbar]], \quad z \in \Sigma, \ x = x(z) \in \mathbb{C}P^1.$$

- $S_k(z)$ meromorphic functions on Σ , where $S_0(z)=\int^z ydx$ may be multi-valued.
- Semi-classical limit → From the quantum curve to the plane curve:

$$\widehat{x} \mapsto x$$
 and $\widehat{y} = \hbar \frac{d}{dx} \mapsto y$.

$$\widehat{P}(\widehat{x},\widehat{y})\psi(z,\hbar) = \left(\hbar^2 \frac{d^2}{dx^2} - \widehat{R}(\widehat{x},\hbar)\right)\psi(z,\hbar) = 0, \quad x \colon \Sigma \to \mathbb{C}P^1$$
$$\log \psi(z,\hbar) = \sum_{k \ge -1} \hbar^k S_k(z) \in \hbar^{-1}\mathbb{C}[[\hbar]], \quad z \in \Sigma, \ x = x(z) \in \mathbb{C}P^1.$$

- $S_k(z)$ meromorphic functions on Σ , where $S_0(z)=\int^z ydx$ may be multi-valued.
- Semi-classical limit → From the quantum curve to the plane curve:

$$\widehat{x}\mapsto x$$
 and $\widehat{y}=\hbarrac{d}{dx}\mapsto y.$

• Action of $\widehat{y} = \hbar \frac{d}{dx}$ on $\exp(\hbar^{-1} \int_{-\infty}^{z} y dx)$ is multiplication by y:

$$\widehat{P}(\widehat{x},\widehat{y})\psi(z,\hbar) = (P(x,y) + O(\hbar))\psi(z,\hbar).$$

$$\widehat{P}(\widehat{x},\widehat{y})\psi(z,\hbar) = \left(\hbar^2 \frac{d^2}{dx^2} - \widehat{R}(\widehat{x},\hbar)\right)\psi(z,\hbar) = 0, \quad x \colon \Sigma \to \mathbb{C}P^1$$
$$\log \psi(z,\hbar) = \sum_{k \ge -1} \hbar^k S_k(z) \in \hbar^{-1}\mathbb{C}[[\hbar]], \quad z \in \Sigma, \ x = x(z) \in \mathbb{C}P^1.$$

- $S_k(z)$ meromorphic functions on Σ , where $S_0(z)=\int^z ydx$ may be multi-valued.
- Semi-classical limit → From the quantum curve to the plane curve:

$$\widehat{x} \mapsto x$$
 and $\widehat{y} = \hbar \frac{d}{dx} \mapsto y$.

• Action of $\widehat{y} = \hbar \frac{d}{dx}$ on $\exp\left(\hbar^{-1} \int_{-\infty}^{\infty} y dx\right)$ is multiplication by y:

$$\widehat{P}(\widehat{x},\widehat{y})\psi(z,\hbar) = (P(x,y) + O(\hbar))\psi(z,\hbar).$$

- \Rightarrow differential equation only satisfied on the curve $P(x,y)=y^2-R(x,0)=0.$
- Higher order corrections in \hbar are needed since $\left(\hbar \frac{d}{dx}\right)^2 \mapsto y^2 + O(\hbar)$ when acting on $\psi_0(z,\hbar) = \exp(\hbar^{-1}S_0(z)) = \exp\left(\hbar^{-1}\int^z y dx\right)$.

- \bullet Proved for many particular cases \leadsto genus $\hat{g}=0$ spectral curves.
- Bouchard–Eynard '17 \leadsto spectral curves whose Newton polygon has $N_I := \#\{\text{interior points}\} = 0$ (Fact: $\hat{g} \leq N_I$).

- \bullet Proved for many particular cases \leadsto genus $\hat{g}=0$ spectral curves.
- Bouchard–Eynard '17 \leadsto spectral curves whose Newton polygon has $N_I := \#\{\text{interior points}\} = 0$ (Fact: $\hat{g} \leq N_I$).
- Mariño-Eynard '08

 Holomorphic, modular and background independent, non-perturbative partition functions.
- Borot–Eynard '12 \leadsto Only non-perturbative wave functions can obey "good" quantum curves (for $\hat{g}>0$).
- Eynard '17 \leadsto General idea to construct integrable systems and their τ -functions from the geometry of the spectral curve.

- ullet Proved for many particular cases \leadsto genus $\hat{g}=0$ spectral curves.
- Bouchard–Eynard '17 \leadsto spectral curves whose Newton polygon has $N_I := \#\{\text{interior points}\} = 0$ (Fact: $\hat{g} \leq N_I$).
- Mariño-Eynard '08

 Holomorphic, modular and background independent, non-perturbative partition functions.
- Borot–Eynard '12 \leadsto Only non-perturbative wave functions can obey "good" quantum curves (for $\hat{g}>0$).
- ullet Eynard '17 \leadsto General idea to construct integrable systems and their au-functions from the geometry of the spectral curve.
- Chidambaram–Bouchard–Dauphinee '18 $\leadsto \hat{g} = 1$, but bad properties (infinitely many \hbar corrections with poles at ramification points, not even functions of x)!
- Iwaki–Marchal–Saenz '18, Marchal–Orantin '19 (reversed approach) \leadsto Lax pairs associated with \hbar -dependent Painlevé equations and any $\hbar \partial_x \Psi(x,\hbar) = \mathcal{L}(x,\hbar) \Psi(x,\hbar)$, with $\mathcal{L}(x,\hbar) \in \mathfrak{sl}_2(\mathbb{C})$, satisfy the topological type property from Bergère–Borot–Eynard '15 $(\hat{g}=0)$.
- Iwaki-Saenz '16, Iwaki '19 \rightsquigarrow Painlevé I and elliptic curves ($\hat{g} = 1$).

- ullet Proved for many particular cases \leadsto genus $\hat{g}=0$ spectral curves.
- Bouchard–Eynard '17 \leadsto spectral curves whose Newton polygon has $N_I := \#\{\text{interior points}\} = 0$ (Fact: $\hat{g} \leq N_I$).
- Mariño-Eynard '08

 Holomorphic, modular and background independent, non-perturbative partition functions.
- Borot–Eynard '12 \leadsto Only non-perturbative wave functions can obey "good" quantum curves (for $\hat{g}>0$).
- ullet Eynard '17 \leadsto General idea to construct integrable systems and their au-functions from the geometry of the spectral curve.
- Chidambaram–Bouchard–Dauphinee '18 $\leadsto \hat{g} = 1$, but bad properties (infinitely many \hbar corrections with poles at ramification points, not even functions of x)!
- Iwaki–Marchal–Saenz '18, Marchal–Orantin '19 (reversed approach) \leadsto Lax pairs associated with \hbar -dependent Painlevé equations and any $\hbar \partial_x \Psi(x,\hbar) = \mathcal{L}(x,\hbar) \Psi(x,\hbar)$, with $\mathcal{L}(x,\hbar) \in \mathfrak{sl}_2(\mathbb{C})$, satisfy the topological type property from Bergère–Borot–Eynard '15 $(\hat{g}=0)$.
- Iwaki-Saenz '16, Iwaki '19 \leadsto Painlevé I and elliptic curves $(\hat{g}=1)$.
- Marchal-Orantin '19, Eynard-GF '19 \rightsquigarrow Hyperelliptic (any \hat{g}).

- ullet Proved for many particular cases \leadsto genus $\hat{g}=0$ spectral curves.
- Bouchard–Eynard '17 \leadsto spectral curves whose Newton polygon has $N_I := \#\{\text{interior points}\} = 0$ (Fact: $\hat{g} \leq N_I$).
- Mariño-Eynard '08

 Holomorphic, modular and background independent, non-perturbative partition functions.
- Borot–Eynard '12 \leadsto Only non-perturbative wave functions can obey "good" quantum curves (for $\hat{g}>0$).
- ullet Eynard '17 \leadsto General idea to construct integrable systems and their au-functions from the geometry of the spectral curve.
- Chidambaram–Bouchard–Dauphinee '18 $\leadsto \hat{g} = 1$, but bad properties (infinitely many \hbar corrections with poles at ramification points, not even functions of x)!
- Iwaki–Marchal–Saenz '18, Marchal–Orantin '19 (reversed approach) \leadsto Lax pairs associated with \hbar -dependent Painlevé equations and any $\hbar \partial_x \Psi(x,\hbar) = \mathcal{L}(x,\hbar) \Psi(x,\hbar)$, with $\mathcal{L}(x,\hbar) \in \mathfrak{sl}_2(\mathbb{C})$, satisfy the topological type property from Bergère–Borot–Eynard '15 $(\hat{g}=0)$.
- Iwaki-Saenz '16, Iwaki '19 \leadsto Painlevé I and elliptic curves $(\hat{g}=1)$.
- Marchal-Orantin '19, Eynard-GF '19 \rightsquigarrow Hyperelliptic (any \hat{g}).
- Eynard-GF-Marchal-Orantin '21 → any algebraic curve with simple ramifications.

Beyond Airy: some meaningful generalisations

• $y^2 = x \rightsquigarrow \text{Witten (conj) '90, Kontsevich}$ '91, Airy, KW KdV tau function

$$\int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1} \cdots \psi_n^{d_n}$$
$$\left(\hbar^2 \frac{d^2}{dx^2} - x\right) \psi(z, \hbar) = 0$$

• $y^2x = 1 \rightsquigarrow \text{Norbury (conj) '17}$ [Chidambaram, Giacchetto, G-F, '22], Bessel, BGW KdV tau function

$$\int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n} \psi_1^{d_1} \cdots \psi_n^{d_n}$$
$$\left(\hbar^2 \frac{d}{dx} x \frac{d}{dx} - 1\right) \psi(z, \hbar) = 0$$

• $y^r = x \rightsquigarrow \text{Witten '93}$ Faber-Shadrin-Zvonkine, '10, rAiry, rKdV

$$\int_{\overline{\mathcal{M}}_{g,n}} W_{g,n}^r(a_1,\dots,a_n) \psi_1^{d_1} \cdots \psi_n^{d_n}$$
$$\left(\hbar^r \frac{d^r}{dx^r} - x\right) \psi(z,\hbar) = 0$$

• $y^2 = x^3 + tx + V \rightsquigarrow$ Painlevé I, elliptic curve ($\hat{q} = 1$)

$$\int_{\overline{\mathcal{M}}_{g,n+m}} \psi_{n+1}^2 \cdots \psi_{n+m}^2 \psi_1^{d_1} \cdots \psi_n^{d_n}$$
$$\left(\hbar^2 \frac{d^2}{dr^2} - \left(x^3 + tx + V + \frac{\partial}{\partial t}\right)\right) \psi = 0$$

- Topological recursion and quantum curves
 - Topological recursion and its ramifications
 - Example: Witten's conjecture, Kontsevich's theorem and Airy
 - Quantum curves, history, context and example
- Spectral curves
- Topological recursion and loop equations
- Perturbative wave function and KZ equations
- Non-perturbative wave functions and Lax system
- Questions and future work
- Bonus: Link with isomonodromic systems

Spectral curves

N distinct points $\Lambda_1,\ldots,\Lambda_N\in\mathbb{P}^1\setminus\{\infty\}$. Let $\mathcal{H}_d(\Lambda_1,\ldots,\Lambda_N,\infty)$ be the Hurwitz space of degree d ramified coverings $x\colon\Sigma\to\mathbb{P}^1$, where Σ is the Riemann surface:

$$\Sigma \coloneqq \overline{\{(\lambda, y) \mid P(\lambda, y) = 0\}}$$

of genus \hat{g} , where $x(\lambda, y) := \lambda$ and

$$P(\lambda, y) = \sum_{l=0}^{d} (-1)^{l} y^{d-l} P_{l}(\lambda), \ P_{0}(\lambda) = 1,$$

 P_l being a rational function with possible poles at $\lambda \in \mathcal{P} \coloneqq \{\Lambda_i\}_{i=1}^N \bigcup \{\infty\}$.

Classical spectral curve: \rightsquigarrow (Σ, x) .

Spectral curves

N distinct points $\Lambda_1,\ldots,\Lambda_N\in\mathbb{P}^1\setminus\{\infty\}$. Let $\mathcal{H}_d(\Lambda_1,\ldots,\Lambda_N,\infty)$ be the Hurwitz space of degree d ramified coverings $x\colon\Sigma\to\mathbb{P}^1$, where Σ is the Riemann surface:

$$\Sigma \coloneqq \overline{\{(\lambda, y) \mid P(\lambda, y) = 0\}}$$

of genus \hat{g} , where $x(\lambda, y) := \lambda$ and

$$P(\lambda, y) = \sum_{l=0}^{d} (-1)^{l} y^{d-l} P_{l}(\lambda), \ P_{0}(\lambda) = 1,$$

 P_l being a rational function with possible poles at $\lambda \in \mathcal{P} \coloneqq \{\Lambda_i\}_{i=1}^N \bigcup \{\infty\}$.

Classical spectral curve: \rightsquigarrow (Σ, x) .

ullet Local coordinates (in the base): $\{\xi_q(\lambda)\}_{q\in\mathcal{P}}$ around $q\in\mathcal{P}$ are defined by

$$\forall\,i\in [\![1,N]\!]\,:\,\xi_{\Lambda_i}(\lambda)\coloneqq (\lambda-\Lambda_i)\qquad\text{and}\qquad \xi_\infty(\lambda)\coloneqq \lambda^{-1}.$$

• Local coordinates (in the cover): near any $p \in x^{-1}(q)$, let $d_p \coloneqq \operatorname{ord}_p(\xi_q)$

$$\zeta_p(z) = \xi_q(x(z))^{\frac{1}{d_p}}.$$

 $\{d_p\}_{p\in x^{-1}(q)}$ is called the ramification profile of q. We have $\sum_{p\in x^{-1}(q)}d_p=d$.

Admissible spectral curves

Expansion of the 1-form $\omega_{0,1}=ydx$ around any pole $p\in x^{-1}\left(\mathcal{P}\right)$:

$$ydx = \sum_{k=0}^{r_p-1} t_{p,k} \zeta_p^{-k-1} d\zeta_p + \text{analytic at } p.$$

The $t_{p,k}$'s are called the spectral times (or KP times).

Ramification points: $\mathcal{R}_0 \coloneqq \{p \in \Sigma \mid 1 + \operatorname{order}_p dx \neq \pm 1\}$,

$$\mathcal{R} := \{ p \in \Sigma \mid dx(p) = 0 , x(p) \notin \mathcal{P} \} = \mathcal{R}_0 \setminus x^{-1}(\mathcal{P}).$$

Critical values: $x(\mathcal{R})$.

Admissible spectral curves

Expansion of the 1-form $\omega_{0,1}=ydx$ around any pole $p\in x^{-1}\left(\mathcal{P}\right)$:

$$ydx = \sum_{k=0}^{r_p-1} t_{p,k} \zeta_p^{-k-1} d\zeta_p + \text{analytic at } p.$$

The $t_{p,k}$'s are called the spectral times (or KP times).

Ramification points: $\mathcal{R}_0 \coloneqq \{ p \in \Sigma \mid 1 + \operatorname{order}_p dx \neq \pm 1 \},$

$$\mathcal{R} := \{ p \in \Sigma \mid dx(p) = 0 , x(p) \notin \mathcal{P} \} = \mathcal{R}_0 \setminus x^{-1}(\mathcal{P}).$$

Critical values: $x(\mathcal{R})$.

Definition (Admissible classical spectral curves)

A classical spectral curve (Σ, x) is admissible if:

- $P(\lambda, y) = 0$ is an irreducible algebraic curve;
- $a \in \mathcal{R}$ are simple, i.e. dx has only a simple zero at $a \in \mathcal{R}$;
- $\forall (a_i, a_j) \in \mathcal{R} \times \mathcal{R} \text{ with } a_i \neq a_j, \ x(a_i) \neq x(a_j);$
- $\forall a \in \mathcal{R}, dy(a) \neq 0$;
- $\forall p \in x^{-1}(\mathcal{P})$ ramified, the 1-form ydx has a pole of degree $r_p \geq 3$ at p and $t_{p,r_p-2} \neq 0$.

Torelli marking and filling fractions

For any symplectic basis $(A_i, B_i)_{i=1}^{\hat{g}}$ of $H_1(\Sigma, \mathbb{Z})$, let

$$B^{(\mathcal{A}_i,\mathcal{B}_i)_{i=1}^{\tilde{g}}} \in H^0(\Sigma^2, K_{\Sigma}^{\boxtimes 2}(2\Delta))^{\mathfrak{S}_2} \subset \mathcal{M}_2(\Sigma^2)$$

be the unique symmetric bidifferential on Σ^2 with a unique double pole on the diagonal Δ , without residue, bi-residue equal to 1 and normalized on the $\mathcal A$ -cycles by

$$\forall i \in [1, \hat{g}], \oint_{z_1 \in \mathcal{A}_i} B^{(\mathcal{A}_i, \mathcal{B}_i)_{i=1}^{\hat{g}}}(z_1, z_2) = 0.$$

Remark

Choice of Torelli marking can be thought of as a choice of polarisation from a geometric quantisation point of view.

Let $\left((\Sigma,x),(\mathcal{A}_i,\mathcal{B}_i)_{i=1}^{\hat{g}}\right)$ be some admissible initial data. We define the tuple $(\epsilon_i)_{i=1}^{\hat{g}}$ of filling fractions by

$$\forall i \in \llbracket 1, \hat{g} \rrbracket, \quad \epsilon_i \coloneqq \frac{1}{2\pi i} \oint_{\mathcal{A}_i} y dx.$$

Outline

- Topological recursion and quantum curves
 - Topological recursion and its ramifications
 - Example: Witten's conjecture, Kontsevich's theorem and Airy
 - Quantum curves, history, context and example
- Spectral curves
- Topological recursion and loop equations
- Perturbative wave function and KZ equations
- Non-perturbative wave functions and Lax system
- Questions and future work
- Bonus: Link with isomonodromic systems

Properties of TR

- \bullet $\omega_{g,n}$ are invariant under permutations of their n arguments.
- $\omega_{0,1}(z_1)$ may only have poles at $x^{-1}(\mathcal{P}).$ $\omega_{0,2}(z_1,z_2)$ may only have poles at $z_1=z_2.$ For $(h,n)\in\mathbb{N}\times\mathbb{N}^*\setminus\{(0,1),(0,2)\},$ $\omega_{h,n}(z_1,\ldots,z_n)$ may only have poles at $z_i\in\mathcal{R}$, for $i\in \llbracket 1,n \rrbracket.$
- For all $i \in \llbracket 1, \hat{g} \rrbracket$,

$$\frac{\partial}{\partial \epsilon_i} \omega_{h,n}(z_1,\ldots,z_n) = \oint_{z \in \mathcal{B}_i} \omega_{h,n+1}(z,z_1,\ldots,z_n).$$

Properties of TR

- ullet $\omega_{g,n}$ are invariant under permutations of their n arguments.
- $\omega_{0,1}(z_1)$ may only have poles at $x^{-1}(\mathcal{P})$. $\omega_{0,2}(z_1,z_2)$ may only have poles at $z_1=z_2$. For $(h,n)\in\mathbb{N}\times\mathbb{N}^*\setminus\{(0,1),(0,2)\}$, $\omega_{h,n}(z_1,\ldots,z_n)$ may only have poles at $z_i\in\mathcal{R}$, for $i\in \llbracket 1,n \rrbracket$.
- For all $i \in [\![1,\hat{g}]\!]$,

$$\frac{\partial}{\partial \epsilon_i} \omega_{h,n}(z_1,\ldots,z_n) = \oint_{z \in \mathcal{B}_i} \omega_{h,n+1}(z,z_1,\ldots,z_n).$$

Ramification points at poles:

- In the definition of TR, residues at $a \in \mathcal{R} = \mathcal{R}_0 \setminus x^{-1}(\mathcal{P})$.
- But the points of $\mathcal P$ could also be ramified (many interesting examples, like the Airy curve $y^2=x$).
- Bouchard–Eynard ('17) also included residues at the ramification points in $x^{-1}(\mathcal{P})$ to derive the quantum curve (in the case $\hat{g} \leq N_I = 0$).

Properties of TR

- ullet $\omega_{g,n}$ are invariant under permutations of their n arguments.
- $\omega_{0,1}(z_1)$ may only have poles at $x^{-1}(\mathcal{P})$. $\omega_{0,2}(z_1,z_2)$ may only have poles at $z_1=z_2$. For $(h,n)\in\mathbb{N}\times\mathbb{N}^*\setminus\{(0,1),(0,2)\}$, $\omega_{h,n}(z_1,\ldots,z_n)$ may only have poles at $z_i\in\mathcal{R}$, for $i\in \llbracket 1,n \rrbracket$.
- For all $i \in [\![1,\hat{g}]\!]$,

$$\frac{\partial}{\partial \epsilon_i} \omega_{h,n}(z_1,\ldots,z_n) = \oint_{z \in \mathcal{B}_i} \omega_{h,n+1}(z,z_1,\ldots,z_n).$$

Ramification points at poles:

- In the definition of TR, residues at $a \in \mathcal{R} = \mathcal{R}_0 \setminus x^{-1}(\mathcal{P})$.
- But the points of $\mathcal P$ could also be ramified (many interesting examples, like the Airy curve $y^2=x$).
- Bouchard–Eynard ('17) also included residues at the ramification points in $x^{-1}(\mathcal{P})$ to derive the quantum curve (in the case $\hat{g} \leq N_I = 0$).

Lemma (Ramified poles don't contribute for admissible curves)

Let $\omega_{h,n}'$ be the topological recursion differential forms defined by taking residues at all $a \in \mathcal{R}_0$ (including $a \in x^{-1}(\mathcal{P})$). If $\forall p \in x^{-1}(\mathcal{P})$, we have $r_p \geq 3$ and $t_{p,r_p-2} \neq 0$, then $\omega_{h,n}' = \omega_{h,n}$, and $\omega_{h,n}$ with $(h,n) \neq (0,1), (0,2)$ have poles only at $\mathcal{R} = \mathcal{R}_0 \setminus x^{-1}(\mathcal{P})$.

For $(h,n,l)\in\mathbb{N}^3$, $\lambda\in\mathbb{P}^1$ and $\mathbf{z}\coloneqq(z_1,\ldots,z_n)\in\Sigma^n$,

$$Q_{h,n+1}^{(l)}(\lambda; \mathbf{z}) := \sum_{\substack{\beta \subseteq x^{-1}(\lambda) \\ i=1}} \sum_{\substack{\mu \in \mathcal{S}(\beta) \\ i=1}} \sum_{\substack{l(\mu) \\ j=1}} \sum_{\substack{j=1 \\ i=1}} \sum_{g_i = h + l(\mu) - l} \left[\prod_{i=1}^{l(\mu)} \omega_{g_i, |\mu_i| + |J_i|}(\mu_i, J_i) \right],$$

differential with possible poles at $\lambda \in \mathcal{P} \cup x(\mathcal{R})$, $z_i \in \mathcal{R}$ and $z_i \in x^{-1}(\lambda)$.

$$Q_{h,n+1}^{(l)}(\lambda; \mathbf{z}) = 0$$
, for $l \ge d+1$.

For $(h,n,l)\in\mathbb{N}^3$, $\lambda\in\mathbb{P}^1$ and $\mathbf{z}\coloneqq(z_1,\ldots,z_n)\in\Sigma^n$,

$$Q_{h,n+1}^{(l)}(\lambda; \mathbf{z}) \coloneqq \sum_{\substack{\beta \subseteq x^{-1}(\lambda) \\ l}} \sum_{\mu \in \mathcal{S}(\beta)} \sum_{\substack{l(\mu) \\ i=1 \\ j=1}} \sum_{J_i = \mathbf{z}} \sum_{\substack{l(\mu) \\ i=1 \\ j=1}} \left[\prod_{j=1}^{l(\mu)} \omega_{g_i,|\mu_i|+|J_i|}(\mu_i, J_i) \right],$$

differential with possible poles at $\lambda \in \mathcal{P} \cup x(\mathcal{R})$, $z_i \in \mathcal{R}$ and $z_i \in x^{-1}(\lambda)$.

$$Q_{h,n+1}^{(l)}(\lambda; \mathbf{z}) = 0, \text{ for } l \ge d+1.$$

Particular cases:

•
$$Q_{0,1}^{(l)}(\lambda) = \sum_{\beta \subseteq x^{-1}(\lambda)} \prod_{z \in \beta} \omega_{0,1}(z) = P_l(\lambda) (d\lambda)^l$$
.

$$\bullet \ Q_{0,2}^{(l)}(\lambda;z_1) = \textstyle \sum_{\substack{\beta \subseteq x^{-1}(\lambda) \\ \overline{l}}} \textstyle \sum_{z \in \beta} \omega_{0,2}(z,z_1) \prod_{\substack{\tilde{z} \in \beta \\ \tilde{z} \neq z}} \omega_{0,1}(\tilde{z}).$$

For $(h,n,l)\in\mathbb{N}^3$, $\lambda\in\mathbb{P}^1$ and $\mathbf{z}\coloneqq(z_1,\ldots,z_n)\in\Sigma^n$,

$$Q_{h,n+1}^{(l)}(\lambda;\mathbf{z}) := \sum_{\substack{\beta \subseteq x^{-1}(\lambda) \\ l}} \sum_{\substack{\mu \in \mathcal{S}(\beta) \\ i=1}} \sum_{\substack{l(\mu) \\ j=1 \\ i=1}} \sum_{\substack{j(\mu) \\ j=1 \\ i=1}} q_i = h + l(\mu) - l \left[\prod_{i=1}^{l(\mu)} \omega_{g_i,|\mu_i|+|J_i|}(\mu_i,J_i) \right],$$

differential with possible poles at $\lambda \in \mathcal{P} \cup x(\mathcal{R})$, $z_i \in \mathcal{R}$ and $z_i \in x^{-1}(\lambda)$.

$$Q_{h,n+1}^{(l)}(\lambda; \mathbf{z}) = 0$$
, for $l \ge d+1$.

Particular cases:

•
$$Q_{0,1}^{(l)}(\lambda) = \sum_{\beta \subseteq x^{-1}(\lambda)} \prod_{z \in \beta} \omega_{0,1}(z) = P_l(\lambda) (d\lambda)^l$$
.

•
$$Q_{0,2}^{(l)}(\lambda; z_1) = \sum_{\substack{\beta \subseteq x^{-1}(\lambda) \\ \overline{l}}} \sum_{z \in \beta} \omega_{0,2}(z, z_1) \prod_{\substack{\tilde{z} \in \beta \\ \tilde{z} \neq z}} \omega_{0,1}(\tilde{z}).$$

Theorem (Loop equations)

The function $\lambda \mapsto \frac{Q_{h,n+1}^{(l)}(\lambda;\mathbf{z})}{(d\lambda)^l}$ has no poles at $\lambda \in x(\mathcal{R})$, $\forall \mathbf{z} \in (\Sigma \setminus \mathcal{R})^n$.

$$Q_{h,n+1}^{(1)}(\lambda;\mathbf{z}) = \sum_{z \in x^{-1}(\lambda)} \omega_{h,n+1}(z,\mathbf{z}) = \delta_{n,0}\delta_{h,0}P_1(\lambda)d\lambda + \delta_{n,1}\delta_{h,0}\frac{d\lambda\,dx(z_1)}{(\lambda - x(z_1))^2} \,.$$

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ . ㅌ . 쒸٩연

$$\hat{Q}_{h,n+1}^{(l)}(z;\mathbf{z}) := \sum_{\substack{\beta \subseteq \left(x^{-1}(x(z)) \setminus \{z\}\right) \\ l = 1}} \sum_{\substack{\mu \in \mathcal{S}(\beta) \\ l = 1 \\ l = 1}} \sum_{\substack{l(\mu) \\ l = 1 \\ l = 1}} \sum_{\substack{g_i = h + l(\mu) - l}} \prod_{i=1}^{l(\mu)} \omega_{g_i,|\mu_i| + |J_i|}(\mu_i, J_i)$$

Possible poles $\leadsto z$ with $x(z) \in x(\mathcal{R})$, $z \in x^{-1}(\mathcal{P})$, and $z_i \in \mathcal{R} \cup (x^{-1}(x(z)) \setminus \{z\})$.

Lemma

For $\mathbf{z}\coloneqq(z_1,\ldots,z_n)\in\Sigma^n$ such that $x(z_i)\neq x(z_j)$ for any $i\neq j$, the functions

$$\widetilde{Q}_{h,n+1}^{(l)}(\lambda; \mathbf{z}) \coloneqq \frac{Q_{h,n+1}^{(l)}(\lambda; \mathbf{z})}{(d\lambda)^{l}} - \sum_{j=1}^{n} d_{z_{j}} \left(\frac{1}{\lambda - x(z_{j})} \frac{\widehat{Q}_{h,n}^{(l-1)}(z_{j}; \mathbf{z} \setminus \{z_{j}\})}{(dx(z_{j})^{l-1})} \right)$$

are rational functions of λ with no poles at $\lambda \in x(\mathcal{R})$ and at $\lambda \in \bigcup_{i=1}^n \{x(z_i)\}$.

For
$$z \in \Sigma \setminus (\mathcal{R} \bigcup x^{-1}(\mathcal{P}))$$
 and $\mathbf{z} \in \left[\Sigma \setminus (\mathcal{R} \bigcup x^{-1}(x(z)))\right]^n$, we have
$$Q_{h,n+1}^{(l)}(x(z);\mathbf{z}) = \hat{Q}_{h,n+1}^{(l)}(z;\mathbf{z}) + \hat{Q}_{h-1,n+2}^{(l-1)}(z;z,\mathbf{z})$$

Outline

- Topological recursion and quantum curves
 - Topological recursion and its ramifications
 - Example: Witten's conjecture, Kontsevich's theorem and Airy
 - Quantum curves, history, context and examples
- Spectral curves
- Topological recursion and loop equations
- Perturbative wave function and KZ equations
- Non-perturbative wave functions and Lax system
- Questions and future work
- Bonus: Link with isomonodromic systems

Perturbative wave function over a divisor

$$D = \sum_{i=1}^s \alpha_i[p_i] \text{ a generic divisor (of degree} = \sum_i \alpha_i = 0) \text{ on } \widetilde{\Sigma_{\mathcal{P}}}, \ \Sigma_{\mathcal{P}} := \Sigma \setminus x^{-1}(\mathcal{P}).$$

Perturbative wave function $\psi(D, \hbar) = \psi_{0,i}(D, \hbar)$ associated to D:

$$\exp\left(\sum_{h\geq 0}\sum_{n\geq 0}\frac{\hbar^{2h-2+n}}{n!}\int_{D}\cdots\int_{D}\left(\omega_{h,n}(z_{1},\ldots,z_{n})-\delta_{h,0}\delta_{n,2}\frac{dx(z_{1})dx(z_{2})}{(x(z_{1})-x(z_{2}))^{2}}\right)\right).$$

$$e^{-\hbar^{-2}\omega_{0,0}}e^{-\hbar^{-1}\int_{D}\omega_{0,1}}\psi(D,\hbar)\in\mathbb{C}[[\hbar]].$$

Perturbative wave function over a divisor

$$D=\sum\limits_{i=1}^s lpha_i[p_i]$$
 a generic divisor (of degree= $\sum_i lpha_i=0$) on $\widetilde{\Sigma_{\mathcal{P}}},\,\Sigma_{\mathcal{P}}:=\Sigma\setminus x^{-1}(\mathcal{P}).$

Perturbative wave function $\psi(D,\hbar)=\psi_{0,i}(D,\hbar)$ associated to D:

$$\exp\left(\sum_{h\geq 0}\sum_{n\geq 0}\frac{\hbar^{2h-2+n}}{n!}\int_{D}\cdots\int_{D}\left(\omega_{h,n}(z_{1},\ldots,z_{n})-\delta_{h,0}\delta_{n,2}\frac{dx(z_{1})dx(z_{2})}{(x(z_{1})-x(z_{2}))^{2}}\right)\right).$$

$$e^{-\hbar^{-2}\omega_{0,0}}e^{-\hbar^{-1}\int_{D}\omega_{0,1}}\psi(D,\hbar)\in\mathbb{C}[[\hbar]].$$

$$\forall i \in [1, s], l \ge 1 : \psi_{l,i}(D, \hbar) := \left[\sum_{h \ge 0} \sum_{n \ge 0} \frac{\hbar^{2h+n}}{n!} \overbrace{\int_D \cdots \int_D}^{h} \frac{\hat{Q}_{h, n+1}^{(l)}(p_i; \cdot)}{(dx(p_i))^l} \right] \psi(D, \hbar).$$

Perturbative partition function $Z(\hbar) = \psi(D = \emptyset, \hbar)$:

$$Z(\hbar) \coloneqq \exp\left(\sum_{h \geq 0} \hbar^{2h-2} \omega_{h,0}\right), \text{ with } e^{-\hbar^{-2} \omega_{0,0}} Z(\hbar) \in \mathbb{C}[[\hbar]].$$

Remark

Wave functions are meant to be solutions to a differential equation; the partition function is expected to play the role of an associated tau function from the point of view of isomonodromic or integrable systems.

KZ equations

Loop equations \Rightarrow Knizhnik–Zamolodchikov (KZ) equations:

Theorem (General KZ equations)

For $i \in \llbracket 1,s
rbracket$ and $l \in \llbracket 0,d-1
rbracket$,

$$\begin{split} \frac{\hbar}{\alpha_i} \frac{d\psi_{l,i}(D,\hbar)}{dx(p_i)} &= -\psi_{l+1,i}(D,\hbar) - \hbar \sum_{j \in [\![1,s]\!] \backslash \{i\}} \alpha_j \, \frac{\psi_{l,i}(D,\hbar) - \psi_{l,j}(D,\hbar)}{x(p_i) - x(p_j)} \\ &+ \sum_{h \geq 0} \sum_{n \geq 0} \frac{\hbar^{2h+n}}{n!} \int_{z_1 \in D} \cdots \int_{z_n \in D} \widetilde{Q}_{h,n+1}^{(l+1)}(x(p_i); \mathbf{z}) \, \psi(D,\hbar) \\ &+ \left(\frac{1}{\alpha_i} - \alpha_i\right) \left[\sum_{\substack{(h,n) \in \mathbb{N}^2}} \frac{\hbar^{2h+n+1}}{n!} \overbrace{\int_{D} \cdots \int_{D}}^{n} \frac{d}{dx(p_i)} \left(\frac{\widehat{Q}_{h,n+1}^{(l)}(p_i; \cdot)}{(dx(p_i))^l}\right) \right] \psi(D,\hbar). \end{split}$$

If
$$\alpha_i = \pm 1$$
,

$$\frac{\hbar}{\alpha_i} \frac{d\psi_{l,i}(D,\hbar)}{dx(p_i)} = -\psi_{l+1,i}(D,\hbar) - \hbar \sum_{j \in [1,s] \setminus \{i\}} \alpha_j \frac{\psi_{l,i}(D,\hbar) - \psi_{l,j}(D,\hbar)}{x(p_i) - x(p_j)}$$
$$+ \sum_{h \ge 0} \sum_{n \ge 0} \frac{\hbar^{2h+n}}{n!} \int_{z_1 \in D} \cdots \int_{z_n \in D} \widetilde{Q}_{h,n+1}^{(l+1)}(x(p_i); \mathbf{z}) \, \psi(D,\hbar).$$

Regularised KZ equations

Let $z\in\widetilde{\Sigma_{\mathcal{P}}}$ be a generic point and $x^{-1}(\infty)=\{\infty^{(\alpha)}\}_{\alpha\in\llbracket 1,\ell_\infty\rrbracket}$. When $D=[z]-[p_2]$, $\psi(D,\hbar)$ has an essential singularity as $p_2\to\infty^{(\alpha)}$. Need to regularise the wave functions: $\psi_l^{\mathrm{reg}}(D=[z]-[\infty^{(\alpha)}],\hbar)$.

Theorem (KZ equations for regularized wave functions)

For $\alpha \in [\![1,\ell_\infty]\!]$, $l \in [\![0,d-1]\!]$, the regularised wave functions satisfy

$$\hbar \frac{d}{dx(z)} \psi_l^{\text{reg}}(D = [z] - [\infty^{(\alpha)}], \hbar) + \psi_{l+1}^{\text{reg}}(D = [z] - [\infty^{(\alpha)}], \hbar)$$

$$= \left[\sum_{h \geq 0} \sum_{n \geq 0} \frac{\hbar^{2h+n}}{n!} \sum_{P \in \mathcal{P}} \sum_{k \in S_P^{(l+1)}} \xi_P(x(z))^{-k} \underset{\lambda \to P}{\text{Res}} \xi_P(\lambda)^{k-1} d\xi_P(\lambda) \right]$$

$$\int_{z_1 = z_2}^{z_1 = z} \cdots \int_{z_n = z_n(\alpha)}^{z_n = z} \frac{Q_{h, n+1}^{(l+1)}(\lambda; \mathbf{z})}{(d\lambda)^{l+1}} \psi^{\text{reg}}(D = [z] - [\infty^{(\alpha)}], \hbar).$$

Regularised KZ equations

Let $z\in\widetilde{\Sigma_{\mathcal{P}}}$ be a generic point and $x^{-1}(\infty)=\{\infty^{(\alpha)}\}_{\alpha\in\llbracket 1,\ell_{\infty}\rrbracket}.$ When $D=[z]-[p_2],\,\psi(D,\hbar)$ has an essential singularity as $p_2\to\infty^{(\alpha)}.$ Need to regularise the wave functions: $\psi_l^{\mathrm{reg}}(D=[z]-[\infty^{(\alpha)}],\hbar).$

Theorem (KZ equations for regularized wave functions)

For $\alpha \in [\![1,\ell_\infty]\!]$, $l \in [\![0,d-1]\!]$, the regularised wave functions satisfy

$$h\frac{d}{dx(z)}\psi_{l}^{\text{reg}}(D = [z] - [\infty^{(\alpha)}], \hbar) + \psi_{l+1}^{\text{reg}}(D = [z] - [\infty^{(\alpha)}], \hbar)$$

$$= \left[\sum_{h \ge 0} \sum_{n \ge 0} \frac{\hbar^{2h+n}}{n!} \sum_{P \in \mathcal{P}} \sum_{k \in S_{P}^{(l+1)}} \xi_{P}(x(z))^{-k} \underset{\lambda \to P}{\text{Res}} \xi_{P}(\lambda)^{k-1} d\xi_{P}(\lambda)\right]$$

$$\int_{(\alpha)}^{z_{1}=z} \cdots \int_{(\alpha)}^{z_{n}=z} \frac{Q_{h,n+1}^{(l+1)}(\lambda; \mathbf{z})}{(d\lambda)^{l+1}} \psi^{\text{reg}}(D = [z] - [\infty^{(\alpha)}], \hbar).$$

- RHS of KZ equations uses residues, i.e. integrals.
- ullet Can be re-written using generalised integrals, i.e. linear operators $\mathcal{I}_{\mathcal{C}_{p,k}}$.
- $\mathcal{I}_{\mathcal{C}_{n,k}}$ is expected to correspond to $\partial_{t_{n,k}}$. Valid for d=2.
- Action of these operators defined only on a sub-algebra generated by $\int_{\mathcal{C}_1} \cdots \int_{\mathcal{C}_n} \omega_{h,n}$: algebra of symbols.
- Need to check that these operators never act on something else.
- Avoid the technicality of defining the action on all differentials on Σ .

Generalised cycles and algebra of symbols

Generalized cycles: $\mathcal{E}\coloneqq \left\{\mathcal{C}_{p,k}\right\}_{p\in\Sigma,k\in\mathbb{Z}} \cup \left\{\mathcal{C}_{o}^{p}\right\}_{p\in\Sigma} \cup \left\{\mathcal{A}_{i},\mathcal{B}_{i}\right\}_{i=1}^{g}$, where the integration of a meromorphic form ω along such cycles is defined as:

 $\bullet \ \forall \ p \in \Sigma \text{, and } \forall \ k \in \mathbb{Z} \text{,}$

$$\int_{\mathcal{C}_{p,k}} : \quad \omega \mapsto \mathop{\mathrm{Res}}_{p} \zeta_{p}^{-k} \ \omega \,.$$

• Let γ be a Jordan arc from a point $o \in \Sigma$ to a point $p \in \Sigma$.

$$\int_{\mathcal{C}^p_o}\quad:\quad\omega\mapsto\int_{\gamma}\omega$$

Generalised cycles and algebra of symbols

Generalized cycles: $\mathcal{E}\coloneqq \left\{\mathcal{C}_{p,k}\right\}_{p\in\Sigma,k\in\mathbb{Z}} \cup \left\{\mathcal{C}_{o}^{p}\right\}_{p\in\Sigma} \cup \left\{\mathcal{A}_{i},\mathcal{B}_{i}\right\}_{i=1}^{g}$, where the integration of a meromorphic form ω along such cycles is defined as:

 $\bullet \ \forall \ p \in \Sigma \text{, and } \forall \ k \in \mathbb{Z} \text{,}$

$$\int_{\mathcal{C}_{p,k}} : \quad \omega \mapsto \mathop{\mathrm{Res}}_{p} \zeta_{p}^{-k} \ \omega \,.$$

• Let γ be a Jordan arc from a point $o \in \Sigma$ to a point $p \in \Sigma$.

$$\int_{\mathcal{C}_o^p} : \quad \omega \mapsto \int_{\gamma} \omega$$

Commutative algebra freely generated by a set of symbols consisting of a pair (h,n) and a symbol $\int_{C_1}\cdots \int_{C_n}$, labeled by generalised cycles $C_i\in\mathcal{E}$:

$$\check{\mathcal{W}} = \mathbb{C}\left[\left\{\int_{C_1} \cdots \int_{C_n} \omega_{h,n}\right\}_{h,n \geq 0}\right] \quad / \text{ (cycle linearity relations)}.$$

Evaluation map:

 $\mathcal{W} \leadsto \text{extension to formal Laurent power series in } \hbar, \text{ exponentials and inverses}_{=}$

KZ equations with linear operators

Operators $(\mathcal{I}_C)_{C\in\mathcal{E}}$ acting on \mathcal{W} :

$$\forall (h,n) \in \mathbb{N}^2 : \mathcal{I}_C \left[\int_{C_1} \cdots \int_{C_n} \omega_{h,n} \right] := \int_{C_1} \cdots \int_{C_n} \int_C \omega_{h,n+1}.$$

Re-writing the RHS of the KZ equations with a multi-linear operator $\widetilde{\mathcal{L}}_l(x(z))$ that uses $\mathcal{I}_{\mathcal{C}_{p,k}} \leadsto$ new system of KZ equations, for $\alpha \in [\![1,\ell_\infty]\!]$, $l \in [\![0,d-1]\!]$:

$$h \frac{d}{dx(z)} \psi_l^{\text{reg}}([z] - [\infty^{(\alpha)}]) + \psi_{l+1}^{\text{reg}}([z] - [\infty^{(\alpha)}])$$

$$= \text{ev. } \widetilde{\mathcal{L}}_l(x(z)) \left[\psi^{\text{reg symbol}}([z] - [\infty^{(\alpha)}]) \right].$$

KZ equations with linear operators

Operators $(\mathcal{I}_C)_{C\in\mathcal{E}}$ acting on \mathcal{W} :

$$\forall (h,n) \in \mathbb{N}^2 : \mathcal{I}_C \left[\int_{C_1} \cdots \int_{C_n} \omega_{h,n} \right] \coloneqq \int_{C_1} \cdots \int_{C_n} \int_C \omega_{h,n+1}.$$

Re-writing the RHS of the KZ equations with a multi-linear operator $\widetilde{\mathcal{L}}_l(x(z))$ that uses $\mathcal{I}_{\mathcal{C}_{p,k}} \leadsto$ new system of KZ equations, for $\alpha \in [\![1,\ell_\infty]\!]$, $l \in [\![0,d-1]\!]$:

$$h \frac{d}{dx(z)} \psi_l^{\text{reg}}([z] - [\infty^{(\alpha)}]) + \psi_{l+1}^{\text{reg}}([z] - [\infty^{(\alpha)}])$$

$$= \text{ev. } \widetilde{\mathcal{L}}_l(x(z)) \left[\psi^{\text{reg symbol}}([z] - [\infty^{(\alpha)}]) \right].$$

Degree 2 case (hyperelliptic):

$$P(x,y) = R(x) - y^2 = 0$$
, with $R(x) \in \mathbb{C}(x)$

 $x:\Sigma \to \mathbb{C}\mathrm{P}^1$ is a double cover and we have a global involution

$$(x,y) \mapsto (x,-y).$$

Remark

In degree 2, the operators $\mathcal{I}_{\mathcal{C}_{p,k}}$ can be interpreted as derivatives with respect to the moduli of the classical spectral curve $\partial_{t_{p,k}}$.

KZ equations for $d=2 \rightsquigarrow \text{system of PDEs}$

Theorem (Eynard-GF,'19)

For k = 1, 2,

$$\hbar^2 \left(\frac{d^2}{dx_k^2} + \sum_{i \neq k} \frac{\frac{d}{dx_k} - \frac{d}{dx_i}}{x_k - x_i} \right) \psi = \left(R(x_k) + \mathcal{L}(x_k) \right) \psi.$$

 $\zeta_\infty \in x^{-1}(\infty)$ and $\zeta_l \in x^{-1}(\Lambda_l)$ poles of $\omega_{0,1}$ of orders m_∞ and m_l , $l=1,\ldots,N$, respectively. Let $d_\infty \coloneqq \operatorname{ord}_{\zeta_\infty}(x)$. Operator $\mathcal{L}(x) = \mathcal{L}_\infty(x) + \mathcal{L}_\Lambda(x)$:

$$\mathcal{L}_{\infty}(x) = \sum_{j=1-2d_{\infty}}^{m_{\infty}} t_{\zeta_{\infty,j}} \sum_{k=0}^{\frac{1-j}{d_{\infty}}-2} x^{k} \left(-\frac{j}{d_{\infty}} - k - 2\right) \frac{\partial}{\partial t_{\zeta_{\infty,j}+d_{\infty}(k+2)}},$$

$$\mathcal{L}_{\Lambda}(x) = \sum_{l=1}^{N} \left(\frac{1}{x - \lambda_{l}} \frac{\partial}{\partial \lambda_{l}} + \sum_{j=1}^{m_{l}-1} t_{\zeta_{l}, j} \sum_{k=1}^{j} (x - \lambda_{l})^{-(k+1)} (j+1-k) \frac{\partial}{\partial t_{\zeta_{l}, j+1-k}} \right).$$

Example

In the Airy case, $y^2=x$, we have only one pole, at $\zeta_i=\infty$, of degree $m_i=3$, with $d_i=-2$. The sum is empty and $\mathcal{L}(x)=0$.

Airy and elliptic cases for two-point divisors

Divisor $D = [z_1] - [z_2]$:

• PDEs for Airy curve: $y^2 = x$. We had $\mathcal{L}(x) = 0$.

$$\begin{cases} \hbar^2 \left(\frac{d^2}{dx_1^2} + \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2} \right) \psi &= x_1 \psi, \\ \hbar^2 \left(\frac{d^2}{dx_2^2} + \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2} \right) \psi &= x_2 \psi. \end{cases}$$

Airy and elliptic cases for two-point divisors

Divisor $D = [z_1] - [z_2]$:

• PDEs for Airy curve: $y^2 = x$. We had $\mathcal{L}(x) = 0$.

$$\begin{cases} \hbar^2 \left(\frac{d^2}{dx_1^2} + \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2} \right) \psi &= x_1 \psi, \\ \hbar^2 \left(\frac{d^2}{dx_2^2} + \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2} \right) \psi &= x_2 \psi. \end{cases}$$

More generally, admissible curves considered in Bouchard–Eynard, '17 (empty Newton polygon) are those for which $\mathcal{L}(x) = 0$.

Airy and elliptic cases for two-point divisors

Divisor $D = [z_1] - [z_2]$:

• PDEs for Airy curve: $y^2 = x$. We had $\mathcal{L}(x) = 0$.

$$\begin{cases} \hbar^2 \left(\frac{d^2}{dx_1^2} + \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2} \right) \psi &= x_1 \psi, \\ \hbar^2 \left(\frac{d^2}{dx_2^2} + \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2} \right) \psi &= x_2 \psi. \end{cases}$$

More generally, admissible curves considered in Bouchard–Eynard, '17 (empty Newton polygon) are those for which $\mathcal{L}(x) = 0$.

• PDEs for elliptic curve: $R(x(z)) = y(z)^2 = x^3 + tx + V$, with

$$-V = \int_{\mathcal{B}_{\infty,1}} \omega_{0,1} = \frac{\partial}{\partial t_{\infty,1}} \omega_{0,0} = -\frac{\partial}{\partial t} \omega_{0,0}$$

$$\Rightarrow R(x(z)) = x^3 + tx + \frac{\partial}{\partial t}\omega_{0,0}.$$

We have $\mathcal{L}(x) = \frac{\partial}{\partial t}$.

$$\left(\hbar^2 \frac{d^2}{dx_k^2} + \hbar^2 \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2}\right) \psi = \left(x_k^3 + tx_k + V + \frac{\partial}{\partial t}\right) \psi,$$

for k = 1, 2.

Monodromies of the perturbative wave function → bad monodromies

Problem for genus $\hat{g} > 0$: $\int_0^z \cdots \int_0^z \omega_{g,n}$ are not invariant after z goes around a cycle. Very bad monodromies when z goes around a \mathcal{B}_i (first type cycle).

Lemma

$$\forall p \in x^{-1}(\mathcal{P}) : \psi_l([z + \mathcal{C}_p] - [\infty^{(\alpha)}], \hbar) = (-1)^{\delta_{p,\infty}(\alpha)} e^{\frac{2\pi i t_{p,0}}{\hbar}} \psi_l([z] - [\infty^{(\alpha)}], \hbar),$$

$$\forall j \in [1, \hat{g}]: \psi_l([z + \mathcal{A}_j] - [\infty^{(\alpha)}], \hbar) = e^{\frac{2\pi i \epsilon_j}{\hbar}} \psi_l([z] - [\infty^{(\alpha)}], \hbar),$$

where C_p (= $C_{p,0}$) is a small circle around p, and

$$\psi(D+\mathcal{B}_j,\hbar) = \exp\left(\sum_{(h,n,m)\in\mathbb{N}^3} \frac{\hbar^{2h-2+n+m}}{n!m!} \underbrace{\int_D \cdots \int_D \underbrace{\int_{\mathcal{B}_j} \cdots \int_{\mathcal{B}_j} \omega_{h,n+m}}_{m}}_{\infty}\right).$$

Since the \mathcal{B}_j period of $\omega_{h,n+1}$ is equal to the variation of $\omega_{h,n}$ wrt $\epsilon_j \coloneqq \oint_{\mathcal{A}_j} \omega_{0,1}$,

$$\psi(D+\mathcal{B}_j,\hbar) = \exp\left(\sum_{(h,n)\in\mathbb{N}^2} \frac{\hbar^{2h-2+n}}{n!} \overbrace{\int_D \cdots \int_D} \sum_{m\geq 0} \frac{1}{m!} \left(\hbar \frac{\partial}{\partial \epsilon_j}\right)^m \omega_{h,n}\right) \Rightarrow$$

$$\psi_l([z+\mathcal{B}_j]-[\infty^{(\alpha)}],\hbar) = e^{\hbar\frac{\partial}{\partial \epsilon_j}}\psi_l([z]-[\infty^{(\alpha)}],\hbar) = \psi_l([z]-[\infty^{(\alpha)}],\hbar,\epsilon_j \to \epsilon_j + \hbar).$$

Outline

- Topological recursion and quantum curves
 - Topological recursion and its ramifications
 - Example: Witten's conjecture, Kontsevich's theorem and Airy
 - Quantum curves, history, context and examples
- Spectral curves
- Topological recursion and loop equations
- Perturbative wave function and KZ equations
- Non-perturbative wave functions and Lax system
- Questions and future work
- Bonus: Link with isomonodromic systems

Summing over the lattice

Remark

Our KZ equations do not depend on $z\in\widetilde{\Sigma}$ but only on its image $x(z)\Rightarrow$ For any finite family of c_γ , the following sum satisfies the same KZ equations

$$\psi_l([z] - [\infty^{(\alpha)}], \hbar, \{c_\gamma\}) := \sum_{\gamma \in \pi_1(\Sigma \setminus x^{-1}(\mathcal{P}))} c_\gamma \ \psi_l([z] + \gamma - [\infty^{(\alpha)}], \hbar).$$

Goal: Build solutions to the same KZ equations but with better monodromies along the \mathcal{B}_i -cycles.

Summing over the lattice

Remark

Our KZ equations do not depend on $z\in\widetilde{\Sigma}$ but only on its image $x(z)\Rightarrow$ For any finite family of c_γ , the following sum satisfies the same KZ equations

$$\psi_l([z]-[\infty^{(\alpha)}],\hbar,\{c_\gamma\}) := \sum_{\gamma \in \pi_1(\Sigma \setminus x^{-1}(\mathcal{P}))} c_\gamma \ \psi_l([z]+\gamma - [\infty^{(\alpha)}],\hbar).$$

Goal: Build solutions to the same KZ equations but with better monodromies along the \mathcal{B}_i -cycles.

Strategy: Sum over $\gamma = \sum_{i=1}^g n_i \mathcal{B}_i$, i.e. $\epsilon_i \to \epsilon_i + \hbar$. Formally \leadsto discrete Fourier transform of the perturbative wave function:

$$\psi_l^{\infty^{(\alpha)}}(z,\hbar;\epsilon,\boldsymbol{\rho}) \coloneqq \sum_{\mathbf{n}\in\mathbb{Z}^g} e^{\frac{2\pi i}{\hbar}\sum_{j=1}^g \rho_j n_j} \psi_l([z] - [\infty^{(\alpha)}],\hbar,\epsilon + \hbar \mathbf{n}).$$

Trans-series with special ordering

Strategy: Sum over $\gamma = \sum_{i=1}^g n_i \mathcal{B}_i$, i.e. $\epsilon_i \to \epsilon_i + \hbar$. Formally \leadsto discrete Fourier transform of the perturbative wave function:

$$\psi_l^{\infty^{(\alpha)}}(z,\hbar;\epsilon,\boldsymbol{\rho}) := \sum_{\mathbf{n}\in\mathbb{Z}^g} e^{\frac{2\pi i}{\hbar}\sum_{j=1}^{\tilde{\beta}}\rho_j n_j} \ \psi_l([z] - [\infty^{(\alpha)}],\hbar,\epsilon + \hbar\mathbf{n}).$$

Remark (Limitations)

- Filling fraction $\epsilon = (\epsilon_1, \dots, \epsilon_g) \leadsto$ not a global coordinate on the space of classical spectral curves with fixed spectral times (only a local coordinate).
- Not a finite sum → not necessarily defined in W.

Trans-series with special ordering

Strategy: Sum over $\gamma = \sum_{i=1}^g n_i \mathcal{B}_i$, i.e. $\epsilon_i \to \epsilon_i + \hbar$. Formally \leadsto discrete Fourier transform of the perturbative wave function:

$$\psi_l^{\infty^{(\alpha)}}(z,\hbar;\epsilon,\pmb{\rho}) := \sum_{\mathbf{n}\in\mathbb{Z}^g} e^{\frac{2\pi i}{\hbar}\sum\limits_{j=1}^{\hat{g}}\rho_j n_j} \ \psi_l([z]-[\infty^{(\alpha)}],\hbar,\epsilon+\hbar\mathbf{n}).$$

Remark (Limitations)

- Filling fraction $\epsilon = (\epsilon_1, \dots, \epsilon_g) \leadsto$ not a global coordinate on the space of classical spectral curves with fixed spectral times (only a local coordinate).
- Not a finite sum → not necessarily defined in W.

We need a special ordering of the trans-monomials:

$$\sum_{r\geq 0} \sum_{\mathbf{n}\in\mathbb{Z}^{\hat{g}}} F_{\mathbf{n},r} \hbar^r e^{\frac{1}{\hbar} \sum_{j=1}^{\hat{g}} n_j v_j}.$$

The partial sums $\sum_{\mathbf{n}\in\mathbb{Z}^{\hat{g}}}F_{\mathbf{n},r}e^{\frac{1}{\hbar}\sum\limits_{j=1}^{\hat{g}}n_{j}v_{j}}$ will give rise to theta functions (through convergent series in the spirit of the trans-asymptotics of Costin–Costin, '10). Equalities: coefficient by coefficient in the trans-monomials.

Non-perturbative wave functions

Riemann matrix of periods of Σ : $\tau_{i,j} = \frac{1}{2\pi \mathrm{i}} \int_{\mathcal{B}_i} \int_{\mathcal{B}_j} \omega_{0,2}$, $\forall (i,j) \in [\![1,\hat{g}]\!]^2$.

Riemann theta function (analytic function of $\mathbf{v} \in \mathbb{C}^{\hat{g}}$) and its derivatives:

$$\Theta^{(i_1,...,i_k)}(\mathbf{v},\tau) = \sum_{(n_1,...,n_{\hat{g}}) \in \mathbb{Z}^{\hat{g}}} e^{2\pi \mathrm{i} \sum_{i=1}^{\hat{g}} n_i v_i} e^{\pi \mathrm{i} \sum_{(i,j) \in [\![1,\hat{g}]\!]^2} n_i \tau_{i,j} n_j} \prod_{j=1}^k n_{i_j}.$$

Non-perturbative wave functions

Riemann matrix of periods of Σ : $\tau_{i,j} = \frac{1}{2\pi\mathrm{i}} \int_{\mathcal{B}_i} \int_{\mathcal{B}_j} \omega_{0,2}$, $\forall (i,j) \in [\![1,\hat{g}]\!]^2$.

Riemann theta function (analytic function of $\mathbf{v} \in \mathbb{C}^{\hat{g}}$) and its derivatives:

$$\Theta^{(i_1,...,i_k)}(\mathbf{v},\tau) = \sum_{(n_1,...,n_{\hat{g}}) \in \mathbb{Z}^{\hat{g}}} e^{2\pi \mathrm{i} \sum_{i=1}^{\hat{g}} n_i v_i} e^{\pi \mathrm{i} \sum_{(i,j) \in [\![1,\hat{g}]\!]^2} n_i \tau_{i,j} n_j} \prod_{j=1}^k n_{i_j}.$$

For $D=[z]-[\infty^{(lpha)}]$, we define the non-perturbative wave function

$$\psi_{\rm NP}(D;\hbar,\rho) := e^{\hbar^{-2}\omega_{0,0} + \omega_{1,0}} e^{\hbar^{-1} \int_D \omega_{0,1}} \frac{1}{E(D)} \sum_{r=0}^{\infty} \hbar^r G^{(r)}(D;\rho),$$

where E is the prime form on Σ ,

$$G^{(r)}(D; \boldsymbol{\rho}) \coloneqq \sum_{k=0}^{3r} \sum_{i_1, \dots, i_k \in [1, \hat{g}]_k^k} \Theta^{(i_1, \dots, i_k)}(\mathbf{v}, \tau) G^{(r)}_{(i_1, \dots, i_k)}(D)$$

and where $v_j \coloneqq rac{
ho_j + arphi_j}{\hbar} + \mu_j^{(lpha)}(z)$, $\mathbf{v} = (v_1, \dots, v_{\hat{g}})$, with

$$\varphi_j \coloneqq \frac{1}{2\pi i} \oint_{\mathcal{B}_z} \omega_{0,1} \qquad \text{and} \qquad \mu_j^{(\alpha)}(z) \coloneqq \frac{1}{2\pi i} \int_D \oint_{\mathcal{B}_z} \omega_{0,2}.$$

Same KZ equations and good monodromies

 Non-perturbative wave functions satisfy the same KZ equations as their perturbative partners.

$$\hbar \frac{d\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\boldsymbol{\rho})}{dx(z)} + \psi_{l+1,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\boldsymbol{\rho}) = \sum_{P \in \mathcal{P}} \sum_{k \in S_P^{(l+1)}} \xi_P^{-k}(x(z)) \mathrm{ev.} \left[\widetilde{\mathcal{L}}_{P,k,l} \, \psi_{0,\mathrm{NP}}^{\infty^{(\alpha)},\,\mathrm{symbol}}(z,\hbar,\boldsymbol{\rho}) \right].$$

Non-perturbative wave functions → simple monodromy properties.

For $j \in [\![1,\hat{g}]\!]$, we have

$$\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z+\mathcal{A}_j,\hbar,\boldsymbol{\rho}) = e^{\frac{2\pi i \epsilon_j}{\hbar}} \psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\boldsymbol{\rho}),$$

$$\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z+\mathcal{B}_j,\hbar,\boldsymbol{\rho}) = e^{-\frac{2\pi i \rho_j}{\hbar}} \psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\boldsymbol{\rho})$$

and $\forall \ p \in x^{-1}(\mathcal{P})$

$$\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z+\mathcal{C}_p,\hbar,\pmb{\rho}) = \left(-1\right)^{\delta_{p,\infty^{(\alpha)}}} e^{\frac{2\pi i t_{p,0}}{\hbar}} \psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\pmb{\rho}).$$

For $l \geq 0$, we define

$$\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\pmb{\rho})\coloneqq \mathrm{ev.}\sum_{\substack{\beta\subseteq \left(x^{-1}(x(z))\backslash\{z\}\right)}}\frac{1}{l!}\left(\prod_{j=1}^{l}\mathcal{I}_{\mathcal{C}_{\beta_{j},1}}\right)\;\psi_{\mathrm{NP}}^{\mathrm{symbol}}(D;\hbar,\pmb{\rho}).$$

For $l \geq 0$, we define

$$\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\pmb{\rho})\coloneqq \mathrm{ev.}\sum_{\substack{\beta\subseteq \left(x^{-1}(x(z))\backslash\{z\}\right)}}\frac{1}{l!}\left(\prod_{j=1}^{l}\mathcal{I}_{\mathcal{C}_{\beta_{j},1}}\right)\;\psi_{\mathrm{NP}}^{\mathrm{symbol}}(D;\hbar,\pmb{\rho}).$$

We use them to define a $d \times d$ matrix

$$\widehat{\Psi}_{\mathrm{NP}}(\lambda,\hbar,\boldsymbol{\rho})\coloneqq \left[\psi_{l-1,\mathrm{NP}}^{\infty^{(\alpha)}}(z^{(\beta)}(\lambda),\hbar,\boldsymbol{\rho})\right]_{1\leq l,\beta\leq d},$$

where $z^{(\beta)}(\lambda)$ denotes the β^{th} preimage by x of λ .

$$\widetilde{\mathcal{L}}_{l}(x(z)) = \sum_{P \in \mathcal{P}} \sum_{k \in S_{P}^{(l+1)}} \xi_{P}(x(z))^{-k} \widetilde{\mathcal{L}}_{P,k,l}, \ \mathcal{L}_{P,k,l} \coloneqq \widetilde{\mathcal{L}}_{P,k,l} - P_{P,k}^{(l+1)}.$$

Theorem (ODE and Lax system)

Let
$$\hat{L}(\lambda,\hbar):=-\widehat{P}(\lambda)+\hbar\sum_{P\in\mathcal{P}}\sum_{k\in\mathbb{N}}\xi_P^{-k}(\lambda)\widehat{\Delta}_{P,k}(\lambda,\hbar)$$
. Then,

$$\hbar \frac{d\widehat{\Psi}_{\rm NP}(\lambda, \hbar)}{d\lambda} = \hat{L}(\lambda, \hbar) \widehat{\Psi}_{\rm NP}(\lambda, \hbar),$$

where

$$\widehat{P}(\lambda) := \begin{bmatrix} -P_1(\lambda) & 1 & 0 & \dots & 0 \\ -P_2(\lambda) & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -P_{d-1}(\lambda) & 0 & 0 & \dots & 1 \\ -P_d(\lambda) & 0 & 0 & \dots & 0 \end{bmatrix}$$

For any $P \in \mathcal{P}$, $k \in \mathbb{N}$, $l \in [0, d-1]$, one has the auxiliary systems

$$\hbar^{-1} \text{ev.} \mathcal{L}_{P,k,l} \widehat{\Psi}_{\text{NP}}^{\text{symbol}}(\lambda, \hbar) = \widehat{A}_{P,k,l}(\lambda, \hbar) \widehat{\Psi}_{\text{NP}}(\lambda, \hbar),$$

where $\hat{L}(\lambda,\hbar)$ and $\hat{A}_{P,k,l}(\lambda,\hbar)$ are \hbar -trans-series functions that are rational functions of λ , with no poles at critical values $\lambda \in x(\mathcal{R})$.

Theorem (ODE and Lax system)

Let
$$\hat{L}(\lambda,\hbar) := -\hat{P}(\lambda) + \hbar \sum_{P \in \mathcal{P}} \sum_{k \in \mathbb{N}} \xi_P^{-k}(\lambda) \widehat{\Delta}_{P,k}(\lambda,\hbar)$$
. Then,
$$\hbar \frac{d\widehat{\Psi}_{\mathrm{NP}}(\lambda,\hbar)}{d\lambda} = \hat{L}(\lambda,\hbar) \widehat{\Psi}_{\mathrm{NP}}(\lambda,\hbar), \tag{1}$$

where

$$\widehat{P}(\lambda) := \left[\begin{array}{ccccc} -P_1(\lambda) & 1 & 0 & \dots & 0 \\ -P_2(\lambda) & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -P_{d-1}(\lambda) & 0 & 0 & \dots & 1 \\ -P_d(\lambda) & 0 & 0 & \dots & 0 \end{array} \right]$$

For any $P\in\mathcal{P}$, $k\in\mathbb{N}$, $l\in\llbracket 0,d-1
rbracket$, one has the auxiliary systems

$$\hbar^{-1}\mathrm{ev.}\mathcal{L}_{P,k,l}\widehat{\Psi}_{\mathrm{NP}}^{\mathrm{symbol}}(\lambda,\hbar) = \widehat{A}_{P,k,l}(\lambda,\hbar)\widehat{\Psi}_{\mathrm{NP}}(\lambda,\hbar),$$

where $\hat{L}(\lambda,\hbar)$ and $\hat{A}_{P,k,l}(\lambda,\hbar)$ are \hbar -trans-series functions that are rational functions of λ , with no poles at critical values $\lambda \in x(\mathcal{R})$.

- (1) → linear differential system of size d × d whose formal fundamental solution can be computed by TR, with poles at the poles of the leading WKB term...
- $\hat{L}(\lambda,\hbar)$ has poles only at $\lambda\in\mathcal{P}$ and at zeros of the Wronskian $\det\widehat{\Psi}_{\mathrm{NP}}(\lambda,\hbar)$, apparent singularities of the system (can be computed thanks to the KZ eqns).

Theorem (ODE and Lax system)

Let $\hat{L}(\lambda,\hbar) \coloneqq -\widehat{P}(\lambda) + \hbar \sum_{P \in \mathcal{P}} \sum_{k \in \mathbb{N}} \xi_P^{-k}(\lambda) \widehat{\Delta}_{P,k}(\lambda,\hbar)$. Then,

$$\hbar \frac{d\widehat{\Psi}_{\rm NP}(\lambda, \hbar)}{d\lambda} = \hat{L}(\lambda, \hbar) \widehat{\Psi}_{\rm NP}(\lambda, \hbar), \tag{2}$$

where

$$\widehat{P}(\lambda) \coloneqq \left[\begin{array}{ccccc} -P_1(\lambda) & 1 & 0 & \dots & 0 \\ -P_2(\lambda) & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -P_{d-1}(\lambda) & 0 & 0 & \dots & 1 \\ -P_d(\lambda) & 0 & 0 & \dots & 0 \end{array} \right]$$

For any $P\in\mathcal{P}$, $k\in\mathbb{N}$, $l\in\llbracket 0,d-1
rbracket$, one has the auxiliary systems

$$\hbar^{-1}\mathrm{ev.}\mathcal{L}_{P,k,l}\widehat{\Psi}_{\mathrm{NP}}^{\mathrm{symbol}}(\lambda,\hbar) = \widehat{A}_{P,k,l}(\lambda,\hbar)\widehat{\Psi}_{\mathrm{NP}}(\lambda,\hbar),$$

where $\hat{L}(\lambda,\hbar)$ and $\hat{A}_{P,k,l}(\lambda,\hbar)$ are \hbar -trans-series functions that are rational functions of λ , with no pole at critical values $\lambda \in x(\mathcal{R})$.

- Most technical proof
 → by induction on the order of the transseries.
- Proof uses admissibility conditions (distinct critical values, smooth simple ramification points) \(\sim \text{should}\) adapt without them but involving more technical computations.

4 different interesting gauges

None of the gauge transformations modify the first line of the wave functions matrix (used to define the quantum curve).

- Gauge $\widehat{\Psi}$: Natural gauge coming from KZ equations and provides compatible auxiliary systems $(\mathcal{L}_{P,k,l})_{P \in \mathcal{P}, l \in \llbracket 0.d-1 \rrbracket, k \in S_{D}^{(l+1)}}$.
- Gauge $\widetilde{\Psi}$ (\hbar^0 gauge transformation from $\widehat{\Psi}$): Leading order in \hbar of \widetilde{L} is companion-like \leadsto the classical spectral curve is directly recovered from its last line.
- Gauge Ψ : Corresponding Lax matrix L is companion-like at all orders in $\hbar \leadsto \overline{\text{both the quantum and classical curves}}$ are directly read from the last line of L and its $\hbar \to 0$ limit. Natural framework for Darboux coordinates and isomonodromic deformations.
- Gauge $\check{\Psi}$: Lax matrix \check{L} has no apparent singularities. This allows to interpret $\check{\check{L}}(\lambda,\hbar)d\lambda$ as an \hbar -familly of Higgs fields giving rise to a flow in the corresponding Hitchin system.

Practical computations to quantise a classical spectral curve

- Write down the KZ equations satisfied by the non-perturbative wave function.
- $\textbf{ Expand these KZ equations around each pole } \lambda \to P \in \mathcal{P} \leadsto \text{ expression of the coefficients of the asymptotic expansion of } \psi_{0,\mathrm{NP}}^{(\infty^{(\alpha)})} \text{ in terms of the action of the operators } \mathcal{I}_C.$
- ① Use the latter expressions to compute the Wronskian of the system thanks to its expansion around its poles. This allows to compute the position of the apparent singularities $(q_i(\hbar))_{i=1}^d$.
- Write down the linear system and the associated quantum curve, and use the compatibility of the system to recover its properties.

Example

- Reconstruction via TR of a 2-parameter family of formal transseries solutions to Painlevé 2 and quantisation. Classical spectral curve: $y^2 P_1(\lambda)y + P_2(\lambda) = 0$, where $P_1(\lambda) = P_{\infty,2}^{(1)} \lambda^2 + P_{\infty,1}^{(1)} \lambda + P_{\infty,0}^{(1)}$ and $P_2(\lambda) = P_{\infty,4}^{(2)} \lambda^4 + P_{\infty,3}^{(2)} \lambda^3 + P_{\infty,2}^{(2)} \lambda^2 + P_{\infty,1}^{(2)} \lambda + P_{\infty,0}^{(2)}$.
- Quantisation of a degree 3, genus 1 classical spectral curve with a single singularity at infinity: $y^3 (P_{\infty,1}^{(1)}\lambda + P_{\infty,0}^{(1)})y^2 + (P_{\infty,2}^{(2)}\lambda^2 + P_{\infty,1}^{(2)}\lambda + P_{\infty,0}^{(2)})y P_{\infty,3}^{(3)}\lambda^3 P_{\infty,2}^{(3)}\lambda^2 P_{\infty,1}^{(3)}\lambda P_{\infty,0}^{(3)} = 0.$

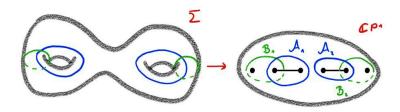
Outline

- Topological recursion and quantum curves
 - Topological recursion and its ramifications
 - Example: Witten's conjecture, Kontsevich's theorem and Airy
 - Quantum curves, history, context and example
- Spectral curves
- Topological recursion and loop equation:
- Perturbative wave function and KZ equations
- Non-perturbative wave functions and Lax system
- Questions and future work
- Bonus: Link with isomonodromic systems

Future work

- Ongoing: More conceptual proof of the QC conjecture?
- Explore the connection with summability, exact WKB, Stokes phenomenon and resurgence. Conjecture: There exist values of ε and \hbar making the transseries involved summable.
- Conjecture: The non-perturbative partition function is a tau function.
- How does the connection built as $d \mathcal{L}(x,\hbar) dx/\hbar$ depend on the choice of cycles $(\mathcal{A}_i,\mathcal{B}_i)$?
- Interesting enumerative geometry in higher genus TR problems?
- Get rid of admissibility conditions?
- Relation to the topological type property approach (can that be proved for higher genus spectral curves?).
- ullet Extend the result to ramified coverings of surfaces other than $\mathbb{C}P^1$.
- Generalization to difference equations? (Subtleties including K_2 condition of Gukov–Sułkowski '12?). Non-algebraic curves, such as $P(e^x,e^y)$ (important for volume conjecture).
- General relation between Virasoro constraints (or even Kontsevich–Soibelman '17, ABCD of Andersen–Borot–Chekhov–Orantin '17) and quantum curves.

Merci beaucoup pour votre attention!



Articles:

- From topological recursion to wave functions and PDEs quantizing hyperelliptic curves, with B. Eynard, arXiv:1911.07795 (2019)
- Quantizing generic algebraic spectral curves via topological recursion, with B. Eynard, O. Marchal, N. Orantin, arXiv:2106.04339 (2021)

Outline

- 1 Topological recursion and quantum curves
 - Topological recursion and its ramifications
 - Example: Witten's conjecture, Kontsevich's theorem and Airy
 - Quantum curves, history, context and examples
- Spectral curves
- Topological recursion and loop equations
- Perturbative wave function and KZ equations
- Non-perturbative wave functions and Lax system
- Questions and future work
- Bonus: Link with isomonodromic systems

Spectral curves from integrable systems

Definition

Let $\hbar \frac{\partial}{\partial x} \Psi(x,\hbar) = \mathcal{L}(x,\hbar) \Psi(x,\hbar)$ be a (2×2) differential system (with $\det \Psi=1$). We define the classical spectral curve associated to it by

$$P(x,y) := \lim_{\hbar \to 0} \det(y \operatorname{Id} - \mathcal{L}(x,\hbar)) = 0,$$

which gives a polynomial equation. For a non-zero genus curve, this must be completed with a choice of symplectic basis of cycles and a bidifferential *B*.

Spectral curves from integrable systems

Definition

Let $\hbar \frac{\partial}{\partial x} \Psi(x,\hbar) = \mathcal{L}(x,\hbar) \Psi(x,\hbar)$ be a (2×2) differential system (with $\det \Psi=1$). We define the classical spectral curve associated to it by

$$P(x,y) := \lim_{\hbar \to 0} \det(y \operatorname{Id} - \mathcal{L}(x,\hbar)) = 0,$$

which gives a polynomial equation. For a non-zero genus curve, this must be completed with a choice of symplectic basis of cycles and a bidifferential B.

Different approach:

- ħ-differential system.
- Define the classical spectral curve associated to it.
- Show that interesting quantities from the point of view of the differential system may be reconstructed from topological recursion applied to this classical spectral curve.
- Proof by showing that the differential system satisfies the topological type property (Bergère–Borot–Eynard '15).

Isomonodromic deformations

We consider isomonodromic deformations of the linear differential equation $\partial_x - \mathcal{L}(x)$, which depend on a number of continuous parameters t_k (times):

$$\begin{cases} \hbar \frac{\partial}{\partial x} \Psi(x, t_k; \hbar) = \mathcal{L}(x, t_k; \hbar) \Psi(x, t_k; \hbar), \\ \hbar \frac{\partial}{\partial t_k} \Psi(x, t_k; \hbar) = \mathcal{R}_k(x, t_k; \hbar) \Psi(x, t_k; \hbar) \end{cases}$$

We call such a (compatible integrable) system an isomonodromic system.

$$\frac{\partial^2}{\partial t_k \partial x} \Psi = \frac{\partial^2}{\partial x \partial t_k} \Psi \Leftrightarrow \hbar \frac{\partial \mathcal{L}}{\partial t_k} - \hbar \frac{\partial \mathcal{R}_k}{\partial x} + [\mathcal{L}, \mathcal{R}_k] = 0 \text{ (zero-curvature equation)}.$$

Isomonodromic deformations

We consider isomonodromic deformations of the linear differential equation $\partial_x - \mathcal{L}(x)$, which depend on a number of continuous parameters t_k (times):

$$\begin{cases} \hbar \frac{\partial}{\partial x} \Psi(x, t_k; \hbar) = \mathcal{L}(x, t_k; \hbar) \Psi(x, t_k; \hbar), \\ \hbar \frac{\partial}{\partial t_k} \Psi(x, t_k; \hbar) = \mathcal{R}_k(x, t_k; \hbar) \Psi(x, t_k; \hbar) \end{cases}$$

We call such a (compatible integrable) system an isomonodromic system.

$$\frac{\partial^2}{\partial t_k \partial x} \Psi = \frac{\partial^2}{\partial x \partial t_k} \Psi \Leftrightarrow \hbar \frac{\partial \mathcal{L}}{\partial t_k} - \hbar \frac{\partial \mathcal{R}_k}{\partial x} + [\mathcal{L}, \mathcal{R}_k] = 0 \text{ (zero-curvature equation)}.$$

Consider the deformed spectral curve

$$P(x,y;\hbar) = \det(y\operatorname{Id} - \mathcal{L}(x,t_k;\hbar)) = P_0(x,y) + \sum_{m\geq 1} \hbar^m P_m(x,y).$$

Classical spectral curve $\rightsquigarrow P_0(x,y)$ (family of curves parametrized by t_k 's).

Isomonodromic deformations

We consider isomonodromic deformations of the linear differential equation $\partial_x - \mathcal{L}(x)$, which depend on a number of continuous parameters t_k (times):

$$\begin{cases} \hbar \frac{\partial}{\partial x} \Psi(x, t_k; \hbar) = \mathcal{L}(x, t_k; \hbar) \Psi(x, t_k; \hbar), \\ \hbar \frac{\partial}{\partial t_k} \Psi(x, t_k; \hbar) = \mathcal{R}_k(x, t_k; \hbar) \Psi(x, t_k; \hbar) \end{cases}$$

We call such a (compatible integrable) system an isomonodromic system.

$$\frac{\partial^2}{\partial t_k \partial x} \Psi = \frac{\partial^2}{\partial x \partial t_k} \Psi \Leftrightarrow \hbar \frac{\partial \mathcal{L}}{\partial t_k} - \hbar \frac{\partial \mathcal{R}_k}{\partial x} + [\mathcal{L}, \mathcal{R}_k] = 0 \text{ (zero-curvature equation)}.$$

Consider the deformed spectral curve

$$P(x, y; \hbar) = \det(y \operatorname{Id} - \mathcal{L}(x, t_k; \hbar)) = P_0(x, y) + \sum_{m \ge 1} \hbar^m P_m(x, y).$$

Classical spectral curve $\leadsto P_0(x,y)$ (family of curves parametrized by t_k 's).

Remark

Painlevé equations \leadsto Isomonodromic deformations. Painlevé property \leadsto Solutions have no movable singularities other than poles. Classification of all second order differential equations with the Painlevé property \leadsto 50 solutions and only 6 which could not be integrated from already known functions.

Painlevé I

In the family of elliptic curves $y^2=x^3+tx+V$, taking $t=-3u_0^2$ and $V=2u_0^3$, amounts to pinching the \mathcal{B} -cycle (first kind). So in this case, we have genus $\hat{g}=0$ and the spectral curve admits a rational parametrization:

$$\begin{cases} \Sigma = \mathbb{C}P^1, & x(z) = z^2 - 2u_0, \ y(z) = z^3 - 3u_0z, \\ ydx = (z^3 - 3u_0z)2zdz, & B(z_1, z_2) = \frac{dz_1dz_2}{(z_1 - z^2)^2}. \end{cases}$$

$$\begin{split} & \text{TR: Witten-Kontsevich intersection numbers} \leadsto \omega_{g,n}(z_1,\dots,z_n) = \\ & \sum_{d_1,\dots,d_n} \frac{6^{2-2g-n} u_0^{5-5g-2n}}{(3g-3+n-\sum_i d_i)!} \left\langle \tau_2^{3g-3+n-\sum_i d_i} \tau_{d_1} \cdots \tau_{d_n} \right\rangle_g \prod_{i=1}^n \frac{u_0^{d_i}(2d_i+1)!! dz_i}{z_i^{2d_i+1}}. \\ & n = 0 \leadsto \mathcal{F}_g = \omega_{g,0} = u_0^{5-5g} \frac{6^{2-2g}}{(3g-3)!} \left\langle \tau_2^{3g-3} \right\rangle_g = (-t/3)^{\frac{5-5g}{2}} \frac{6^{2-2g}}{(3g-3)!} \left\langle \tau_2^{3g-3} \right\rangle_g. \end{split}$$

Painlevé I

In the family of elliptic curves $y^2=x^3+tx+V$, taking $t=-3u_0^2$ and $V=2u_0^3$, amounts to pinching the \mathcal{B} -cycle (first kind). So in this case, we have genus $\hat{g}=0$ and the spectral curve admits a rational parametrization:

$$\begin{cases} \Sigma = \mathbb{C}P^1, & x(z) = z^2 - 2u_0, \ y(z) = z^3 - 3u_0z, \\ ydx = (z^3 - 3u_0z)2zdz, & B(z_1, z_2) = \frac{dz_1dz_2}{(z_1 - z^2)^2}. \end{cases}$$

$$\begin{split} & \text{TR: Witten-Kontsevich intersection numbers} \leadsto \omega_{g,n}(z_1,\dots,z_n) = \\ & \sum_{d_1,\dots,d_n} \frac{6^{2-2g-n} u_0^{5-5g-2n}}{(3g-3+n-\sum_i d_i)!} \left\langle \tau_2^{3g-3+n-\sum_i d_i} \tau_{d_1} \cdots \tau_{d_n} \right\rangle_g \prod_{i=1}^n \frac{u_0^{d_i}(2d_i+1)!! dz_i}{z_i^{2d_i+1}}. \\ & n = 0 \leadsto \mathcal{F}_g = \omega_{g,0} = u_0^{5-5g} \frac{6^{2-2g}}{(3g-3)!} \left\langle \tau_2^{3g-3} \right\rangle_g = (-t/3)^{\frac{5-5g}{2}} \frac{6^{2-2g}}{(3g-3)!} \left\langle \tau_2^{3g-3} \right\rangle_g. \end{split}$$

Then $U(t)=u_0+\frac{\hbar^2}{48t^2}+\sum_{g\geq 2}\hbar^{2g}\frac{\partial^2\mathcal{F}_g}{\partial t^2}$ satisfies the Painlevé I equation $\frac{\hbar^2}{2}\frac{\partial^2}{\partial t^2}U+3U^2=-t$, which is the compatibility equation of the Lax pair

$$\mathcal{L}(x,t;\hbar) \coloneqq \begin{pmatrix} \frac{\hbar}{2}\dot{U} & x-U \\ (x-U)(x+2U) + \frac{\hbar^2}{2}\dot{U} & -\frac{\hbar}{2}\dot{U} \end{pmatrix} \text{ and } \mathcal{R}(x,t;\hbar) \coloneqq \begin{pmatrix} 0 & 1 \\ x+2U & 0 \end{pmatrix}.$$

From the PDE found we can get that $\psi_\pm(x)=e^{\sum_{g,n}\frac{(\pm 1)^n\hbar^{2g-2+n}}{n!}\int\dots\int\omega_{g,n}}$:

$$\left(\hbar \frac{\partial}{\partial x} - \mathcal{L}(x, t; \hbar)\right) \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix} = 0 , \quad \left(\hbar \frac{\partial}{\partial t} - \mathcal{R}(x, t; \hbar)\right) \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix} = 0.$$

(ロト 4回 ト 4 重 ト 4 重 ト) 重) りく(