Gromov–Witten theory of complete intersections

Hülya Argüz

Institute of Science and Technology Austria

25th April, 2022 Institut des Hautes Études Scientifiques

- Gromov–Witten invariants
 - Properties and computational techniques
- Gromov–Witten invariants of complete intersections
- Gromov-Witten classes of complete intersections

An algorithm computing Gromov–Witten invariants of all smooth complete intersections of hypersurfaces in projective space.

A.-Bousseau-Pandharipande-Zvonkine, arxiv:2109.13323.

Gromov-Witten invariants

In the complex projective space \mathbb{P}^2

- How many lines are there passing through two distinct points p₁, p₂?
- How many conics are there passing through five general points p₁,..., p₅?
- How many degree d curves of genus zero are there passing through 3d - 1 general points p₁,..., p_{3d-1}?

Degree	1	2	3	4	5
Number of curves	1	1	12	640	84000

For all degrees these numbers are computed by a recursive formula due to Kontsevich.

Definition

- X: smooth projective variety over C
- $g, n \in \mathbb{Z}_{\geq 0}, \beta \in H_2(X, \mathbb{Z})$
- Insertions: $\alpha_1, \ldots, \alpha_n \in H^*(X, \mathbb{Q})$

Gromov–Witten invariants of X count of genus g curves in X of class β with n marked points passing through the submanifolds realizing $PD(\alpha_i)$.

Curves in X are images of stable maps to X

The following definition is due to Kontsevich (1994):

An *n*-pointed genus g stable map to X of class β is a morphism

$$f:(C,x_1,\ldots,x_n)\longrightarrow X$$
,

where

- C: nodal projective curve of arithmetic genus g.
- x_1, \ldots, x_n : *n* (ordered) smooth marked points on *C*.
- $f_*[C] = \beta \in H_2(X, \mathbb{Z}).$
- (stability) there are finitely automorphisms of (C, x₁,..., x_n) commuting with f.

- *M*_{g,n,β}(X): moduli space of *n*-pointed genus g stable maps to X of class β.
- $\overline{\mathcal{M}}_{g,n,\beta}(X)$ is a proper Deligne-Mumford stack.
- We have evaluation maps

$$ev_i: \overline{\mathcal{M}}_{g,n,\beta}(X) \longrightarrow X$$

 $(f: (C, x_1, \dots, x_n) \to X) \longmapsto f(x_i)$

- There is a natural way to construct a homology class $[\overline{\mathcal{M}}_{g,n,\beta}(X)]^{virt}$, called the virtual fundamental class, which is invariant under deformations of the complex structure.
 - If $\overline{\mathcal{M}}_{g,n,\beta}(X)$ is smooth and of the expected dimension, then $[\overline{\mathcal{M}}_{g,n,\beta}(X)]^{virt}$ agrees with the usual fundamental class.

• Fix
$$g, n \in \mathbb{Z}_{\geq 0}$$
, $\beta \in H_2(X, \mathbb{Z})$, $\alpha_1, \dots, \alpha_n \in H^*(X, \mathbb{Q})$.

Gromov–Witten invariants of X:

$$\deg\left(\prod_{i=1}^{n} \operatorname{ev}_{i}^{*}(\alpha_{i}) \cap [\overline{\mathcal{M}}_{g,n,\beta}(X)]^{\operatorname{virt}}\right) \in \mathbb{Q}.$$

 (virtual) counts of genus g curves in X of class β with n marked points passing through PD(α_i).

Deformation invariance under the complex structure

Let E be an elliptic curve in $\mathbb{P}^2_{[X_0:X_1:X_2]}$ given by the equation

- Changing the coefficients $c_1, \ldots c_{10}$ changes the complex structure.
- As long as E remains smooth we want all of the Gromov–Witten invariants to be invariant, but we can not ensure this if we naively count curves.
- Virtual counts of curves are deformation invariant by construction.

Problem

Given a smooth projective variety X, "compute" all Gromov–Witten invariants of X.

Known cases:

- X: point (Kontsevich, Witten's conjecture, 1992)
- X: projective space, or more generally an homogeneous variety (Graber–Pandharipande, 1999)
- X: curve (Okounkov–Pandharipande, 2003)
- X: quintic 3-fold hypersurface in \mathbb{P}^4 (Maulik-Pandharipande, 2006)
- X: complete intersections in projective space (A.-Bousseau-Pandharipande-Zvonkine, 2021).

How do we compute Gromov-Witten Invariants?

- So far we know two major techniques to compute Gromov–Witten invariants:
 - Localization (Graber–Pandharipande)
 - Degeneration (Jun Li)

Computing Gromov–Witten invariants via localization

- If X has a torus action, then the Gromov-Witten invariants GW(X) of X can be computed from the Gromov-Witten invariants of the fixed locus.
 - *GW*(ℙⁿ) can be computed from the Gromov–Witten invariants of a point.
- Each time we use localization we need additional *psi* class insertions.
- L_i : line bundle on $\overline{\mathcal{M}}_{g,n,\beta}(X)$, whose fiber over $(f: (C, x_1 \dots, x_n) \to X)$ is the cotangent line of C at the *i*-th marked point,

$$\psi_i := c_1(L_i) \in H^2(\overline{\mathcal{M}}_{g,n,\beta}(X),\mathbb{Q}).$$

- $g, n, k_1, \ldots, k_n \in \mathbb{Z}_{\geq 0}, \beta \in H_2(X, \mathbb{Z}), \alpha_1, \ldots, \alpha_n \in H^*(X, \mathbb{Q})$
- Gromov–Witten invariants of X are:

$$\mathsf{deg}\left(\prod_{i=1}^{n}\psi_{i}^{k_{i}}\,\mathsf{ev}_{i}^{*}(\alpha_{i})\cap[\overline{\mathcal{M}}_{g,n,\beta}(X)]^{\mathrm{virt}}\right)\in\mathbb{Q}$$

Computing Gromov–Witten invariants via degeneration

- Jun Li's degeneration formula expresses *GW*(*X*) in terms of **relative Gromov–Witten invariants** of the components of the central fiber of a degeneration of *X*.
 - Relative Gromov–Witten invariants are counts of complex curves with additional tangency conditions with respect to a divisor D.
 - This degeneration formula works under restrictive assumptions on the insertions.

Example: vanishing cycles

- Denote by W the total space of a degeneration of X.
- Jun Li's degeneration formula applies if the cohomology insertions α_i are in the image of the restriction map

$$H^{\star}(W)
ightarrow H^{\star}(X)$$

- Not surjective in general!
 - Dually, $H_{\star}(X) \rightarrow H_{\star}(W)$ not injective (there exist vanishing cycles)

Example

Degeneration of a smooth elliptic curve E to a nodal elliptic curve E_0 .

- We want to use the degeneration formula to compute GW(X) when X is a complete intersection, with arbitrary insertions.
 - Will explain how go around the issue with vanishing cycles.

Gromov-Witten invariants of complete intersections

• X: m-dim'l smooth complete intersection of r hypersurfaces in \mathbb{P}^{m+r} ,

$$f_1=\cdots=f_r=0,$$

of degrees (d_1, \ldots, d_r) .

• Study Gromov–Witten invariants of X using degeneration.

- $d_r = d_{r,1} + d_{r,2}$, pick general $f_{r,1}$ and $f_{r,2}$ of degree $d_{r,1}$ and $d_{r,2}$.
- $f_1 = \cdots = tf_r + f_{r,1}f_{r,2} = 0$: one-parameter family: $W \to \mathbb{A}^1$.

- **GOAL**: $GW(X) \leftarrow GW(X_1), GW(X_2), GW(D), GW(Z)$. To do this, we need to
 - Overcome the restrictive assumptions of Jun Li's degeneration formula
 - Express relative invariants GW(X₁, D), GW(X₂, D) in terms of absolute invariants (Maulik-Pandharipande).

Vanishing cycles / primitive cohomology

- X: complete intersection of dimension m.
- $H^*(X) = H^{simple}(X) \oplus H^{prim}(X)$
- $H^{simple}(X) = \langle 1, H, H^2, \dots, H^m \rangle$
- Lefschetz hyperplane theorem $\implies H^{prim}(X) \subset H^m(X)$
 - H^{prim} contains all vanishing cycles.
- We want to compute Gromov–Witten invariants with also primitive insertions.
 - Key idea: trade primitive insertions against nodes.
 - Compute nodal Gromov–Witten invariants with simple insertions.

All GW(X) from simple and nodal simple GW(X)

- X: elliptic curve E. Fix g = 2 and n = 2.
- There are 4 Gromov–Witten invariants to compute with primitive insertions: (a, a), (b, b), (a, b), (b, a) where a, b generate H¹(E).

• Hence, we obtain $2\langle a,b
angle=sNGW(X)-\langle p,1
angle-\langle 1,p
angle$

Monodromy invariance of GW(X)

- We consider a family of X given by varying the coefficients of $f'_i s$.
 - Deformation invariance \implies monodromy invariance of GW(X)

- Around γ_1 : $\langle a, b \rangle = \langle a + b, b \rangle = \langle a, b \rangle + \langle b, b \rangle \implies \langle b, b \rangle = 0$
- Around γ_2 : $\langle a, b + a \rangle = \langle a, b + a \rangle = \langle a, b \rangle + \langle a, a \rangle \implies \langle a, a \rangle = 0$
- Around γ_3 : $\langle a, b \rangle = \langle b, -a \rangle = \langle b, a \rangle$

Monodromy action

- X: complete intersection, $f_1 = \ldots = f_r = 0$
- Monodromy action on $H^*(X)$:
 - $U = \{ \text{coefficients of } f_i \},$
 - $U_0 = \{X \text{ singular}\} \subset U \text{ closed subset},$
 - $\pi_1(U \setminus U_0, p)$ acts on $H^*(X)$

Theorem (Deligne)

Let G: Zariski closure of the image of $\pi_1(U \setminus U_0, p)$ in $GL(H^{prim})$. Then, G = O(k) if m even, G = Sp(k) if m odd $(k = \dim H^{prim})$, except if:

- X cubic surface, $G = W(E_6)$ (finite group),
- or X even dimensional complete intersection of two quadrics, $G = W(D_{m+3})$ (also finite group).

Theorem (A.-Bousseau-Pandharipande-Zvonkine, 2021)

Let X be a complete intersection in projective space. Then, the Gromov–Witten invariants of X can be effectively reconstructed from the nodal Gromov–Witten invariants of X with only insertions of simple cohomology classes.

- In the case monodromy is finite: local monodromy theorem for semi-stable degenerations ensures it is identity. In this case, there are no vanishing cycles, and we can apply the classical degeneration formula.
- In the case monodromy is O(k) or Sp(k) the proof uses invariance theory of symplectic and orthogonal groups.

Trading primitive insertions against nodes: proof

- $V := H(X)^{prim}$
- We will study the Gromov–Witten invariants of X with 2n primitive insertions. The data of these invariants is given by a multi-linear form

$$GW_{2n} \colon V^{\otimes 2n} \longrightarrow \mathbb{Q}$$

$$\alpha_1 \otimes \cdots \otimes \alpha_{2n} \longmapsto \deg(\prod_{i=1}^{2n} \operatorname{ev}_i^*(\alpha_i) \cap [\overline{\mathcal{M}}_{g,2n,\beta}(X)]^{\operatorname{virt}})$$

- Monodromy invariance \implies that this multi-linear form is invariant under the action of G = O(k) or Sp(k) on V.
 - ► If we would have an odd number of insertions, since -Id ∈ G = O, Sp, this multi-linear form would be zero, so the Gromov-Witten invariants would be zero.
- Goal: Describe GW_{2n}.
 - ▶ To do this we will study "*n*-pairings" of 2*n*.

Defining multi-linear forms using *n*-pairings of 2*n* objects

• An *n*-pairing of 2*n* is given by an arc diagram

• There are $(2n-1)!! = 1 \cdot 3 \cdots (2n-3) \cdot (2n-1)$ pairings of 2n.

• For each *n*-pairing P_i , there is a natural multilinear form $\alpha_{P_i} : V^{\otimes 2n} \to \mathbb{Q}$ which is O(k) or Sp(k) invariant.

Example

For the pairing P_1 above

$$\alpha_{P_1} \colon V^{\otimes 4} \longrightarrow \mathbb{Q}$$
$$v_1 \otimes \cdots \otimes v_4 \longmapsto (v_1, v_2)(v_3, v_4)$$

where (-, -) is the intersection form on V, which is invariant under O(k) or Sp(2k).

Creating nodes using data of *n*-pairings of 2*n* objects

• Fundamental theorem of invariance theory: the forms α_{P_i} generate the space of invariant multilinear forms.

$$GW_{2n} = \sum_{i=1}^{(2n-1)!!} c_{P_i} \alpha_{P_i}$$

- We need to determine the coefficients c_{Pi}.
- Observation: any *n*-pairing P_i of 2n also defines a way to create n nodes out of 2n marked points.
- For each pairing, using the splitting formula, we obtain an equation involving primitive Gromov–Witten invariants.
 - ▶ We obtain a system of (2n − 1)!! equations with unknowns c_{Pi} (we have as many equations as unknowns, which are indexed by pairings).

Trading primitive insertions against nodes: proof

 The matrix of the system of equations obtained from the splitting formula is a (2n − 1)!! × (2n − 1)!! matrix with *ij*'th entry

$$M_{ij} = x^{L(P_i, P_j)}$$

- $L(P_i, P_i)$: loop number of the *n*-pairings P_i and P_i .
- $x = \dim V$ when *m* even, $x = -\dim V$ when *m* odd.

• We show that *M* has exactly the correct rank, so we can solve for all c_{P_i} 's. Hence, the result follows.

Computing simple nodal Gromov–Witten invariants?

Theorem (A.-Bousseau-Pandharipande-Zvonkine, 2021)

• There is a nodal degeneration formula:

 $sNGW(X) \leftarrow NGW(X_1, D), NGW(\widetilde{X}_2, D)$

where $NGW(X_1, D), NGW(\widetilde{X}_2, D)$ are "nodal relative invariants". ¹

¹This requires "carefully" defining nodal relative Gromov–Witten invariants!

How to compute simple nodal Gromov–Witten invariants sNG(X)?

Theorem (A.-Bousseau-Pandharipande-Zvonkine, 2021)

• There is a splitting formula for nodal relative invariants

 $NGW(X_1, D), NGW(\widetilde{X}_2, D) \leftarrow GW(X_1, D), GW(\widetilde{X}_2, D)$

- This requires describing the "virtual fundamental class" for the moduli space of nodal relative stable maps.
 - ► Uses ideas coming from log geometry (requires working with an Artin stack A¹/C* associated to X, and studying the moduli space of stable maps to A¹/C* which is equi-dimensional and admits a usual fundamental class)!

Step by step

Goal:

$GW(X) \leftarrow GW(X_1), GW(X_2), GW(D), GW(Z),$

where X_1 , X_2 , D, Z are complete intersections of either smaller degree or smaller dimension.

• Step 1: trade primitive insertions for nodes:

 $GW(X) \leftarrow sNGW(X)$

• Step 2: apply the nodal degeneration formula to compute simple nodal Gromov–Witten invariants:

 $sNGW(X) \leftarrow NGW(X_1, D), NGW(\widetilde{X}_2, D)$

 Step 3: apply the splitting formula to reduce nodal relative Gromov–Witten invariants to relative Gromov–Witten invariants NGX(X₁, D), NGW(X̃₂, D) ← GW(X₁, D), GW(X̃₂, D)

• Step 4: apply previous results of Maulik-Pandharipande $GW(X_1, D), GW(\widetilde{X}_2, D) \leftarrow GW(X_1), GW(X_2), GW(D), GW(Z)$

The main algorithm

Let X be an *m*-dimensional smooth complete intersection in \mathbb{P}^{m+r} of degrees (d_1, \ldots, d_r) . Then, for every decomposition

 $d_r = d_{r,1} + d_{r,2}$ with $d_{r,1}, d_{r,2} \in \mathbb{Z}_{\geq 1}$,

then GW(X) can be effectively reconstructed from:

- (i) GW(X₁), where X₁ ⊂ P^{m+r} is an m-dimensional smooth complete intersection X₁ ⊂ P^{m+r} of degrees (d₁,..., d_{r-1}, d_{r,1}).
- (ii) $GW(X_2)$, where $X_2 \subset \mathbb{P}^{m+r}$ is an *m*-dimensional smooth complete intersection of degrees $(d_1, \ldots, d_{r-1}, d_{r,2})$.
- (iii) GW(D), where $D \subset \mathbb{P}^{m+r}$ is an (m-1)-dimensional smooth complete intersection of degrees $(d_1, \ldots, d_{r-1}, d_{r,1}, d_{r,2})$.

(iv) GW(Z), where $Z \subset \mathbb{P}^{m+r}$ is an (m-2)-dimensional smooth complete intersection of degrees $(d_1, \ldots, d_{r-1}, d_r, d_{r,1}, d_{r,2})$.

Upgrading to Gromov–Witten classes

- Forgetful morphism $\pi \colon \overline{\mathcal{M}}_{g,n,\beta}(X) \to \overline{\mathcal{M}}_{g,n}$.
- Gromov–Witten classes

$$\pi_*\left(\prod_{i=1}^n \mathsf{ev}_i^*(\alpha_i) \cap [\overline{\mathcal{M}}_{g,n,\beta}(X)]^{\mathrm{virt}}\right) \in H^*(\overline{\mathcal{M}}_{g,n},\mathbb{Q}).$$

Conjecture

For every smooth projective variety X, the Gromov–Witten classes of X are tautological.

Tautological ring $RH^*(\overline{\mathcal{M}}_{g,n}) \subset H^*(\overline{\mathcal{M}}_{g,n}, \mathbb{Q})$. Set of tautological rings is the smallest system of subrings containing 1 and preserved by pullback-pushforward along the natural maps $\overline{\mathcal{M}}_{g,n+1} \to \overline{\mathcal{M}}_{g,n}$, $\overline{\mathcal{M}}_{g-1,n+2} \to \overline{\mathcal{M}}_{g,n}, \overline{\mathcal{M}}_{g_1,n_1+1} \times \overline{\mathcal{M}}_{g_2,n_2+1} \to \overline{\mathcal{M}}_{g_1+g_2,n_1+n_2}$.

¹Kontsevich–Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, **Communications in Mathematical Physics**, 1994

Known cases when Gromov–Witten classes are tautological:

- X a projective space, or more generally an homogeneous variety (Graber-Pandharipande, 1999)
- X a curve (Janda, 2013)

Theorem (A.-Bousseau-Pandharipande-Zvonkine, 2021)

All Gromov–Witten classes of all complete intersections in projective space are tautological.

- In progress (ABPZ): Gromov–Witten theory of complete intersections in some toric varieties and homogeneous spaces.
- Long term goal (ABPZ): Virasoro conjecture for complete intersections.

Thank you for your attention!