Gromov-Witten theory of complete intersections

Hülya Argüz
Institute of Science and Technology Austria

25th April, 2022
Institut des Hautes Études Scientifiques

- Gromov-Witten invariants
- Properties and computational techniques
- Gromov-Witten invariants of complete intersections
- Gromov-Witten classes of complete intersections

An algorithm computing Gromov-Witten invariants of all smooth complete intersections of hypersurfaces in projective space.
A.-Bousseau-Pandharipande-Zvonkine, arxiv:2109.13323.

Gromov-Witten invariants

In the complex projective space \mathbb{P}^{2}

- How many lines are there passing through two distinct points p_{1}, p_{2} ?
- How many conics are there passing through five general points p_{1}, \ldots, p_{5} ?
- How many degree d curves of genus zero are there passing through $3 d-1$ general points $p_{1}, \ldots, p_{3 d-1}$?

Degree	1	2	3	4	5
Number of curves	1	1	12	640	84000

For all degrees these numbers are computed by a recursive formula due to Kontsevich.

Gromov-Witten Invariants

Correct conditions
Finitely many of curves
Gromov-Witten Invariant

Definition

- X : smooth projective variety over \mathbb{C}
- $g, n \in \mathbb{Z}_{\geq 0}, \beta \in H_{2}(X, \mathbb{Z})$
- Insertions: $\alpha_{1}, \ldots, \alpha_{n} \in H^{*}(X, \mathbb{Q})$

Gromov-Witten invariants of X count of genus g curves in X of class β with n marked points passing through the submanifolds realizing $\operatorname{PD}\left(\alpha_{i}\right)$.

Curves in X are images of stable maps to

The following definition is due to Kontsevich (1994):

An n-pointed genus g stable map to X of class β is a morphism

$$
f:\left(C, x_{1}, \ldots, x_{n}\right) \longrightarrow X,
$$

where

- C: nodal projective curve of arithmetic genus g.
- $x_{1}, \ldots, x_{n}: n$ (ordered) smooth marked points on C.
- $f_{*}[C]=\beta \in H_{2}(X, \mathbb{Z})$.
- (stability) there are finitely automorphisms of (C, x_{1}, \ldots, x_{n}) commuting with f.

Gromov-Witten Invariants

- $\overline{\mathcal{M}}_{g, n, \beta}(X)$: moduli space of n-pointed genus g stable maps to X of class β.
- $\overline{\mathcal{M}}_{g, n, \beta}(X)$ is a proper Deligne-Mumford stack.
- We have evaluation maps

$$
\begin{aligned}
e v_{i}: \overline{\mathcal{M}}_{g, n, \beta}(X) & \longrightarrow X \\
\left(f:\left(C, x_{1}, \ldots, x_{n}\right)\right. & \longrightarrow X)
\end{aligned}>f\left(x_{i}\right)
$$

- There is a natural way to construct a homology class $\left[\overline{\mathcal{M}}_{g, n, \beta}(X)\right]^{\text {virt }}$, called the virtual fundamental class, which is invariant under deformations of the complex structure.
- If $\overline{\mathcal{M}}_{g, n, \beta}(X)$ is smooth and of the expected dimension, then $\left[\overline{\mathcal{M}}_{g, n, \beta}(X)\right]^{\text {virt }}$ agrees with the usual fundamental class.
- Fix $g, n \in \mathbb{Z}_{\geq 0}, \quad \beta \in H_{2}(X, \mathbb{Z}), \quad \alpha_{1}, \ldots, \alpha_{n} \in H^{\star}(X, \mathbb{Q})$.

Gromov-Witten invariants of X :

$$
\operatorname{deg}\left(\prod_{i=1}^{n} \operatorname{ev}_{i}^{*}\left(\alpha_{i}\right) \cap\left[\overline{\mathcal{M}}_{g, n, \beta}(X)\right]^{\mathrm{virt}}\right) \in \mathbb{Q} .
$$

- (virtual) counts of genus g curves in X of class β with n marked points passing through $\mathrm{PD}\left(\alpha_{i}\right)$.

Deformation invariance under the complex structure

Let E be an elliptic curve in $\mathbb{P}_{\left[X_{0}: X_{1}: X_{2}\right]}^{2}$ given by the equation

$$
c_{1} X_{0}^{3}+c_{2} X_{1}^{3}+c_{3} X_{2}^{3}+c_{4} X_{0}^{2} X_{1}+c_{5} X_{0} X_{1}^{2}+c_{6} X_{1}^{2} X_{2}+c_{7} X_{1} X_{2}^{2}+c_{8} X_{2}^{2} X_{0}+c_{9} X_{2} X_{0}^{2}+c_{10} X_{0} X_{1} X_{2}
$$

- Changing the coefficients $c_{1}, \ldots c_{10}$ changes the complex structure.
- As long as E remains smooth we want all of the Gromov-Witten invariants to be invariant, but we can not ensure this if we naively count curves.
- Virtual counts of curves are
 deformation invariant by construction.

Gromov-Witten invariants

Problem

Given a smooth projective variety X, "compute" all Gromov-Witten invariants of X.

Known cases:

- X : point (Kontsevich, Witten's conjecture, 1992)
- X : projective space, or more generally an homogeneous variety (Graber-Pandharipande, 1999)
- X: curve (Okounkov-Pandharipande, 2003)
- X : quintic 3-fold hypersurface in \mathbb{P}^{4} (Maulik-Pandharipande, 2006)
- X : complete intersections in projective space (A.-Bousseau-Pandharipande-Zvonkine, 2021).
- How do we compute Gromov-Witten invariants ?
- So far we know two major techniques to compute Gromov-Witten invariants:
- Localization (Graber-Pandharipande)
- Degeneration (Jun Li)

Computing Gromov-Witten invariants via localization

- If X has a torus action, then the Gromov-Witten invariants $G W(X)$ of X can be computed from the Gromov-Witten invariants of the fixed locus.
- $G W\left(\mathbb{P}^{n}\right)$ can be computed from the Gromov-Witten invariants of a point.
- Each time we use localization we need additional psi class insertions.
- L_{i} : line bundle on $\overline{\mathcal{M}}_{g, n, \beta}(X)$, whose fiber over $\left(f:\left(C, x_{1} \ldots, x_{n}\right) \rightarrow X\right)$ is the cotangent line of C at the i-th marked point,

$$
\psi_{i}:=c_{1}\left(L_{i}\right) \in H^{2}\left(\overline{\mathcal{M}}_{g, n, \beta}(X), \mathbb{Q}\right) .
$$

- $g, n, k_{1}, \ldots, k_{n} \in \mathbb{Z}_{\geq 0}, \beta \in H_{2}(X, \mathbb{Z}), \alpha_{1}, \ldots, \alpha_{n} \in H^{*}(X, \mathbb{Q})$
- Gromov-Witten invariants of X are:

$$
\operatorname{deg}\left(\prod_{i=1}^{n} \psi_{i}^{k_{i}} \mathrm{ev}_{i}^{*}\left(\alpha_{i}\right) \cap\left[\overline{\mathcal{M}}_{g, n, \beta}(X)\right]^{\mathrm{virt}}\right) \in \mathbb{Q}
$$

Computing Gromov-Witten invariants via degeneration

- Jun Li's degeneration formula expresses $G W(X)$ in terms of relative Gromov-Witten invariants of the components of the central fiber of a degeneration of X.
- Relative Gromov-Witten invariants are counts of complex curves with additional tangency conditions with respect to a divisor D.
- This degeneration formula works under restrictive assumptions on the insertions.

Example: vanishing cycles

- Denote by W the total space of a degeneration of X.
- Jun Li's degeneration formula applies if the cohomology insertions α_{i} are in the image of the restriction map

$$
H^{\star}(W) \rightarrow H^{\star}(X)
$$

- Not surjective in general!
- Dually, $H_{\star}(X) \rightarrow H_{\star}(W)$ not injective (there exist vanishing cycles)

Example

Degeneration of a smooth elliptic curve E to a nodal elliptic curve E_{0}.

- We want to use the degeneration formula to compute $G W(X)$ when X is a complete intersection, with arbitrary insertions.
- Will explain how go around the issue with vanishing cycles.

Gromov-Witten invariants of complete intersections

- X: m-dim'l smooth complete intersection of r hypersurfaces in \mathbb{P}^{m+r},

$$
f_{1}=\cdots=f_{r}=0,
$$

of degrees $\left(d_{1}, \ldots, d_{r}\right)$.

- Study Gromov-Witten invariants of X using degeneration.
- $d_{r}=d_{r, 1}+d_{r, 2}$, pick general $f_{r, 1}$ and $f_{r, 2}$ of degree $d_{r, 1}$ and $d_{r, 2}$.
- $f_{1}=\cdots=t f_{r}+f_{r, 1} f_{r, 2}=0$: one-parameter family: $W \rightarrow \mathbb{A}^{1}$.

- GOAL: $G W(X) \leftarrow G W\left(X_{1}\right), G W\left(X_{2}\right), G W(D), G W(Z)$. To do this, we need to
- Overcome the restrictive assumptions of Jun Li's degeneration formula
- Express relative invariants $G W\left(X_{1}, D\right), G W\left(X_{2}, D\right)$ in terms of absolute invariants (Maulik-Pandharipande).

Vanishing cycles / primitive cohomology

- X : complete intersection of dimension m.
- $H^{\star}(X)=H^{\text {simple }}(X) \oplus H^{\text {prim }}(X)$
- $H^{\text {simple }}(X)=\left\langle 1, H, H^{2}, \ldots, H^{m}\right\rangle$
- Lefschetz hyperplane theorem $\Longrightarrow H^{\text {prim }}(X) \subset H^{m}(X)$
- $H^{\text {prim }}$ contains all vanishing cycles.
- We want to compute Gromov-Witten invariants with also primitive insertions.
- Key idea: trade primitive insertions against nodes.
- Compute nodal Gromov-Witten invariants with simple insertions.

All $G W(X)$ from simple and nodal simple $G W(X)$

- X : elliptic curve E. Fix $g=2$ and $n=2$.
- There are 4 Gromov-Witten invariants to compute with primitive insertions: $\langle a, a\rangle,\langle b, b\rangle,\langle a, b\rangle,\langle b, a\rangle$ where a, b generate $H^{1}(E)$.

Simple nodal $s N G W(X) \xrightarrow[\text { splitting formula }]{ }$

$$
\begin{aligned}
& \text { Insertion of the diagonal class } \Delta \subset E \times E \\
& \langle p, 1\rangle+\langle 1, p\rangle+\langle a, b\rangle-\langle b, a\rangle \\
& \langle a, a\rangle=? \quad\langle b, b\rangle=? \quad\langle a, b\rangle=? \quad\langle b, a\rangle=\text { ? }
\end{aligned}
$$

Deformation invariance

$$
\begin{aligned}
& \langle a, a\rangle=0 \\
& \langle b, b\rangle=0
\end{aligned}
$$

$$
\langle a, b\rangle=-\langle b, a\rangle
$$

- Hence, we obtain $2\langle a, b\rangle=s N G W(X)-\langle p, 1\rangle-\langle 1, p\rangle$

Monodromy invariance of GW (X)

- We consider a family of X given by varying the coefficients of $f_{i}^{\prime} s$.
- Deformation invariance \Longrightarrow monodromy invariance of $G W(X)$

- Around $\gamma_{1}:\langle a, b\rangle=\langle a+b, b\rangle=\langle a, b\rangle+\langle b, b\rangle \Longrightarrow\langle b, b\rangle=0$
- Around $\gamma_{2}:\langle a, b+a\rangle=\langle a, b+a\rangle=\langle a, b\rangle+\langle a, a\rangle \Longrightarrow\langle a, a\rangle=0$
- Around $\gamma_{3}:\langle a, b\rangle=\langle b,-a\rangle=-\langle b, a\rangle$

Monodromy action

- X : complete intersection, $f_{1}=\ldots=f_{r}=0$
- Monodromy action on $H^{\star}(X)$:
- $U=\left\{\right.$ coefficients of $\left.f_{i}\right\}$,
- $U_{0}=\{X$ singular $\} \subset U$ closed subset,
- $\pi_{1}\left(U \backslash U_{0}, p\right)$ acts on $H^{\star}(X)$

Theorem (Deligne)

Let G : Zariski closure of the image of $\pi_{1}\left(U \backslash U_{0}, p\right)$ in $G L\left(H^{\text {prim }}\right)$. Then, $G=O(k)$ if m even, $G=S p(k)$ if m odd $\left(k=\operatorname{dim} H^{\text {prim }}\right)$, except if:

- X cubic surface, $G=W\left(E_{6}\right)$ (finite group),
- or X even dimensional complete intersection of two quadrics, $G=W\left(D_{m+3}\right)$ (also finite group).

Main idea: trading primitive insertions against nodes

Theorem (A.-Bousseau-Pandharipande-Zvonkine, 2021)

Let X be a complete intersection in projective space. Then, the Gromov-Witten invariants of X can be effectively reconstructed from the nodal Gromov-Witten invariants of X with only insertions of simple cohomology classes.

- In the case monodromy is finite: local monodromy theorem for semi-stable degenerations ensures it is identity. In this case, there are no vanishing cycles, and we can apply the classical degeneration formula.
- In the case monodromy is $O(k)$ or $S p(k)$ the proof uses invariance theory of symplectic and orthogonal groups.

Trading primitive insertions against nodes: proof

- $V:=H(X)^{\text {prim }}$
- We will study the Gromov-Witten invariants of X with $2 n$ primitive insertions. The data of these invariants is given by a multi-linear form

$$
\begin{aligned}
& G W_{2 n}: V^{\otimes 2 n} \longrightarrow \mathbb{Q} \\
& \alpha_{1} \otimes \cdots \otimes \alpha_{2 n} \longmapsto \operatorname{deg}\left(\prod_{i=1}^{2 n} \operatorname{ev}_{i}^{*}\left(\alpha_{i}\right) \cap\left[\overline{\mathcal{M}}_{g, 2 n, \beta}(X)\right]^{\mathrm{virt}}\right)
\end{aligned}
$$

- Monodromy invariance \Longrightarrow that this multi-linear form is invariant under the action of $G=O(k)$ or $S p(k)$ on V.
- If we would have an odd number of insertions, since $-I d \in G=O, S p$, this multi-linear form would be zero, so the Gromov-Witten invariants would be zero.
- Goal: Describe GW2n.
- To do this we will study " n-pairings" of $2 n$.

Defining multi-linear forms using n-pairings of $2 n$ objects

- An n-pairing of $2 n$ is given by an arc diagram

- There are $(2 n-1)!!=1 \cdot 3 \cdots(2 n-3) \cdot(2 n-1)$ pairings of $2 n$.
- For each n-pairing P_{i}, there is a natural multilinear form $\alpha_{P_{i}}: V^{\otimes 2 n} \rightarrow \mathbb{Q}$ which is $O(k)$ or $\operatorname{Sp}(k)$ invariant.

Example

For the pairing P_{1} above

$$
\begin{aligned}
\alpha_{P_{1}}: V^{\otimes 4} & \longrightarrow \mathbb{Q} \\
v_{1} \otimes \cdots \otimes v_{4} & \longmapsto\left(v_{1}, v_{2}\right)\left(v_{3}, v_{4}\right)
\end{aligned}
$$

where $(-,-)$ is the intersection form on V, which is invariant under $O(k)$ or $S p(2 k)$.

Creating nodes using data of n-pairings of $2 n$ objects

- Fundamental theorem of invariance theory: the forms $\alpha_{P_{i}}$ generate the space of invariant multilinear forms.

$$
G W_{2 n}=\sum_{i=1}^{(2 n-1)!!} c_{P_{i}} \alpha_{P_{i}}
$$

- We need to determine the coefficients $c_{P_{i}}$.
- Observation: any n-pairing P_{i} of $2 n$ also defines a way to create n nodes out of $2 n$ marked points.
- For each pairing, using the splitting formula, we obtain an equation involving primitive Gromov-Witten invariants.
- We obtain a system of $(2 n-1)$!! equations with unknowns $c_{P_{i}}$ (we have as many equations as unknowns, which are indexed by pairings).

Trading primitive insertions against nodes: proof

- The matrix of the system of equations obtained from the splitting formula is a $(2 n-1)!!\times(2 n-1)!$! matrix with $i j$ 'th entry

$$
M_{i j}=x^{L\left(P_{i}, P_{j}\right)}
$$

- $L\left(P_{i}, P_{j}\right)$: loop number of the n-pairings P_{i} and P_{j}.
- $x=\operatorname{dim} V$ when m even, $x=-\operatorname{dim} V$ when m odd.

Example

- We show that M has exactly the correct rank, so we can solve for all $c_{P_{i}}$'s. Hence, the result follows.

Computing simple nodal Gromov-Witten invariants?

Theorem (A.-Bousseau-Pandharipande-Zvonkine, 2021)

- There is a nodal degeneration formula:

$$
\operatorname{sNGW}(X) \leftarrow N G W\left(X_{1}, D\right), \operatorname{NGW}\left(\widetilde{X}_{2}, D\right)
$$

where $\operatorname{NGW}\left(X_{1}, D\right), \operatorname{NGW}\left(\widetilde{X}_{2}, D\right)$ are "nodal relative invariants". ${ }^{1}$

\mathbb{A}^{1}
0
${ }^{1}$ This requires "carefully" defining nodal relative Gromov-Witten invariants!

How to compute simple nodal Gromov-Witten invariants sNG(X)?

Theorem (A.-Bousseau-Pandharipande-Zvonkine, 2021)

- There is a splitting formula for nodal relative invariants

$$
N G W\left(X_{1}, D\right), \operatorname{NGW}\left(\widetilde{X}_{2}, D\right) \leftarrow G W\left(X_{1}, D\right), G W\left(\widetilde{X}_{2}, D\right)
$$

- This requires describing the "virtual fundamental class" for the moduli space of nodal relative stable maps.
- Uses ideas coming from log geometry (requires working with an Artin stack $\mathbb{A}^{1} / \mathbb{C}^{*}$ associated to X, and studying the moduli space of stable maps to $\mathbb{A}^{1} / \mathbb{C}^{*}$ which is equi-dimensional and admits a usual fundamental class)!

Step by step

- Goal:

$$
G W(X) \leftarrow G W\left(X_{1}\right), G W\left(X_{2}\right), G W(D), G W(Z),
$$

where X_{1}, X_{2}, D, Z are complete intersections of either smaller degree or smaller dimension.

- Step 1: trade primitive insertions for nodes:

$$
G W(X) \leftarrow s N G W(X)
$$

- Step 2: apply the nodal degeneration formula to compute simple nodal Gromov-Witten invariants:

$$
\operatorname{sNGW}(X) \leftarrow N G W\left(X_{1}, D\right), \operatorname{NGW}\left(\widetilde{X}_{2}, D\right)
$$

- Step 3: apply the splitting formula to reduce nodal relative Gromov-Witten invariants to relative Gromov-Witten invariants

$$
\operatorname{NGX}\left(X_{1}, D\right), \operatorname{NGW}\left(\widetilde{X}_{2}, D\right) \leftarrow G W\left(X_{1}, D\right), G W\left(\widetilde{X}_{2}, D\right)
$$

- Step 4: apply previous results of Maulik-Pandharipande $G W\left(X_{1}, D\right), G W\left(\widetilde{X}_{2}, D\right) \leftarrow G W\left(X_{1}\right), G W\left(X_{2}\right), G W(D), G W(Z)$

The main algorithm

Let X be an m-dimensional smooth complete intersection in \mathbb{P}^{m+r} of degrees $\left(d_{1}, \ldots, d_{r}\right)$. Then, for every decomposition

$$
d_{r}=d_{r, 1}+d_{r, 2} \quad \text { with } \quad d_{r, 1}, d_{r, 2} \in \mathbb{Z}_{\geq 1}
$$

then $G W(X)$ can be effectively reconstructed from:
(i) $G W\left(X_{1}\right)$, where $X_{1} \subset \mathbb{P}^{m+r}$ is an m-dimensional smooth complete intersection $X_{1} \subset \mathbb{P}^{m+r}$ of degrees $\left(d_{1}, \ldots, d_{r-1}, d_{r, 1}\right)$.
(ii) $G W\left(X_{2}\right)$, where $X_{2} \subset \mathbb{P}^{m+r}$ is an m-dimensional smooth complete intersection of degrees $\left(d_{1}, \ldots, d_{r-1}, d_{r, 2}\right)$.
(iii) $G W(D)$, where $D \subset \mathbb{P}^{m+r}$ is an ($m-1$)-dimensional smooth complete intersection of degrees $\left(d_{1}, \ldots, d_{r-1}, d_{r, 1}, d_{r, 2}\right)$.
(iv) $G W(Z)$, where $Z \subset \mathbb{P}^{m+r}$ is an $(m-2)$-dimensional smooth complete intersection of degrees $\left(d_{1}, \ldots, d_{r-1}, d_{r}, d_{r, 1}, d_{r, 2}\right)$.

Upgrading to Gromov-Witten classes

- Forgetful morphism $\pi: \overline{\mathcal{M}}_{g, n, \beta}(X) \rightarrow \overline{\mathcal{M}}_{g, n}$.
- Gromov-Witten classes

$$
\pi_{*}\left(\prod_{i=1}^{n} \mathrm{ev}_{i}^{*}\left(\alpha_{i}\right) \cap\left[\overline{\mathcal{M}}_{g, n, \beta}(X)\right]^{\mathrm{virt}}\right) \in H^{\star}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right) .
$$

Conjecture

For every smooth projective variety X, the Gromov-Witten classes of X are tautological.

Tautological ring $R H^{\star}\left(\overline{\mathcal{M}}_{g, n}\right) \subset H^{\star}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)$. Set of tautological rings is the smallest system of subrings containing 1 and preserved by pullback-pushforward along the natural maps $\overline{\mathcal{M}}_{g, n+1} \rightarrow \overline{\mathcal{M}}_{g, n}$, $\overline{\mathcal{M}}_{g-1, n+2} \rightarrow \overline{\mathcal{M}}_{g, n}, \overline{\mathcal{M}}_{g_{1}, n_{1}+1} \times \overline{\mathcal{M}}_{g_{2}, n_{2}+1} \rightarrow \overline{\mathcal{M}}_{g_{1}+g_{2}, n_{1}+n_{2}}$.

[^0]
Gromov-Witten classes of complete intersections

Known cases when Gromov-Witten classes are tautological:

- X a projective space, or more generally an homogeneous variety (Graber-Pandharipande, 1999)
- X a curve (Janda, 2013)

Theorem (A.-Bousseau-Pandharipande-Zvonkine, 2021)

All Gromov-Witten classes of all complete intersections in projective space are tautological.

In progress

- In progress (ABPZ): Gromov-Witten theory of complete intersections in some toric varieties and homogeneous spaces.
- Long term goal (ABPZ): Virasoro conjecture for complete intersections.

Thank you for your attention!

[^0]: ${ }^{1}$ Kontsevich-Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Communications in Mathematical Physics, 1994

