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Overview

® Random matrix integrals naturally appear in gauge theories: various gauge theory partition
functions involve matrix integrals over the Haar measure(s) of relevant Lie gauge group(s).

® Have an intricate relation to probabilty measures on random partitions — a notion of probability on
partitions of positive integers.

® |n turn, certain such measures have interpretation as irreducible characters of gauge group
representations.

® Hence a very interdisciplinary research area connecting together seemingly disparate topics: high
energy statistical physics, integer partitions and representation theory, among others.

Hep-th/Statmech <> Random partitions <> Rep. theory

Can use these connections to study phase transitions, asymptotic behaviour, integrable systems etc.
— Random partitions are very useful tools [Okounkov 2003] .
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What will this talk be about?

® Review of the unitary GWW matrix model; asymptotic analysis [Kimura-Zahabi 2021] of its phase-space
structure using random partition techniques.

® Generalization [Kimura-Purkayastha 2022] of this model to the special orthogonal and symplectic cases,
i.e. U(N) is replaced by other compact classical Lie groups SO(2/N), SO(2N + 1), Sp(N).

® Possible other applications of random partitions.

Souradeep Purkayastha (IMB) Random partitions & gauge group integrals



Gross—Witten—Wadia (GWW) unitary matrix model

® Derives from d = 2 U(N) lattice gauge theory [Gross-Witten 1980] . Partition function

Zyw)(B) = /U(N) dU exp (’\f (trU+tr U1)> , B>0.

® Large N limit: path integral extremized around the ‘classical extremum’ of distribution of
eigenvalues

Zumy(B) o, -/Ipl » Dp exp (N?Serr[p]) ~ exp (N*Se[po)) -

Effective action S.g depends on extremal distribution of eigenvalues pg : St — R>o.
® Free energy normalized w.r.t. gauge group rank,

Fu(B) = Jim N2 In Zyn)(B8) = Sest[po]-
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® Phase transition at 5 = 1 of third order:

%(1+6cos¢) B <1,
po(d) =
gcos (?) % — sin? (f) X1 aa(®) B>1,
z s<t
Fu(B) = 4 1 3

® ¢ € [-m,m), ais the smallest positive root of sin (%) = 4. Ungapped (8 < 1) and gapped
(B8 > 1) phases — gap appears in eigenvalue distribution.
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Generalized GWW

® Parametrization by coupling constants B = (81)n>1,Y = (Yn)n>1, &ns8n = ﬁ (Bn £ ivn):

Zu(Bov) = /(N)dU exp | NY_ (gntr U+, tr U™")
U

n>1
® Ungapped phase — standard derivation e.g. [Marifio 2015]

po(¢) = 1 + L (Bncosng + vy,sinng), Fu(B,y) = Z Bat
2t 27w " " ’ ’ 4n
n>1 n>1
® Remaining phase structure quickly gets complicated to analyze and describe with more coupling
constants; random partition formulation to the rescue!
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® Schur polynomial in N (possibly infinite) variables [Macdonald 1980] , in terms of complete
homogenous polynomials hy of degree k:1

sx(xt, ..., xn) = det (hj— k+kk)j(lf\)1
® A= (A1 > A2 > Ayy)) is a partition of depth £()\). sy identically vanish for £(\) > N, leading to
standard result using Miwa variables, tr X" = M,tr YY" = w
m(BY) = Y ss(X)si(Y).
L(A)<N

® Free energy F may be divided into ‘continuum’ component F¢ and ‘fluctuation’ component F7,

(Fer )

F&(Byy) FE(BY)

. 1
Fo(By) = Jim < InZ(By) + Jim o in

® Unrestricted Schur sum in terms of plethystic exponential gives ungapped free energy

Y) = ZS)\(X)SA(Y) =PE[tr XtrY], PE[f(x)] = exp <Z if(x,")) .
A /

n=1
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® Fluctuation component is responsible for the phase transitions; asymptotic analysis allows
identification of gapped phases [Kimura-Zahabi 2021] .

® Results from [Kimura-Zahabi 2021] : Partition function in terms of Fredholm determinant
[Borodin-Okounkov 2000, Okounkov 2001] . Asymptotic behaviour in terms the higher-order Tracy—Widom
distribution Fp [Claeys—Krasovsky—Its 2009]

«— B)N
FL(B,0) ~ N2 lim nFy(s), s= e
ST (apN)PH
ok, (3 defined in terms of couplings; ay = 0 for all p" < p with p, p’ positive integers and p even.

® From asymptotics of the F,, free energy edge behaviour
P

@) (eiCN) s ﬁ < ﬁﬁ

Foe0) {a;z“’wc —BPEP L ON2), B> .
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Classical groups model

® GWW-type matrix model for compact classical groups SO(2N), SO(2N + 1) and Sp(N)
[Kimura—Purkayastha 2022] , building on known large N results [Garcia-Garcia-Tierz 2020] for the one-coupling
case

Zom(B) = [ X ep (N gux ),
G(N)

n>1

real coupling constants (g,),~; with g, = %

® G(N) =SO(2N), SO(2N + 1), Sp(N), compact classical group of rank N. Canonically represented
as 2N x 2N matrices.

Souradeep Purkayastha (IMB) Random partitions & gauge group integrals



® |n [Kimura-Purkayastha 2022] : Coulomb gas analysis similar to the U(N) model. Different maximal tori
for each of the three cases.

E E 1 T T
Zam)B)el = | Dp exp | N (P /77 /77 A6 A, D)p($)p(e) + — /77r a6 =(s) /4 4 vw)pto‘>)

llell1=1

Settle]

® Effective action S[p] depends on Fredholm kernel (identical for the three cases)

=3 oot (457)) o oo (457))

® Subleading O (%) =-contributions differ; exact results in the random partition approach.
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® Ungapped phase probability distribution identical to the U(N) model with real coefficients, but
doubling of free energy upto leading order:

2
§(6) = 5+ 5= D facosno, Fa(B) =3 0% = 27(B,0)
n>1 n>1

T om

® Doubling is a consequence of normalization based on rank — N in all cases — but effective action
dependent on matrix dimensions, doubles w.r.t. the unitary case.
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® Gapped phase tackled by introducing the resolvent for the Fredholm kernel and a modified Plemelj
formula (singularities Noo, cuts)

W(s) = LEN; oot (521 cot (25| p(0) = g W(o— 10) = Wio + i)

® General solution m-cut solution — defined on higher-genus Riemann surface — is rather involved, but
for the 1-cut solution, i.e. one coupling constant 3, analytically easy to derive identical probability
distribution as U(N) model, with doubling of free energy

(o) = Leos (3 )15 -5 (5), Fal9) =29 -1 - ] =27(0).

® This is consistent with the 2N dimensions in consideration rather than N.
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® For random partition description, introduce generalized Schur polynomials: ofe" of\dd,spA

[Fulton—Harris 2004] . These represent orthogonal characters (generally |rredu<:|b|e) for even and odd
special orthogonal, and symplectic groups respectively.
® Cauchy sum formulae [Koike-Terada 1987, Garcia-Garcia-Tierz 2019] . ALso vanish for £(A) > N.

SO(2N) : zoeve" )sx(¥) = PE[tr X tr Y] PE [} (—tr Y2 (tr Y)2)] ,
2
SO@N +1) : Zo"dd A (¥) = PE[tr X tr Y] PE F (moY? —@)?) +u Y] ,
2
Sp(N) : 37 spa(X)sn(Y) = PE[tr X tr Y] PE F (er v2 — (tr v)z)} .
BN 2

® Character orthogonality:

-1, _ ax ocven oeven —1
/U(N)du N(U)su(U )7/50(2,\’) 1X 0§/ (X)o2" (x )

_ 221008 x 1) = WX oo (s (1) — b
7/50(2/\1»1) AXORT (X)) /Sp(N) WX spx (X)spp (X7) = S5y
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® Random partition expressions for the partition functions:
Zs0n(B) = PE [tr Z%] Z.(B,0)Zy(w)(B.0),
Zso@en+1)(B) = PE [tr(Z% — 2Z)] Z..(B. 0) 2y (B, 0),
Zepny(B) = PE [~ tr Z°] Z.(B, 0)Zy(w) (B, 0).
Miwa variable parametrization tr Z" = %

® Subleading O (ﬁ) contribution clearly different in the three cases.
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® Free energies are calculated to be

ven _ 62/7 2 . 1 ZU(N)(Bv 0)
0'(B) = N'L"ZONZ T A '”Zw(ﬁ"’)*N'meW'“(m :
:_Fé,ce)ven(ﬁ) ]_.égven(ﬁ)
dd . Ban—1 Zuw)(B,0)
- — lim = lim = n 22 i L (2ot D)
FEE) = - Jn y T 260+ in (L),
:fééd“(m FLse)
B an Zyw)(B,0)
,]“ép(ﬁ) ]:ép(ﬁ)

® Continuum parts double the unitary model, and fluctuation parts identical:

FE5(B) = FS5M(B) = Fp(B) = 2F76(B, 0),
FES(B) = FL5M(B) = Foo(B) = FG(B,0).
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® Hence asymptotic analysis of fluctuation part can be directly ported from [Kimura-Zahabi, 2021] . Phase
space structure is formally identical for unitary, special orthogonal and symplectic cases.

L@ (%) subleading terms correspond to =-terms of the Coulomb gas formalism; corroborates with
results due to Szegd-Johansson theorem. [Johansson 1997] .
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Other applications

® Supersymmetric indices, e.g. N = 1 superconformal index for supersymmetric gauge theories
constructed out of compactified superstring theory.

® Hubbard-Stratonovich transform [Alvarez-Gaumé-Basu-Marifio-Wadia 2006] relates building blocks of the
N =1 superconformal index to GWW-type matrix models,

dxd tt -
exp (ftrUtr UT) // - ye <—f+ttrU+ttrUT>.
R2

LHS of this equation is template building-block for the index — chiral multiplets in bifundamental
representation or vector multiplets in adjoint representation; RHS contains the GWW form.

® Of relevance to work in progress [Melczer-Purkayastha-Qu-Zahabi 202x] about asymptotic analysis of the
large N superconformal index for toric quivers.
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