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Goal: Compute certain correlations for XYZ spin chain
exactly for finite systems.

Exact result for finite systems are rare.
In our case the reason seems to be supersymmetry.
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XYZ spin chain

Chain of L spin 1/2 particles.
Hilbert space V ⊗L, where V = C| ↑〉+ C| ↓〉.

Hamiltonian

HXYZ = −1

2

L∑
j=1

(
Jx σ

x
j σ

x
j+1 + Jy σ

y
j σ

y
j+1 + Jz σ

z
jσ

z
j+1

)
.

Jx, Jy, Jz (real) anisotropy parameters.

Pauli matrices σxj etc. act on j-th tensor factor.

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

σxL+1 = σx1 etc. Periodic boundary conditions.
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Combinatorial/supersymmetric case

JxJy + JxJz + JyJz = 0

Why combinatorial?

Contains XXZ model with ∆ = −1/2

Jx = Jy = 1, Jz = −1

2
.

Deep connections to combinatorics of alternating sign
matrices and plane partitions (Razumov–Stroganov etc.).

General XYZ case has
connections to three-colourings
(R. 2011, Hietala 2020).
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Combinatorial/supersymmetric case

JxJy + JxJz + JyJz = 0

Why supersymmetric?

Scaling limit to massive sine-Gordon QFT.
Under condition above it has N = 2 supersymmetry
(Saleur & Warner 1993).
Supersymmetry on finite lattice
(Fendley & Hagendorf 2012):

HXYZ = Const +QQ† +Q†Q

(on subspace of V ⊗L) where Q : V ⊗L → V ⊗(L+1).
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The importance of being odd
Baxter (1972) computed the ground state energy (lowest
eigenvalue of HXYZ) as L→∞.

When JxJy + JxJz + JyJz = 0 (and Jx + Jy + Jz > 0) it takes
the simple form

E0 ∼ −
L

2
(Jx + Jy + Jz), L→∞.

Stroganov (2001) conjectured that if L is odd then

E0 = −L
2

(Jx + Jy + Jz).

Proved by Hagendorf and Liénardy (2018) using
supersymmetry.

HXYZ = E0 +QQ† +Q†Q.
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Correlation functions

We will assume
Periodic boundary
JxJy + JxJz + JyJz = 0

L = 2n+ 1 odd
|Ψ〉 ground state with even number of up spins.
Nearest neighbour correlations (for ground state)

Cx =
〈Ψ|σxj σxj+1|Ψ〉
〈Ψ|Ψ〉

, Cy = · · · , Cz = · · · .

Computed for XXZ chain (Jx = Jy = 1, Jz = −1/2)
by Stroganov (2001):

Cx = Cy =
5

8
+

3

8L2
, Cz = −1

2
+

3

2L2
.
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Preliminary result

For a ∈ {x, y, z} we can write

Ca = 1 +
JxJyJz

J2
a (Jx + Jy + Jz)

fn

where fn is a rational function of Z = (Jx + Jy + Jz)
3/JxJyJz.

f0 = 0, f1 = 1, f2 =
Z + 27

Z + 25
,

f3 =
(Z + 24)(Z + 27)

(Z + 21)(Z + 28)
,

f4 =
Z3 + 74Z2 + 1807Z + 14520

Z3 + 72Z2 + 1701Z + 13068
, . . .
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Polynomials sn and s̄n

Bazhanov and Mangazeev (2005, 2010) introduced two families
of polynomials sn and s̄n (n ∈ Z).

Tau functions of Painlevé VI, related to Q-operator eigenvalue
(see below).

Toda-type recursions

8(2n+1)2sn+1sn−1+2z(z−1)(9z−1)2(s′′nsn−(s′n)2)+2(3z−1)2(9z−1)sns
′
n

−
(
4(3n+ 1)(3n+ 2) + n(5n+ 3)(9z − 1)

)
s2n = 0.

. . . , s−2 =
3 + 9z

4
, s−1 = 1, s0 = 0,

s1 = 1, s2 = 1 + z, s3 = 1 + 3z + 4z2, . . . .
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Main result

Parametrize the chain as

Jx = 1 + ζ, Jy = 1− ζ, Jz =
ζ2 − 1

2
.

The function fn is

fn =
(ζ2 + 3)(ζ2 − 3)

(ζ2 − 1)2
− 2ζ2(ζ2 + 3)

(2n+ 1)2(ζ2 − 1)2
s̄n(ζ−2)s̄−n−1(ζ

−2)

sn(ζ−2)s−n−1(ζ−2)
.

We prove this assuming a technical condition (see below).
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Infinite lattice limit

Using Baxter’s formula for the free energy, one can show that

f∞ = lim
n→∞

fn =



(ζ2 + 3)(ζ2 − 3)

(ζ2 − 1)2
, |ζ| ≥ 3,

−(ζ2 + 3)(ζ2 + 6ζ − 3)

8(ζ − 1)2
, −3 < ζ < 0,

−(ζ2 + 3)(ζ2 − 6ζ − 3)

8(ζ + 1)2
, 0 < ζ < 3.

The three regimes are related by permuting the anisotropy
parameters.

The function f∞ is twice differentiable but f (3)∞ jumps at the XXZ
points ζ = 0 and ζ = ±3.
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Finite versus infinite chain

From bottom to top: f2, f3, f4
(length 5, 7, 9), f∞.

The points ζ = 0 and ζ = ±3
correspond to XXZ chains
(e.g. Jx = Jy).

The points ζ = ±1 and ζ =∞
correspond to X00 chains
(e.g. Jy = Jz = 0).
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Painlevé VI

PVI is the most general 2nd order ODE, all of whose movable
singularities are poles.

Elliptic form:
d2q

dt2
=

3∑
j=0

αj℘
′(q − γj |2πit),

αj parameters, ℘ Weierstrass’ function with half-periods γj .

Algebraic form:

d2q

dt2
=

1

2

(
1

q
+

1

q − 1
+

1

q − t

)(
dq

dt

)2

−
(

1

t
+

1

t− 1
+

1

q − t

)
dq

dt

+
q(q − 1)(q − t)
t2(t− 1)2

(
α0 − α1

t

q2
+ α2

t− 1

(q − 1)2
+

(
1

2
− α3

)
t(t− 1)

(q − t)2

)
.
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Hamiltonian form of PVI

d2q

dt2
=

3∑
j=0

αj℘
′(q − γj |2πit).

Introducing p = dq/dt, this is equivalent to the non-stationary
Hamiltonian system (Manin 1998)

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
,

where

H(p, q, t) =
p2

2
− V (q, t)

with Darboux–Treibich–Verdier potential

V (q, t) =

4∑
j=1

αj℘(q − γj |2πit).
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Picard solutions

d2q

dt2
=

3∑
j=0

αj℘
′(q − γj |2πit).

When α0 = · · · = α3 = 0, the solution is q = C1t+ C2.

Applying so called Bäcklund transformations

(q, p, α0, . . . , α3) 7→ (q̃, p̃, α̃0, . . . , α̃3)

gives Picard class solutions with αj = n2j/2, nj ∈ Z.
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The polynomials sn and s̄n as tau functions

A tau function is a solution to

τ ′(t)

τ(t)
= H(p(t), q(t), t)

where (p, q) solves PVI.

The polynomials sn and s̄n can be identified with tau functions,
obtained from the Picard solution q = 2πi + 2πit/3 through
sequences of Bäcklund transformations.

The parameters αj are(
n2

2
,
n2

2
, 0, 0

)
for sn,

(
n2

2
,
n2

2
,
1

2
,
1

2

)
for s̄n.
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Correlation functions and Painlevé VI

What does our expression

fn =
(ζ2 + 3)(ζ2 − 3)

(ζ2 − 1)2
− 2ζ2(ζ2 + 3)

(2n+ 1)2(ζ2 − 1)2
s̄n(ζ−2)s̄−n−1(ζ

−2)

sn(ζ−2)s−n−1(ζ−2)

mean for PVI?

It is essentially the PVI Hamiltonian with parameters(
(n+ 1/2)2

2
,
(n+ 1/2)2

2
, 0, 0

)
evaluated at a solution to PVI with parameters(

n2

2
,
n2

2
, 0, 0

)
.
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Transfer matrix

Based on Baxter’s Q-operator method.

Parametrize HXYZ = HXYZ(η, τ) by elliptic functions.
Supersymmetric case is η = π/3.

One-parameter family T(u) = T(u, η, τ) commuting with HXYZ.
Transfer matrices of eight-vertex model.
HXYZ is essentially T−1(u)T′(u)

∣∣
u=η

.

Can extend Ψ to η near π/3 and write

T(u)Ψ = t(u)Ψ, HXYZΨ = εΨ,

where ε is essentially t′(u)/t(u)
∣∣
u=η

.
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Correlation functions and transfer matrix eigenvalue

HXYZ = −1

2

L∑
j=1

(
Jx σ

x
j σ

x
j+1 + Jy σ

y
j σ

y
j+1 + Jz σ

z
jσ

z
j+1

)
.

Gives
ε = 〈HXYZ〉 = −L

2
(JxC

x + JyC
y + JzC

z) .

Taking derivatives in η and τ , these will not hit Cx, Cy, Cz

(Hellmann–Feynman theorem).
Gives a system of three equations for the three correlations.

Solution can be expressed in terms of the quantity
t tuη − tutη

∣∣
u=η=π/3

.

The η-derivatives are problematic!
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Q-operator

A Q-operator Q(u) = Q(u, η, τ) should satisfy [Q(u),T(v)] = 0,

T(u)Q(u) = φ(u− η)Q(u+ 2η) + φ(u+ η)Q(u− 2η),

where φ(u) = θ1(u|τ)L (Jacobi theta function).

If Q(u)Ψ = q(u)Ψ we get

t(u)q(u) = φ(u− η)q(u+ 2η) + φ(u+ η)q(u− 2η).

Using this tq-relation we can express correlations in terms of q.
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Problem

We need to differentiate

t(u)q(u) = φ(u− η)q(u+ η) + φ(u+ η)q(u− 2η)

in η at η = π/3.

Problem: Known constructions of Q-operators either work for
η 6= π/3 (Baxter) or η = π/3 (Fabricius, Roan).

Assumption: The tq-relation has a solution q that is analytic in η
near π/3.

Our results are derived rigorously using this assumption.
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Connection to sn, s̄n

After a computation, all η-derivatives cancel.
Can express correlations in terms of

q(0)

(
q′′
(π

3

)
+
φ′

φ

(π
3

)
q′
(π

3

))
− q′′(0)q

(π
3

)
at η = π/3.

The polynomials sn and s̄n can also be expressed in terms of
q(u).
For instance, s̄n is essentally q′(π + πτ/2).

To relate these expressions we use a new differential-difference
equation for q(u)

∣∣
η=π/3

.
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Difference-differential equation

Let
ψ =

θ1(u|τ)n

θ1(3u|3τ)θ3(3u/2|3τ/2)
q(u).

Then

ψuu − V ψ = αψ + β
θ4(3u/2|3τ/2)2

θ3(3u/2|3τ/2)2
ψ(u+ π),

α and β are independent of u,
V is Darboux–Treibich–Verdier potential with parameters(

n(n+ 1)

2
,
n(n+ 1)

2
, 1, 1

)
.

This is the main tool to “shift points” in q(u) and complete the
proof.
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Three special cases

Manin (1998):
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Triangular numbers

Q-operator eigenvalue satisfies differential-difference equation
with parameters (

n(n+ 1)

2
,
n(n+ 1)

2
, 1, 1

)
.

Bazhanov and Mangazeev found that it satisfies the QPVI
(quantum Painlevé VI) equation

ψt =
1

2
ψxx − V ψ

with parameters (
n(n+ 1)

2
,
n(n+ 1)

2
, 0, 0

)
.
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Half squares

Our expression for correlation functions can be interpreted as
the Hamiltonian of PVI with parameters(

(n+ 1/2)2

2
,
(n+ 1/2)2

2
, 0, 0

)
evaluated at a solution to PVI with parameters(

n2

2
,
n2

2
, 0, 0

)
.

Manin’s three cases appear together!

Manin’s three cases Hjalmar Rosengren 30/32



Questions

Other correlations? One-point correlations, emptiness
formation probability.
Scaling limit n→∞, τ → i∞, eπiτ ∼ n−2/3.
Should be related to SUSY sine-Gordon and Painlevé III.
Conceptual explanation for the relations between XYZ
model, QPVI equation and PVI equation?
Compare “quantum Painlevé–Calogero correspondence”
of Zabrodin & Zotov (2012).
What is the eigenvector Ψ? For the XXZ model, there are
explicit integral formulas (Razumov, Stroganov &
Zinn-Justin 2007).
Analogous formulas for XYZ would settle several open
problems.
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