Quadratic irrelevant deformations

Bruno Le Floch (Sorbonne Université and CNRS)

June 28, 2022
IMB, Dijon

2d story based on 1903.07606 and 1907.02516 with Márk Mezei (SCGP, Stony Brook)

The most ambitious object of the two-dimensional relativistic field theory (RFT) is the classification of all possible local RFT's.
[...] every local RFT corresponds to a particular RG trajectory, which typically (in all the known examples) starts from a [UV fixed point]

The most ambitious object of the two-dimensional relativistic field theory (RFT) is the classification of all possible local RFT's.
[...] every local RFT corresponds to a particular RG trajectory, which typically (in all the known examples) starts from a [UV fixed point]
[...] it is not clear now whether any RFT exists with another type of UV behavior

Zamolodchikov, From tricritical Ising to critical Ising by thermodynamic Bethe ansatz, Nucl.Phys.B 358 (1991) 524-546

Renormalizable QFT:

- free fields (or CFT) in the UV
- relevant interactions
- RG flow towards the IR
\rightarrow gapped TQFT
\rightarrow free fields
\rightarrow non-trivial IR CFT

Renormalizable QFT:

- free fields (or CFT) in the UV
- relevant interactions
- RG flow towards the IR
\rightarrow gapped TQFT
\rightarrow free fields
\rightarrow non-trivial IR CFT

Examples:

- 2d action $S=\int\left((\partial \phi)^{2}+\phi^{2(m-1)}\right) d^{2} x$ flows to minimal model \mathcal{M}_{m}

Renormalizable QFT:

- free fields (or CFT) in the UV
- relevant interactions
- RG flow towards the IR
\rightarrow gapped TQFT
\rightarrow free fields
\rightarrow non-trivial IR CFT

Examples:

- 2d action $S=\int\left((\partial \phi)^{2}+\phi^{2(m-1)}\right) d^{2} x$ flows to minimal model \mathcal{M}_{m}
- (minimal model $\left.\mathcal{M}_{m}\right)+\int \phi_{(1,3)} d^{2} x$ flows to \mathcal{M}_{m-1} From tricritical Ising $\left(\mathcal{M}_{4}\right)$ to critical Ising $\left(\mathcal{M}_{3}\right)$

Renormalizable QFT:

- free fields (or CFT) in the UV
- relevant interactions
- RG flow towards the IR
\rightarrow gapped TQFT
\rightarrow free fields
\rightarrow non-trivial IR CFT

Examples:

- 2d action $S=\int\left((\partial \phi)^{2}+\phi^{2(m-1)}\right) d^{2} x$ flows to minimal model \mathcal{M}_{m}
- (minimal model $\left.\mathcal{M}_{m}\right)+\int \phi_{(1,3)} d^{2} x$ flows to \mathcal{M}_{m-1} From tricritical Ising $\left(\mathcal{M}_{4}\right)$ to critical Ising $\left(\mathcal{M}_{3}\right)$
- 2d action $S=\int\left(D \Phi \bar{D} \Phi+\Phi^{3}\right) d^{2} x d^{2} \theta$ flows to \mathcal{M}_{4} adding $g \int \Phi d^{2} x d^{2} \theta$ breaks supersymmetry, flows to free fermion $\left(\mathcal{M}_{3}\right)$
[Kastor, Martinec, Shenker]

$$
S_{\text {eff }}=\int[g^{2}+\psi \bar{\partial} \psi+\bar{\psi} \partial \bar{\psi}+8 g^{-2} \underbrace{\psi \partial \psi}_{T} \underbrace{\overline{\psi \partial \psi}}_{\bar{T}}+\ldots] d^{2} x
$$

Effective field theory:

$$
S_{\text {eff }}=S_{\text {ren. }}+\underbrace{\sum_{\substack{\text { irrelevant }}} \lambda_{i} \int \mathcal{O}_{i}(x) d^{2} x}
$$

Effective field theory:

$$
S_{\text {eff }}=S_{\text {ren. }}+\underbrace{\sum_{\substack{\text { UV divergences } \\ \mathcal{O}_{i} \text { irrelevant }}} \lambda_{i} \int \mathcal{O}_{i}(x) d^{2} x}
$$

However, sometimes there is a nice UV completion

$$
S_{\mathrm{eff}}=\int[g^{2}+\psi \bar{\partial} \psi+\bar{\psi} \partial \bar{\psi}+8 g^{-2} \underbrace{\psi \partial \psi \overline{\psi \partial \psi}}_{T \bar{T}}+\ldots] d^{2} x
$$

Effective field theory:

$$
S_{\text {eff }}=S_{\text {ren. }}+\underbrace{\sum_{\substack{\text { UV divergences } \\ \mathcal{O}_{i} \text { irrelevant }}} \lambda_{i} \int \mathcal{O}_{i}(x) d^{2} x}
$$

However, sometimes there is a nice UV completion

$$
S_{\text {eff }}=\int[g^{2}+\psi \bar{\partial} \psi+\bar{\psi} \partial \bar{\psi}+8 g^{-2} \underbrace{\psi \partial \psi \overline{\psi \partial \psi}}_{T \bar{T}}+\ldots] d^{2} x
$$

(1) Generalities on $T \bar{T}$
(2) Deformations by current bilinears

- How energy levels vary
- Deformed conserved currents: operators A_{s}^{t}
- How charges vary: main evolution equation
(3) Two studies
- Study I: KdV charges under $T \bar{T}$ flow
- Study II: super-Hagedorn in Lorentz-breaking flow
(4) Work in progress: $d>2$

$T T$ operator

Universal irrelevant operator (in translation-invariant 2d QFTs)

$$
" T \bar{T} "=\operatorname{det} T=T_{00} T_{11}-T_{01} T_{10}=T \bar{T}-\Theta \bar{\Theta} \quad(\times 2 ?)
$$

More precisely, $\epsilon^{\mu \nu} T_{0 \mu}(x) T_{1 \nu}(y)=(T \bar{T})(y)+$ derivatives.

$T T$ operator

Universal irrelevant operator (in translation-invariant 2d QFTs)

$$
" T \bar{T} "=\operatorname{det} T=T_{00} T_{11}-T_{01} T_{10}=T \bar{T}-\Theta \bar{\Theta} \quad(\times 2 ?)
$$

More precisely, $\epsilon^{\mu \nu} T_{0 \mu}(x) T_{1 \nu}(y)=(T \bar{T})(y)+$ derivatives.

Factorization of matrix elements on $S^{1} \times \mathbb{R}$ of circumference L,

$$
\langle n| T \bar{T}|n\rangle=\epsilon^{\mu \nu}\langle n| T_{0 \mu}|n\rangle\langle n| T_{1 \nu}|n\rangle
$$

$T \bar{T}$ deformation

Deforming by $\partial_{\lambda_{T \bar{T}}} S=\int d^{2} x T \bar{T}$ namely $\partial_{\lambda_{T \bar{T}}} H=\int \mathrm{d} x T \bar{T}(x)$

- preserves symmetries
- calculable spectrum $\partial_{\lambda_{T \bar{T}}} E=\partial_{L}\left(E^{2}-P^{2}\right) / 4$ (Burgers eq.)

$T \bar{T}$ deformation

Deforming by $\partial_{\lambda_{T \bar{T}}} S=\int d^{2} x T \bar{T}$ namely $\partial_{\lambda_{T \bar{T}}} H=\int \mathrm{d} x T \bar{T}(x)$

- preserves symmetries
- calculable spectrum $\partial_{\lambda_{T \bar{T}}} E=\partial_{L}\left(E^{2}-P^{2}\right) / 4$ (Burgers eq.) e.g., $T \bar{T}$-deformed free scalars $\rightarrow\left(g_{s}=0\right)$ Nambu-Goto in light-cone gauge Related to Jackiw-Teitelboim gravity (Dubovsky, Gorbenko, ...), 2d random geometry (Cardy), AdS_{3} holography (McGough, Mezei, Verlinde, Giveon, Kutasov, Guica, ...)

$T T$ deformation

Deforming by $\partial_{\lambda_{T \bar{T}}} S=\int d^{2} x T \bar{T}$ namely $\partial_{\lambda_{T \bar{T}}} H=\int \mathrm{d} x T \bar{T}(x)$

- preserves symmetries
- calculable spectrum $\partial_{\lambda_{T \bar{T}}} E=\partial_{L}\left(E^{2}-P^{2}\right) / 4$ (Burgers eq.)
e.g., $T \bar{T}$-deformed free scalars $\rightarrow\left(g_{s}=0\right)$ Nambu-Goto in light-cone gauge Related to Jackiw-Teitelboim gravity (Dubovsky, Gorbenko, ...), 2d random geometry (Cardy), AdS_{3} holography (McGough, Mezei, Verlinde, Giveon, Kutasov, Guica, ...)

Derivation of Burgers equation

$$
\partial_{\lambda_{T \bar{T}}} E_{n}=\langle n| \partial_{\lambda_{T \bar{T}}} H|n\rangle=L \underbrace{\langle n| T_{00}|n\rangle}_{-E_{n} / L} \underbrace{\langle n| T_{11}|n\rangle}_{-\partial_{L} E_{n}}-L \underbrace{\langle n| T_{01}|n\rangle}_{i P_{n} / L} \underbrace{\langle n| T_{10}|n\rangle}_{i P_{n} / L}
$$

$$
\partial_{\lambda_{T \bar{T}}} E_{n}=E_{n} \partial_{L} E_{n}+\frac{P_{n}^{2}}{L}
$$

$$
\text { (needs either Lorentz-invariance or } P_{n}=0 \text {) }
$$

Current bilinears

Generalize $T \bar{T}, J \bar{T}, J J$

$$
X_{a b}:=\epsilon_{\mu \nu} J_{a}^{\mu} J_{b}^{\nu} \quad \text { (point-split) } \quad \text { defined modulo derivatives }
$$

Current bilinears

Generalize $T \bar{T}, J \bar{T}, J \bar{J}$

$$
X_{a b}:=\epsilon_{\mu \nu} J_{a}^{\mu} J_{b}^{\nu} \quad \text { (point-split) } \quad \text { defined modulo derivatives }
$$

Proof.

$$
\frac{\partial}{\partial x^{\rho}} \epsilon_{\mu \nu} J_{a}^{\mu}(x) J_{b}^{\nu}(y)=\left(\frac{\partial}{\partial x^{\nu}}+\frac{\partial}{\partial y^{\nu}}\right) \epsilon_{\mu \rho} J_{a}^{\mu}(x) J_{b}^{\nu}(y)
$$

use OPE

$$
\epsilon_{\mu \nu} \sum_{i} \partial_{\rho} c_{i}(x-y) O_{i}^{\mu \nu}(y)=\epsilon_{\mu \rho} \sum_{i} c_{i}(x-y) \partial_{\nu} O_{i}^{\mu \nu}(y)
$$

so any O_{i} with non-constant $c(x-y)$ must be a total derivative $\partial_{\nu}(\ldots)$

Current bilinears

Generalize $T \bar{T}, J \bar{T}, J \bar{J}$

$$
X_{a b}:=\epsilon_{\mu \nu} J_{a}^{\mu} J_{b}^{\nu} \quad \text { (point-split) } \quad \text { defined modulo derivatives }
$$

Proof.

$$
\frac{\partial}{\partial x^{\rho}} \epsilon_{\mu \nu} J_{a}^{\mu}(x) J_{b}^{\nu}(y)=\left(\frac{\partial}{\partial x^{\nu}}+\frac{\partial}{\partial y^{\nu}}\right) \epsilon_{\mu \rho} J_{a}^{\mu}(x) J_{b}^{\nu}(y)
$$

use OPE

$$
\epsilon_{\mu \nu} \sum_{i} \partial_{\rho} c_{i}(x-y) O_{i}^{\mu \nu}(y)=\epsilon_{\mu \rho} \sum_{i} c_{i}(x-y) \partial_{\nu} O_{i}^{\mu \nu}(y)
$$

so any O_{i} with non-constant $c(x-y)$ must be a total derivative $\partial_{\nu}(\ldots)$

$$
\partial_{\lambda^{a b}} S=\int \mathrm{d}^{2} x X_{a b} \text { deformation }
$$

Only makes sense if J_{a} and J_{b} are still conserved at order $O(\lambda)$ etc.
This happens if and only if $\left[Q_{a}, Q_{b}\right]=0$ (see later for "if" direction)

Evolution of energies under deformation by current bilinears

$$
X_{a b}:=\epsilon_{\mu \nu} J_{a}^{\mu} J_{b}^{\nu} \longrightarrow \partial_{\lambda^{a b}} S=\int \mathrm{d}^{2} x X_{a b} \longrightarrow \partial_{\lambda^{a b}} H=\int \mathrm{d} x X_{a b}
$$

Evolution of energies under deformation by current bilinears

$X_{a b}:=\epsilon_{\mu \nu} J_{a}^{\mu} J_{b}^{\nu} \longrightarrow \partial_{\lambda^{a b}} S=\int \mathrm{d}^{2} x X_{a b} \longrightarrow \partial_{\lambda^{a b}} H=\int \mathrm{d} x X_{a b}$
On $S^{1} \times \mathbb{R}$ of circumference L, factorization

$$
\begin{aligned}
& \langle n| X_{a b}|n\rangle=\epsilon_{\mu \nu}\langle n| J_{a}^{\mu}|n\rangle\langle n| J_{b}^{\nu}|n\rangle \\
& \partial_{\lambda_{a b} E_{n}=L \epsilon_{\mu \nu}\langle n| J_{a}^{\mu}|n\rangle\langle n| J_{b}^{\nu}|n\rangle}
\end{aligned}
$$

Evolution of energies under deformation by current bilinears

$X_{a b}:=\epsilon_{\mu \nu} J_{a}^{\mu} J_{b}^{\nu} \longrightarrow \partial_{\lambda^{a b}} S=\int \mathrm{d}^{2} x X_{a b} \longrightarrow \partial_{\lambda^{a b}} H=\int \mathrm{d} x X_{a b}$
On $S^{1} \times \mathbb{R}$ of circumference L, factorization

$$
\begin{aligned}
& \langle n| X_{a b}|n\rangle=\epsilon_{\mu \nu}\langle n| J_{a}^{\mu}|n\rangle\langle n| J_{b}^{\nu}|n\rangle \\
& \partial_{\lambda_{a b} E_{n}=L \epsilon_{\mu \nu}\langle n| J_{a}^{\mu}|n\rangle\langle n| J_{b}^{\nu}|n\rangle}^{\partial_{\lambda^{a b}} E_{n}=2 \underbrace{\left\langle\langle n| J_{[|0|}^{0} \mid n\right\rangle}_{\left(Q_{a}\right)_{n}}\langle n| J_{b]}^{1}|n\rangle}
\end{aligned}
$$

- Compact flavour symmetry $\Longrightarrow Q_{n}$ quantized
- Spatial translation $\Longrightarrow Q_{n}=i P_{n} \in(2 \pi i / L) \mathbb{Z}$
- Time translation $\Longrightarrow Q_{n}=-E_{n}$
- KdV charges \Longrightarrow need $\partial_{\lambda} Q_{n}$ equation

Evolution of energies under deformation by current bilinears

$X_{a b}:=\epsilon_{\mu \nu} J_{a}^{\mu} J_{b}^{\nu} \longrightarrow \partial_{\lambda^{a b}} S=\int \mathrm{d}^{2} x X_{a b} \longrightarrow \partial_{\lambda^{a b}} H=\int \mathrm{d} x X_{a b}$
On $S^{1} \times \mathbb{R}$ of circumference L, factorization

$$
\begin{aligned}
& \langle n| X_{a b}|n\rangle=\epsilon_{\mu \nu}\langle n| J_{a}^{\mu}|n\rangle\langle n| J_{b}^{\nu}|n\rangle \\
& \partial_{\lambda^{a b}} E_{n}=L \epsilon_{\mu \nu}\langle n| J_{a}^{\mu}|n\rangle\langle n| J_{b}^{\nu}|n\rangle \\
& \partial_{\lambda^{a b}} E_{n}=2 \underbrace{L\langle n| J_{[a}^{0}|n\rangle}_{\left(Q_{a}\right)_{n}} \underbrace{\langle n| J_{b]}^{1}|n\rangle}_{?}
\end{aligned}
$$

- Compact flavour symmetry $\Longrightarrow Q_{n}$ quantized
- Spatial translation $\Longrightarrow Q_{n}=i P_{n} \in(2 \pi i / L) \mathbb{Z}$
- Time translation $\Longrightarrow Q_{n}=-E_{n}$
- KdV charges \Longrightarrow need $\partial_{\lambda} Q_{n}$ equation

Strategy to study $\partial_{\lambda^{a b}} E_{n}=2\langle n| Q_{[a}|n\rangle\langle n| J_{b]}^{1}|n\rangle$

Strategy to study $\partial_{\lambda^{a b}} E_{n}=2\langle n| Q_{[a}|n\rangle\langle n| J_{b]}^{1}|n\rangle$

First, about $\left(Q_{c}\right)_{n}=\langle n| Q_{c}|n\rangle$:
playing with commutators get similar equation $\partial_{\lambda^{a b}}\left(Q_{c}\right)_{n}=\ldots$

Strategy to study $\partial_{\lambda^{a b}} E_{n}=2\langle n| Q_{[a}|n\rangle\langle n| \int_{b}^{1}|n\rangle$

First, about $\left(Q_{c}\right)_{n}=\langle n| Q_{c}|n\rangle$:
playing with commutators get similar equation $\partial_{\lambda^{a b}}\left(Q_{c}\right)_{n}=\ldots$

Then, for $\langle n| J_{c}^{1}|n\rangle$, two case studies (much shorter)
Study I: $T \bar{T}$ deformation of Lorentz-invariant theory, KdV charges "ride the Burgers flow"

Study II: T_{1}.J. deformation of zero-momentum sector super-Hagedorn density of states $\exp \left(E^{(>1)}\right)$

Cartan subalgebra: $K d V$ charges P_{s}

Focus on commuting subset $\left\{P_{s}\right\}$ of all charges $\left\{Q_{a}\right\}$: translations, Cartan of flavour symmetries, KdV charges

Conserved currents $\bar{\partial} T_{s+1}=\partial \Theta_{s-1}$ of spin $s \in \mathbb{Z}$, charges

$$
P_{s}=\frac{1}{2 \pi} \oint\left(T_{s+1} \mathrm{~d} z+\Theta_{s-1} \mathrm{~d} \bar{z}\right)
$$

Cartan subalgebra: KdV charges P_{s}

Focus on commuting subset $\left\{P_{s}\right\}$ of all charges $\left\{Q_{a}\right\}$: translations, Cartan of flavour symmetries, KdV charges

Conserved currents $\bar{\partial} T_{s+1}=\partial \Theta_{s-1}$ of spin $s \in \mathbb{Z}$, charges

$$
P_{s}=\frac{1}{2 \pi} \oint\left(T_{s+1} \mathrm{~d} z+\Theta_{s-1} \mathrm{~d} \bar{z}\right)
$$

with stress-tensor $\left(\begin{array}{cc}T & \Theta \\ \Theta & \bar{T}\end{array}\right)=\left(\begin{array}{cc}T_{2} & \Theta_{0} \\ T_{0} & \Theta_{-2}\end{array}\right)$
$\left[P_{1}, \mathcal{O}\right]=-i \partial \mathcal{O}$ and $\left[P_{-1}, \mathcal{O}\right]=i \bar{\partial} \mathcal{O}$ with $P_{ \pm 1}=-\frac{1}{2}(H \pm P)$

Cartan subalgebra: KdV charges P_{s}

Focus on commuting subset $\left\{P_{s}\right\}$ of all charges $\left\{Q_{a}\right\}$: translations, Cartan of flavour symmetries, KdV charges

Conserved currents $\bar{\partial} T_{s+1}=\partial \Theta_{s-1}$ of spin $s \in \mathbb{Z}$, charges

$$
P_{s}=\frac{1}{2 \pi} \oint\left(T_{s+1} \mathrm{~d} z+\Theta_{s-1} \mathrm{~d} \bar{z}\right)
$$

with stress-tensor $\left(\begin{array}{cc}T & \Theta \\ \Theta & \bar{T}\end{array}\right)=\left(\begin{array}{cc}T_{2} & \Theta_{0} \\ T_{0} & \Theta_{-2}\end{array}\right)$
$\left[P_{1}, \mathcal{O}\right]=-i \partial \mathcal{O}$ and $\left[P_{-1}, \mathcal{O}\right]=i \bar{\partial} \mathcal{O}$ with $P_{ \pm 1}=-\frac{1}{2}(H \pm P)$

Example (CFT): $T_{2}=T, T_{4}=: T^{2}:, T_{6}=: T^{3}:+\frac{c+2}{12}:(\partial T)^{2}:, \ldots \Theta_{-2 k}=\overline{T_{2 k}}$, $\Theta_{0}=\Theta_{2}=\Theta_{4}=\cdots=T_{0}=T_{-2}=T_{-4}=\cdots=0$

KdV currents fixed (up to improvements) by spin and $\left[P_{s}, P_{t}\right]=0$

The operators A_{s}^{t}

Integrating $\left[P_{s}, T_{t+1} \mathrm{~d} z+\Theta_{t-1} \mathrm{~d} \bar{z}\right]$ on a contour \mathcal{C} gives $\left[P_{s}, P_{t}^{\mathcal{C}}\right]=0$ so the one-form is exact:

$$
\begin{aligned}
{\left[P_{s}, T_{t+1}\right] } & =-i \partial A_{s}^{t}=\left[P_{1}, A_{s}^{t}\right] \\
{\left[P_{s}, \Theta_{t-1}\right] } & =-i \bar{\partial} A_{s}^{t}=-\left[P_{-1}, A_{s}^{t}\right]
\end{aligned}
$$

The operators A_{s}^{t}

Integrating $\left[P_{s}, T_{t+1} \mathrm{~d} z+\Theta_{t-1} \mathrm{~d} \bar{z}\right]$ on a contour \mathcal{C} gives $\left[P_{s}, P_{t}^{\mathcal{C}}\right]=0$ so the one-form is exact:

$$
\begin{aligned}
{\left[P_{s}, T_{t+1}\right] } & =-i \partial A_{s}^{t}=\left[P_{1}, A_{s}^{t}\right] \\
{\left[P_{s}, \Theta_{t-1}\right] } & =-i \bar{\partial} A_{s}^{t}=-\left[P_{-1}, A_{s}^{t}\right]
\end{aligned}
$$

In particular $A_{1}^{t}=T_{t+1}$ and $A_{-1}^{t}=-\Theta_{t-1}$ (up to shifts by identity)
Generic A_{s}^{t} are not in conserved currents

The operators A_{s}^{t}

Integrating $\left[P_{s}, T_{t+1} \mathrm{~d} z+\Theta_{t-1} \mathrm{~d} \bar{z}\right]$ on a contour \mathcal{C} gives $\left[P_{s}, P_{t}^{\mathcal{C}}\right]=0$ so the one-form is exact:

$$
\begin{aligned}
{\left[P_{s}, T_{t+1}\right] } & =-i \partial A_{s}^{t}=\left[P_{1}, A_{s}^{t}\right] \\
{\left[P_{s}, \Theta_{t-1}\right] } & =-i \bar{\partial} A_{s}^{t}=-\left[P_{-1}, A_{s}^{t}\right]
\end{aligned}
$$

In particular $A_{1}^{t}=T_{t+1}$ and $A_{-1}^{t}=-\Theta_{t-1}$ (up to shifts by identity)
Generic A_{s}^{t} are not in conserved currents
Example (CFT): $T_{2}=T, T_{4}=: T^{2}:, T_{6}=: T^{3}:+\frac{c+2}{12}:(\partial T)^{2}:$

$$
\begin{array}{llc}
A_{1}^{1}=T_{2} & A_{1}^{3}=T_{4} & A_{1}^{5}=T_{6} \\
A_{3}^{1}=3 T_{4}+\partial(\ldots) & A_{3}^{3}=4: T^{3}:-\frac{c+2}{2}:(\partial T)^{2}: & \\
A_{5}^{1}=5 T_{6}+\partial(\ldots) & A_{5}^{3}=\frac{15: T^{4}:}{2}-\frac{5(13+2 c): T(\partial T)^{2}:}{3}+\frac{5\left(-47+4 c+c^{2}\right):\left(\partial^{2} T\right)^{2}:}{72}
\end{array}
$$

The operators A_{s}^{t}

Integrating $\left[P_{s}, T_{t+1} \mathrm{~d} z+\Theta_{t-1} \mathrm{~d} \bar{z}\right]$ on a contour \mathcal{C} gives $\left[P_{s}, P_{t}^{\mathcal{C}}\right]=0$ so the one-form is exact:

$$
\begin{aligned}
{\left[P_{s}, T_{t+1}\right] } & =-i \partial A_{s}^{t}=\left[P_{1}, A_{s}^{t}\right] \\
{\left[P_{s}, \Theta_{t-1}\right] } & =-i \bar{\partial} A_{s}^{t}=-\left[P_{-1}, A_{s}^{t}\right]
\end{aligned}
$$

In particular $A_{1}^{t}=T_{t+1}$ and $A_{-1}^{t}=-\Theta_{t-1}$ (up to shifts by identity)
Generic A_{s}^{t} are not in conserved currents
Example (CFT): $T_{2}=T, T_{4}=: T^{2}:, T_{6}=: T^{3}:+\frac{c+2}{12}:(\partial T)^{2}:$

$$
\begin{array}{llc}
A_{1}^{1}=T_{2} & A_{1}^{3}=T_{4} & A_{1}^{5}=T_{6} \\
A_{3}^{1}=3 T_{4}+\partial(\ldots) & A_{3}^{3}=4: T^{3}:-\frac{c+2}{2}:(\partial T)^{2}: \\
A_{5}^{1}=5 T_{6}+\partial(\ldots) & A_{5}^{3}=\frac{15: T^{4}:}{2}-\frac{5(13+2 c): T(\partial T)^{2}:}{3}+\frac{5\left(-47+4 c+c^{2}\right):\left(\partial^{2} T\right)^{2}:}{72}
\end{array}
$$

The operators A_{s}^{t}

$A_{1}^{t}=T_{t+1}$ and $A_{-1}^{t}=-\Theta_{t-1}$
so the definition is equivalent to $\left[P_{ \pm 1}, A_{s}^{t}\right]=\left[P_{s}, A_{ \pm 1}^{t}\right]$
The symmetry generalizes: $\left[P_{s}, A_{t}^{u}\right]=\left[P_{t}, A_{s}^{u}\right]$

The operators A_{s}^{t}

$A_{1}^{t}=T_{t+1}$ and $A_{-1}^{t}=-\Theta_{t-1}$
so the definition is equivalent to $\left[P_{ \pm 1}, A_{s}^{t}\right]=\left[P_{s}, A_{ \pm 1}^{t}\right]$
The symmetry generalizes: $\left[P_{s}, A_{t}^{u}\right]=\left[P_{t}, A_{s}^{u}\right]$
Proof.

$$
\begin{aligned}
& {\left[P_{1},\left[P_{[s}, A_{t]}^{u}\right]\right]} \\
& =\left[P_{[s \mid},\left[P_{1}, A_{\mid t]}^{\mu}\right]\right] \quad \text { (Jacobi) } \\
& =\left[P_{[s},\left[P_{t]}, A_{1}^{u}\right]\right] \quad \text { (definition of } A \text {) } \\
& =0 \\
& \text { (Jacobi) }
\end{aligned}
$$

Likewise $\left[P_{-1},\left[P_{[s}, A_{t]}^{u}\right]\right]=0$
so $\left[P_{[s}, A_{t]}^{u}\right]=$ multiple of identity $=0$ (because traceless)

Deforming by current bilinears preserves symmetries

For two spins u, v consider $\delta H=\int \mathrm{d} x X^{u, v}$
with $X^{u, v}=\left(T_{u+1} \Theta_{v-1}-\Theta_{u-1} T_{v+1}\right)_{\text {reg }}$ current bilinear
To preserve conservation, $\delta P_{s}=$?

Deforming by current bilinears preserves symmetries

For two spins u, v consider $\delta H=\int \mathrm{d} x X^{u, v}$ with $X^{u, v}=\left(T_{u+1} \Theta_{v-1}-\Theta_{u-1} T_{v+1}\right)_{\text {reg }}$ current bilinear To preserve conservation, $\delta P_{s}=$?

$$
\left[H, \delta P_{s}\right]=\left[P_{s}, \delta H\right]=\iint_{\text {total derivative? }} \mathrm{d} x \underbrace{\left[P_{s}, X^{u, v}(x)\right]}
$$

Deforming by current bilinears preserves symmetries

For two spins u, v consider $\delta H=\int \mathrm{d} x X^{u, v}$ with $X^{u, v}=\left(T_{u+1} \Theta_{v-1}-\Theta_{u-1} T_{v+1}\right)_{\text {reg }}$ current bilinear To preserve conservation, $\delta P_{s}=$?

$$
\left[H, \delta P_{s}\right]=\left[P_{s}, \delta H\right]=\int \mathrm{d} x \underbrace{\left[P_{s}, X^{u, v}(x)\right]}
$$

total derivative? yes!
Proof. [$\left.P_{s}, X^{u, v}\right]=\left[P_{s}, T_{u+1} \Theta_{v-1}-\Theta_{u-1} T_{v+1}\right]$

$$
\begin{aligned}
& =\left[P_{1}, A_{s}^{u}\right] \Theta_{v-1}+\left[P_{-1}, A_{s}^{u}\right] T_{v+1}-(u \leftrightarrow v) \\
& =\left[P_{1}, A_{s}^{u} \Theta_{v-1}\right]+\left[P_{-1}, A_{s}^{u} T_{v+1}\right]-(u \leftrightarrow v)
\end{aligned}
$$

Deforming by current bilinears preserves symmetries

For two spins u, v consider $\delta H=\int \mathrm{d} x X^{u, v}$ with $X^{u, v}=\left(T_{u+1} \Theta_{v-1}-\Theta_{u-1} T_{v+1}\right)_{\text {reg }}$ current bilinear To preserve conservation, $\delta P_{s}=$?

$$
\left[H, \delta P_{s}\right]=\left[P_{s}, \delta H\right]=\int \mathrm{d} x \underbrace{\left[P_{s}, X^{u, v}(x)\right]}
$$

total derivative? yes!
Proof. [$\left.P_{s}, X^{u, v}\right]=\left[P_{s}, T_{u+1} \Theta_{v-1}-\Theta_{u-1} T_{v+1}\right]$

$$
\begin{aligned}
& =\left[P_{1}, A_{s}^{u}\right] \Theta_{v-1}+\left[P_{-1}, A_{s}^{u}\right] T_{v+1}-(u \leftrightarrow v) \\
& =\left[P_{1}, A_{s}^{u} \Theta_{v-1}\right]+\left[P_{-1}, A_{s}^{u} T_{v+1}\right]-(u \leftrightarrow v)
\end{aligned}
$$

$$
\delta P_{s}=\frac{1}{2} \int \mathrm{~d} x\left(X_{s, 1}^{u, v}+X_{-1, s}^{u, v}\right) \text { where } X_{s, t}^{u, v}=\left(A_{s}^{u} A_{t}^{v}-A_{t}^{u} A_{s}^{v}\right)_{\mathrm{reg}}
$$

Toward an evolution equation

Goal: $\partial_{\lambda}\langle n| P_{s}|n\rangle=\langle n| \partial_{\lambda} P_{s}|n\rangle=\ldots$ for states $|n\rangle$ on $S^{1} \times \mathbb{R}$
We've just seen $\partial_{\lambda} P_{s}=\frac{1}{2} \int \mathrm{~d} x\left(X_{s, 1}^{u, v}+X_{-1, s}^{u, v}\right)$ so we compute $\langle n| X_{s, t}^{u, v}|n\rangle=$

Toward an evolution equation

Goal: $\partial_{\lambda}\langle n| P_{s}|n\rangle=\langle n| \partial_{\lambda} P_{s}|n\rangle=\ldots$ for states $|n\rangle$ on $S^{1} \times \mathbb{R}$
We've just seen $\partial_{\lambda} P_{s}=\frac{1}{2} \int \mathrm{~d} x\left(X_{s, 1}^{u, v}+X_{-1, s}^{u, v}\right)$ so we compute

$$
\langle n| X_{s, t}^{u, v}|n\rangle=\langle n| A_{s}^{u}|n\rangle\langle n| A_{t}^{\nu}|n\rangle-\langle n| A_{t}^{u}|n\rangle\langle n| A_{s}^{v}|n\rangle
$$

(factorization)

Toward an evolution equation

Goal: $\partial_{\lambda}\langle n| P_{s}|n\rangle=\langle n| \partial_{\lambda} P_{s}|n\rangle=\ldots$ for states $|n\rangle$ on $S^{1} \times \mathbb{R}$
We've just seen $\partial_{\lambda} P_{s}=\frac{1}{2} \int \mathrm{~d} x\left(X_{s, 1}^{u, v}+X_{-1, s}^{u, v}\right)$ so we compute

$$
\langle n| X_{s, t}^{u, v}|n\rangle=\langle n| A_{s}^{u}|n\rangle\langle n| A_{t}^{v}|n\rangle-\langle n| A_{t}^{u}|n\rangle\langle n| A_{s}^{v}|n\rangle \quad \text { (factorization) }
$$

Proof summary. Insert complete set of states (eigenstates of all $P_{\mathbf{\bullet}}$)

$$
\langle n| X_{s, t}^{u, v}|n\rangle=\sum_{|m\rangle}\left(\langle n| A_{s}^{u}|m\rangle\langle m| A_{t}^{\vee}|n\rangle-\langle n| A_{t}^{u}|m\rangle\langle m| A_{s}^{\vee}|n\rangle\right)
$$

For any spin r, compute a bit to show

$$
\langle n|\left[P_{r}, A_{s}^{u}\right]|m\rangle\langle m| A_{t}^{\nu}|n\rangle-\langle n|\left[P_{r}, A_{t}^{u}\right]|m\rangle\langle m| A_{s}^{\nu}|n\rangle=0
$$

This is $\langle m| P_{r}|m\rangle-\langle n| P_{r}|n\rangle$ times the summand, so summand $=0$ except for $|m\rangle=|n\rangle$ (assumes nondegenerate spectrum)

Side comment on collisions

In fact we can define more general collisions

$$
k!A_{\left[s_{1}\right.}^{t_{1}}\left(x_{1}\right) \ldots A_{\left.s_{k}\right]}^{t_{k}}\left(x_{k}\right)=X_{s_{1}, \ldots, s_{k}}^{t_{1}, \ldots, t_{k}}(x)+\sum_{i}\left[P_{s_{i}}, \ldots\right]
$$

- defined up to commutators $\sum_{i}\left[P_{s_{i}}, \ldots\right]$ (like $X^{u, v}$ is defined up to derivatives)
- obey factorization

$$
\langle n| X_{s_{1}, \ldots, s_{k}}^{t_{1}, \ldots, t_{k}}|n\rangle=k!\langle n| A_{\left[s_{1}\right.}^{t_{1}}|n\rangle \ldots\langle n| A_{\left.s_{k}\right]}^{t_{k}}|n\rangle
$$

- obey

$$
\left[P_{\left[s_{0}\right.}, X_{\left.s_{1}, \ldots, s_{k}\right]}^{t_{1}, \ldots, t_{k}}\right]=0
$$

(but deforming by these operators breaks all symmetries, so they are most likely not that useful)

Main evolution equation

Denoting $\langle\mathcal{O}\rangle:=\langle n| \mathcal{O}|n\rangle$, we end up with

$$
2 \partial_{\lambda_{u, v}}\left\langle P_{s}\right\rangle=\left\langle P_{u}\right\rangle\left\langle A_{s}^{v}\right\rangle-\left\langle P_{v}\right\rangle\left\langle A_{s}^{u}\right\rangle
$$

Sadly, $\partial_{\lambda_{\mu, v}}\left\langle A_{s}^{t}\right\rangle=$ nothing in general

Main evolution equation

Denoting $\langle\mathcal{O}\rangle:=\langle n| \mathcal{O}|n\rangle$, we end up with

$$
2 \partial_{\lambda_{u, v}}\left\langle P_{s}\right\rangle=\left\langle P_{u}\right\rangle\left\langle A_{s}^{v}\right\rangle-\left\langle P_{v}\right\rangle\left\langle A_{s}^{u}\right\rangle
$$

Sadly, $\partial_{\lambda_{u, v}}\left\langle A_{s}^{t}\right\rangle=$ nothing in general
Study I: $T \bar{T}$ deformation $(u, v)=(1,-1)$ Lorentz-invariance relates $\left\langle A_{s}^{1}\right\rangle \sim\left\langle A_{1}^{s}\right\rangle \sim\left\langle P_{s}\right\rangle$ We learn that KdV charges ride the Burgers flow

Main evolution equation

Denoting $\langle\mathcal{O}\rangle:=\langle n| \mathcal{O}|n\rangle$, we end up with

$$
2 \partial_{\lambda_{u, v}}\left\langle P_{s}\right\rangle=\left\langle P_{u}\right\rangle\left\langle A_{s}^{v}\right\rangle-\left\langle P_{v}\right\rangle\left\langle A_{s}^{u}\right\rangle
$$

Sadly, $\partial_{\lambda_{u, v}}\left\langle A_{s}^{t}\right\rangle=$ nothing in general
Study I: $T \bar{T}$ deformation $(u, v)=(1,-1)$ Lorentz-invariance relates $\left\langle A_{s}^{1}\right\rangle \sim\left\langle A_{1}^{s}\right\rangle \sim\left\langle P_{s}\right\rangle$ We learn that KdV charges ride the Burgers flow

Study II: $T_{1} \bullet J_{\bullet}$ deformation (difference of $u= \pm 1$, arbitrary v) In zero-momentum sector $\left\langle A_{s}^{v}\right\rangle$ drops out Get super-Hagedorn density of states $\exp (\gg E)$
(1) Generalities on $T \bar{T}$
(2) Deformations by current bilinears

- How energy levels vary
- Deformed conserved currents: operators A_{s}^{t}
- How charges vary: main evolution equation
(3) Two studies
- Study I: KdV charges under $T \bar{T}$ flow
- Study II: super-Hagedorn in Lorentz-breaking flow
(4) Work in progress: $d>2$

Study I: Deforming by $T T$

$$
2 \partial_{\lambda_{T \bar{T}}}\left\langle P_{s}\right\rangle=\left\langle P_{1}\right\rangle\left\langle A_{s}^{-1}\right\rangle-\left\langle P_{-1}\right\rangle\left\langle A_{s}^{1}\right\rangle
$$

Need to understand $A_{s}^{ \pm 1}$. Two steps.

- Understand ∂_{L}
- Relate $A_{s}^{ \pm 1}$ to $A_{ \pm 1}^{s}$ in Lorentz-invariant theories

Changing the length

We know $\partial_{L} H=\int \mathrm{d} x T_{x x}=\frac{1}{2 \pi} \int \mathrm{~d} x\left(A_{1}^{1}-A_{1}^{-1}+A_{-1}^{1}-A_{-1}^{-1}\right)$

Changing the length

We know $\partial_{L} H=\int \mathrm{d} x T_{x x}=\frac{1}{2 \pi} \int \mathrm{~d} x\left(A_{1}^{1}-A_{1}^{-1}+A_{-1}^{1}-A_{-1}^{-1}\right)$ Use conservation $\left[H, \partial_{L} P_{s}\right]=\left[P_{s}, \partial_{L} H\right]$ to deduce

$$
\partial_{L} P_{s}=\frac{1}{2 \pi} \int \mathrm{~d} x\left(A_{s}^{1}-A_{s}^{-1}\right)
$$

Changing the length

We know $\partial_{L} H=\int \mathrm{d} x T_{x x}=\frac{1}{2 \pi} \int \mathrm{~d} x\left(A_{1}^{1}-A_{1}^{-1}+A_{-1}^{1}-A_{-1}^{-1}\right)$ Use conservation $\left[H, \partial_{L} P_{s}\right]=\left[P_{s}, \partial_{L} H\right]$ to deduce

$$
\partial_{L} P_{s}=\frac{1}{2 \pi} \int \mathrm{~d} x\left(A_{s}^{1}-A_{s}^{-1}\right)
$$

For states with zero momentum ($\left\langle P_{1}-P_{-1}\right\rangle=0$), we're done:

$$
2 \partial_{\lambda_{T \bar{T}}}\left\langle P_{s}\right\rangle=\langle H\rangle \partial_{L}\left\langle P_{s}\right\rangle
$$

Changing the length

We know $\partial_{L} H=\int \mathrm{d} x T_{x x}=\frac{1}{2 \pi} \int \mathrm{~d} x\left(A_{1}^{1}-A_{1}^{-1}+A_{-1}^{1}-A_{-1}^{-1}\right)$ Use conservation $\left[H, \partial_{L} P_{s}\right]=\left[P_{s}, \partial_{L} H\right]$ to deduce

$$
\partial_{L} P_{s}=\frac{1}{2 \pi} \int \mathrm{~d} \times\left(A_{s}^{1}-A_{s}^{-1}\right)
$$

For states with zero momentum ($\left\langle P_{1}-P_{-1}\right\rangle=0$), we're done:

$$
2 \partial_{\lambda_{T \bar{T}}}\left\langle P_{s}\right\rangle=\langle H\rangle \partial_{L}\left\langle P_{s}\right\rangle
$$

In fact, for zero momentum $\left(\left\langle P_{1}-P_{-1}\right\rangle=0\right)$,

$$
\partial_{\lambda}\left\langle P_{s}\right\rangle=\langle Q\rangle \partial_{L}\left\langle P_{s}\right\rangle \quad \text { under } \epsilon^{\mu \nu} J_{\mu} T_{x \nu} \text { deformation }
$$

The deformation "scales space according to $\langle Q\rangle$ "

Study I: KdV charges under $T \bar{T}$ flow
Study II: super-Hagedorn in Lorentz-breaking flow

Relating A_{s}^{t} and A_{t}^{s}

Relating A_{s}^{t} and A_{t}^{s}

Example (CFT): $T_{2}=T, T_{4}=: T^{2}:, T_{6}=: T^{3}:+\frac{c+2}{12}:(\partial T)^{2}:$

$$
\begin{array}{lll}
A_{1}^{1}=T_{2} & A_{1}^{3}=T_{4} & A_{1}^{5}=T_{6} \\
A_{3}^{1}=3 T_{4}+\partial(\ldots) & A_{3}^{3}=\ldots & A_{3}^{5}=\frac{3}{5} A_{5}^{3}+\ldots \\
A_{5}^{1}=5 T_{6}+\partial(\ldots) & A_{5}^{3}=\ldots &
\end{array}
$$

Relating A_{s}^{t} and A_{t}^{s}

Example (CFT): $T_{2}=T, T_{4}=: T^{2}:, T_{6}=: T^{3}:+\frac{c+2}{12}:(\partial T)^{2}:$

$$
\begin{array}{lll}
A_{1}^{1}=T_{2} & A_{1}^{3}=T_{4} & A_{1}^{5}=T_{6} \\
A_{3}^{1}=3 T_{4}+\partial(\ldots) & A_{3}^{3}=\ldots & A_{3}^{5}=\frac{3}{5} A_{5}^{3}+\ldots \\
A_{5}^{1}=5 T_{6}+\partial(\ldots) & A_{5}^{3}=\ldots
\end{array}
$$

Observe $t A_{s}^{t}=s A_{t}^{s}$ up to improvements of currents T_{4}, T_{6}, \ldots This selects preferred improvements of higher-spin currents: $T_{s+1}=\frac{1}{s} A_{s}^{1}$ is uniquely defined (up to shifts by the identity) More generally true in Lorentz-invariant theories

Evolution of KdV charges under TT deformation

Combining (up to factors)

$$
\begin{aligned}
& \langle n| A_{s}^{1}-A_{s}^{-1}|n\rangle=\partial_{L}\langle n| P_{s}|n\rangle \\
& \langle n| A_{s}^{1}+A_{s}^{-1}|n\rangle=\frac{s}{L}\langle n| P_{s}|n\rangle
\end{aligned}
$$

Evolution of KdV charges under TT deformation

Combining (up to factors)

$$
\begin{aligned}
& \langle n| A_{s}^{1}-A_{s}^{-1}|n\rangle=\partial_{L}\langle n| P_{s}|n\rangle \\
& \langle n| A_{s}^{1}+A_{s}^{-1}|n\rangle=\frac{s}{L}\langle n| P_{s}|n\rangle
\end{aligned}
$$

we get the linear equation

$$
\partial_{\lambda}\left\langle P_{s}\right\rangle=\langle H\rangle \partial_{L}\left\langle P_{s}\right\rangle+\frac{s}{L}\langle P\rangle\left\langle P_{s}\right\rangle
$$

All charges propagate along the same characteristics
Starting from a CFT we can solve

$$
\left\langle P_{s}\right\rangle= \begin{cases}\#\left\langle P_{1}\right\rangle^{s} & \text { for holomorphic currents } \\ \#\left\langle P_{1}\right\rangle^{-s} & \text { for antiholomorphic currents }\end{cases}
$$

Study II: zero-momentum sector

In the $T \bar{T}$ deformation, for zero-momentum states,
$\partial_{\lambda_{T \bar{T}}} E_{n}=\langle n| \partial_{\lambda_{T \bar{T}}} H|n\rangle=L \underbrace{\langle n| T_{00}|n\rangle}_{-E_{n} / L} \underbrace{\langle n| T_{11}|n\rangle}_{-\partial_{L} E_{n}}-L \underbrace{\langle n| T_{01}|n\rangle}_{=0} \underbrace{\langle n| T_{10}|n\rangle}_{\text {who cares? }}$

Lorentz-invariance not used!

Study II: zero-momentum sector

In the $T \bar{T}$ deformation, for zero-momentum states,
$\partial_{\lambda_{T \bar{T}}} E_{n}=\langle n| \partial_{\lambda_{T \bar{T}}} H|n\rangle=L \underbrace{\langle n| T_{00}|n\rangle}_{-E_{n} / L} \underbrace{\langle n| T_{11}|n\rangle}_{-\partial_{L} E_{n}}-L \underbrace{\langle n| T_{01}|n\rangle}_{=0} \underbrace{\langle n| T_{10}|n\rangle}_{\text {who cares? }}$

Lorentz-invariance not used!

Our variant: deform by $X^{1, u}-X^{-1, u}$ so

$$
\frac{1}{\pi} \partial_{\lambda}\left\langle P_{s}\right\rangle=\left\langle P_{1}-P_{-1}\right\rangle\left\langle A_{s}^{u}\right\rangle-\left\langle P_{u}\right\rangle\left\langle A_{s}^{1}-A_{s}^{-1}\right\rangle
$$

One has $\left\langle A_{s}^{1}-A_{s}^{-1}\right\rangle=-2 \pi \partial_{L}\left\langle P_{s}\right\rangle$, so for zero-momentum states,

$$
\partial_{\lambda}\left\langle P_{s}\right\rangle=2 \pi^{2}\left\langle P_{u}\right\rangle \partial_{L}\left\langle P_{s}\right\rangle \quad \text { if }\left\langle P_{1}-P_{-1}\right\rangle=0
$$

$$
\partial_{\lambda}\left\langle P_{s}\right\rangle=2 \pi^{2}\left\langle P_{u}\right\rangle \partial_{L}\left\langle P_{s}\right\rangle \quad \text { if }\left\langle P_{1}-P_{-1}\right\rangle=0
$$

- $\left\langle P_{u}\right\rangle$ obeys the inviscid Burgers equation
- other $\left\langle P_{s}\right\rangle$ are probes riding this flow

$$
\partial_{\lambda}\left\langle P_{s}\right\rangle=2 \pi^{2}\left\langle P_{\mu}\right\rangle \partial_{L}\left\langle P_{s}\right\rangle \quad \text { if }\left\langle P_{1}-P_{-1}\right\rangle=0
$$

- $\left\langle P_{u}\right\rangle$ obeys the inviscid Burgers equation
- other $\left\langle P_{s}\right\rangle$ are probes riding this flow

Starting from a CFT, spectrum is exactly solvable. Asymptotic density of states $\rho_{\mathrm{CFT}}(E)=\exp (\sim \sqrt{E})$ becomes

$$
\rho(E)=\exp \left(\sim E^{(|u|+1) / 2}\right)
$$

For $u=0$ ($J \bar{T}$ deformation) get Cardy growth with a different coefficient
For $u= \pm 1$ ($T \bar{T}$ deformation) get Hagedorn behaviour $\sum e^{-\beta E}$ blows up at β_{c} For $|u|>1$ completely new behaviour, arbitrarily strong

Work in progress: $d>2$

Continuous q-form symmetries $d \star J^{(q+1)}=0$ (standard case: $q=0$) Gauge theory $U(1)$ on $\mathbb{R}^{D} \rightarrow$ "electric" 1-form symmetry $\quad(J=F)$
\rightarrow "magnetic" $(D-3)$-form symmetry $(J=\star F)$

Work in progress: $d>2$

Continuous q-form symmetries $d \star J^{(q+1)}=0$ (standard case: $q=0$) Gauge theory $U(1)$ on $\mathbb{R}^{D} \rightarrow$ "electric" 1-form symmetry $\quad(J=F)$

$$
\rightarrow \text { "magnetic" }(D-3) \text {-form symmetry }(J=\star F)
$$

Collision $\star J^{(1)} \wedge \star J^{(2)}$ defined up to derivatives

- Example: $\int d^{3} x \epsilon_{\mu \nu \rho} F^{\mu \nu} J^{\rho}$ in 3D (with conditions)
- Example: (mixed) theta term $\int F \wedge F$ for 4D $U(1)$ gauge theory
- Analogue of \sqrt{T} : Lorentz-breaking deformation $\int u_{\mu} T^{\mu \nu} \partial_{\nu} \phi$ for some fixed direction u

Factorization works too!

These constructions seem to work in lattice gauge theories too

Work in progress: $d>2$

Continuous q-form symmetries $d \star J^{(q+1)}=0$ (standard case: $q=0$) Gauge theory $U(1)$ on $\mathbb{R}^{D} \rightarrow$ "electric" 1-form symmetry $\quad(J=F)$

$$
\rightarrow \text { "magnetic" }(D-3) \text {-form symmetry }(J=\star F)
$$

Collision $\star J^{(1)} \wedge \star J^{(2)}$ defined up to derivatives

- Example: $\int d^{3} x \epsilon_{\mu \nu \rho} F^{\mu \nu} J^{\rho}$ in 3D (with conditions)
- Example: (mixed) theta term $\int F \wedge F$ for 4D $U(1)$ gauge theory
- Analogue of \sqrt{T} : Lorentz-breaking deformation $\int u_{\mu} T^{\mu \nu} \partial_{\nu} \phi$ for some fixed direction u

Factorization works too!

These constructions seem to work in lattice gauge theories too

> Thank you!

