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The most ambitious object of the two-dimensional relativistic field
theory (RFT) is the classification of all possible local RFT’s.

[...] every local RFT corresponds to a particular RG trajectory, which
typically (in all the known examples) starts from a [UV fixed point]

[...] it is not clear now whether any RFT exists with another type of
UV behavior

Zamolodchikov, From tricritical Ising to critical Ising by
thermodynamic Bethe ansatz, Nucl.Phys.B 358 (1991) 524-546
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Renormalizable QFT:
free fields (or CFT) in the UV
relevant interactions
RG flow towards the IR

→ gapped TQFT
→ free fields
→ non-trivial IR CFT

Examples:
2d action S =

∫ (
(∂ϕ)2 + ϕ2(m−1))d2x flows to minimal model Mm

(minimal model Mm) +
∫
ϕ(1,3)d2x flows to Mm−1

From tricritical Ising (M4) to critical Ising (M3) [Zamolodchikov]

2d action S =
∫ (

DΦDΦ + Φ3)d2x d2θ flows to M4

adding g
∫

Φd2x d2θ breaks supersymmetry, flows to free fermion (M3)
[Kastor, Martinec, Shenker]

Seff =
∫ [

g2 + ψ∂ψ + ψ∂ψ + 8g−2 ψ∂ψ︸︷︷︸
T

ψ∂ψ︸︷︷︸
T

+ . . . ]d2x
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Effective field theory:
Seff = Sren. +

∑
Oi irrelevant

λi

∫
Oi(x) d2x

︸ ︷︷ ︸
→ UV divergences
→ accumulation of counterterms
→ no predictive power

However, sometimes there is a nice UV completion

Seff =
∫ [

g2 + ψ∂ψ + ψ∂ψ + 8g−2 ψ∂ψ ψ∂ψ︸ ︷︷ ︸
TT

+ . . . ]d2x

1 Generalities on TT
2 Deformations by current bilinears

How energy levels vary
Deformed conserved currents: operators At

s
How charges vary: main evolution equation

3 Two studies
Study I: KdV charges under TT flow
Study II: super-Hagedorn in Lorentz-breaking flow

4 Work in progress: d > 2
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

TT operator [Zamolodchikov, 2004]

Universal irrelevant operator (in translation-invariant 2d QFTs)

“TT” = det T = T00T11 − T01T10 = TT − ΘΘ (×2?)

More precisely, ϵµνT0µ(x)T1ν(y) = (TT )(y) + derivatives.

Factorization of matrix elements on S1 × R of circumference L,

⟨n|TT |n⟩ = ϵµν⟨n|T0µ|n⟩⟨n|T1ν |n⟩
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

TT deformation [Smirnov–Zamolodchikov, 2016]

Deforming by ∂λTT
S =

∫
d2x TT namely ∂λTT

H =
∫

dx TT (x)
preserves symmetries
calculable spectrum ∂λTT

E = ∂L
(
E 2 − P2)/4 (Burgers eq.)

e.g., TT -deformed free scalars → (gs = 0) Nambu–Goto in light-cone gauge
Related to Jackiw–Teitelboim gravity (Dubovsky, Gorbenko, . . . ), 2d random geometry
(Cardy), AdS3 holography (McGough, Mezei, Verlinde, Giveon, Kutasov, Guica, . . . )

Derivation of Burgers equation

∂λTT
En = ⟨n|∂λTT

H|n⟩ = L ⟨n|T00|n⟩︸ ︷︷ ︸
In a relativistic theory: −En/L

⟨n|T11|n⟩︸ ︷︷ ︸
−∂LEn

−L ⟨n|T01|n⟩︸ ︷︷ ︸
iPn/L

⟨n|T10|n⟩︸ ︷︷ ︸
iPn/L

∂λTT
En = En∂LEn + P2

n
L (needs either Lorentz-invariance or Pn = 0)
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

How energy levels vary
Deformed conserved currents: operators At

s
How charges vary: main evolution equation

Current bilinears
Generalize TT , JT , JJ

Xab := ϵµνJµ
a Jν

b (point-split) defined modulo derivatives

Proof.
∂

∂xρ
ϵµνJµ

a (x)Jν
b (y) =

(
∂

∂xν
+

∂

∂yν

)
ϵµρJµ

a (x)Jν
b (y)

use OPE
ϵµν

∑
i

∂ρci (x − y)Oµν
i (y) = ϵµρ

∑
i

ci (x − y)∂νOµν
i (y)

so any Oi with non-constant c(x − y) must be a total derivative ∂ν(. . . )

∂λab S =
∫

d2x Xab deformation

Only makes sense if Ja and Jb are still conserved at order O(λ) etc.
This happens if and only if [Qa, Qb ] = 0 (see later for “if” direction)
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

How energy levels vary
Deformed conserved currents: operators At

s
How charges vary: main evolution equation

Evolution of energies under deformation by current bilinears
Xab := ϵµνJµ

a Jν
b −→ ∂λab S =

∫
d2x Xab −→ ∂λab H =

∫
dx Xab

On S1 × R of circumference L, factorization

⟨n|Xab|n⟩ = ϵµν
〈
n
∣∣Jµ

a
∣∣n〉〈n∣∣Jν

b
∣∣n〉

∂λab En = Lϵµν
〈
n
∣∣Jµ

a
∣∣n〉〈n∣∣Jν

b
∣∣n〉

∂λab En = 2 L
〈
n
∣∣J0

[a
∣∣n〉︸ ︷︷ ︸

(Qa)n

〈
n
∣∣J1

b]
∣∣n〉〈

n
∣∣J1

b]
∣∣n〉︸ ︷︷ ︸

?

Compact flavour symmetry =⇒ Qn quantized
Spatial translation =⇒ Qn = iPn ∈ (2πi/L)Z
Time translation =⇒ Qn = −En
KdV charges =⇒ need ∂λQn equation
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

How energy levels vary
Deformed conserved currents: operators At

s
How charges vary: main evolution equation

Strategy to study ∂λabEn = 2⟨n|Q[a|n⟩
〈
n
∣∣∣J1

b]
∣∣∣n〉

First, about (Qc)n = ⟨n|Qc |n⟩:
playing with commutators get similar equation ∂λab (Qc)n = . . .

Then, for
〈
n
∣∣J1

c
∣∣n〉, two case studies (much shorter)

Study I: TT deformation of Lorentz-invariant theory,
KdV charges “ride the Burgers flow”

Study II: T1•J• deformation of zero-momentum sector
super-Hagedorn density of states exp(E (>1))
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

How energy levels vary
Deformed conserved currents: operators At

s
How charges vary: main evolution equation

Cartan subalgebra: KdV charges Ps

Focus on commuting subset {Ps} of all charges {Qa}:
translations, Cartan of flavour symmetries, KdV charges

Conserved currents ∂Ts+1 = ∂Θs−1 of spin s ∈ Z, charges

Ps = 1
2π

∮ (
Ts+1dz + Θs−1dz

)

with stress-tensor
(

T Θ
Θ T

)
=
(

T2 Θ0
T0 Θ−2

)
[P1,O] = −i∂O and [P−1,O] = i∂O with P±1 = −1

2(H ± P)

Example (CFT): T2 = T , T4 = :T 2:, T6 = :T 3: + c+2
12 :(∂T )2:,. . . Θ−2k = T2k ,

Θ0 = Θ2 = Θ4 = · · · = T0 = T−2 = T−4 = · · · = 0

KdV currents fixed (up to improvements) by spin and [Ps , Pt ] = 0

Bruno Le Floch (Sorbonne Université and CNRS) Quadratic irrelevant deformations
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Conserved currents ∂Ts+1 = ∂Θs−1 of spin s ∈ Z, charges

Ps = 1
2π

∮ (
Ts+1dz + Θs−1dz

)
with stress-tensor

(
T Θ
Θ T

)
=
(

T2 Θ0
T0 Θ−2

)
[P1,O] = −i∂O and [P−1,O] = i∂O with P±1 = −1

2(H ± P)

Example (CFT): T2 = T , T4 = :T 2:, T6 = :T 3: + c+2
12 :(∂T )2:,. . . Θ−2k = T2k ,

Θ0 = Θ2 = Θ4 = · · · = T0 = T−2 = T−4 = · · · = 0

KdV currents fixed (up to improvements) by spin and [Ps , Pt ] = 0
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

How energy levels vary
Deformed conserved currents: operators At

s
How charges vary: main evolution equation

The operators At
s

Integrating [Ps ,Tt+1dz+Θt−1dz ] on a contour C gives [Ps ,PC
t ] = 0

so the one-form is exact:

[Ps ,Tt+1] = −i∂At
s = [P1,At

s ]
[Ps ,Θt−1] = −i∂At

s = −[P−1,At
s ]

In particular At
1 = Tt+1 and At

−1 = −Θt−1 (up to shifts by identity)

Generic At
s are not in conserved currents

Example (CFT): T2 = T , T4 = :T 2:, T6 = :T 3: + c+2
12 :(∂T )2:

A1
1 = T2 A3

1 = T4 A5
1 = T6

A1
3 = 3T4 + ∂(. . . ) A3

3 = 4:T 3: − c+2
2 :(∂T )2:

A1
5 = 5T6 + ∂(. . . ) A3

5 = 15:T 4:
2 − 5(13+2c):T (∂T )2:

3 + 5(−47+4c+c2):(∂2T )2:
72
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

How energy levels vary
Deformed conserved currents: operators At

s
How charges vary: main evolution equation

The operators At
s

At
1 = Tt+1 and At

−1 = −Θt−1
so the definition is equivalent to [P±1,At

s ] = [Ps ,At
±1]

The symmetry generalizes: [Ps ,Au
t ] = [Pt ,Au

s ]

Proof.
[P1, [P[s ,Au

t]]]
= [P[s|, [P1,Au

|t]]] (Jacobi)
= [P[s , [Pt],Au

1 ]] (definition of A)
= 0 (Jacobi)

Likewise [P−1, [P[s ,Au
t]]] = 0

so [P[s ,Au
t]] = multiple of identity = 0 (because traceless)
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

How energy levels vary
Deformed conserved currents: operators At
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How charges vary: main evolution equation

Deforming by current bilinears preserves symmetries
For two spins u, v consider δH =

∫
dx Xu,v

with Xu,v = (Tu+1Θv−1 − Θu−1Tv+1)reg current bilinear
To preserve conservation, δPs = ?

[H, δPs ] = [Ps , δH] =
∫

dx [Ps ,Xu,v (x)]︸ ︷︷ ︸
total derivative?

yes!

Proof. [Ps ,X u,v ] = [Ps ,Tu+1Θv−1 − Θu−1Tv+1]
= [P1,Au

s ]Θv−1 + [P−1,Au
s ]Tv+1 − (u ↔ v)

= [P1,Au
s Θv−1] + [P−1,Au

s Tv+1] − (u ↔ v)

δPs = 1
2

∫
dx (Xu,v

s,1 + Xu,v
−1,s) where Xu,v

s,t = (Au
s Av

t − Au
t Av

s )reg
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

How energy levels vary
Deformed conserved currents: operators At

s
How charges vary: main evolution equation

Toward an evolution equation

Goal: ∂λ⟨n|Ps |n⟩ = ⟨n|∂λPs |n⟩ = . . . for states |n⟩ on S1 × R

We’ve just seen ∂λPs = 1
2
∫

dx (Xu,v
s,1 + Xu,v

−1,s) so we compute

⟨n|Xu,v
s,t |n⟩ =

⟨n|Au
s |n⟩⟨n|Av

t |n⟩−⟨n|Au
t |n⟩⟨n|Av

s |n⟩ (factorization)

Proof summary. Insert complete set of states (eigenstates of all P•)

⟨n|Xu,v
s,t |n⟩ =

∑
|m⟩

(
⟨n|Au

s |m⟩⟨m|Av
t |n⟩ − ⟨n|Au

t |m⟩⟨m|Av
s |n⟩
)

For any spin r , compute a bit to show

⟨n|[Pr , Au
s ]|m⟩⟨m|Av

t |n⟩ − ⟨n|[Pr , Au
t ]|m⟩⟨m|Av

s |n⟩ = 0

This is ⟨m|Pr |m⟩ − ⟨n|Pr |n⟩ times the summand,
so summand = 0 except for |m⟩ = |n⟩ (assumes nondegenerate spectrum)
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Deformations by current bilinears
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Work in progress: d > 2

How energy levels vary
Deformed conserved currents: operators At

s
How charges vary: main evolution equation

Side comment on collisions
In fact we can define more general collisions

k!At1
[s1

(x1) . . .Atk
sk ](xk) = X t1,...,tk

s1,...,sk (x) +
∑

i
[Psi , . . . ]

defined up to commutators
∑

i [Psi , . . . ]
(like Xu,v is defined up to derivatives)
obey factorization

⟨n|X t1,...,tk
s1,...,sk |n⟩ = k!⟨n|At1

[s1
|n⟩ . . . ⟨n|Atk

sk ]|n⟩

obey
[P[s0 ,X

t1,...,tk
s1,...,sk ]] = 0

(but deforming by these operators breaks all symmetries,
so they are most likely not that useful)
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Deformations by current bilinears

Two studies
Work in progress: d > 2

How energy levels vary
Deformed conserved currents: operators At

s
How charges vary: main evolution equation

Main evolution equation

Denoting ⟨O⟩ := ⟨n|O|n⟩, we end up with

2∂λu,v ⟨Ps⟩ = ⟨Pu⟩⟨Av
s ⟩ − ⟨Pv ⟩⟨Au

s ⟩

Sadly, ∂λu,v ⟨At
s⟩ = nothing in general

Study I: TT deformation (u, v) = (1,−1)
Lorentz-invariance relates ⟨A1

s ⟩ ∼ ⟨As
1⟩ ∼ ⟨Ps⟩

We learn that KdV charges ride the Burgers flow

Study II: T1•J• deformation (difference of u = ±1, arbitrary v)
In zero-momentum sector ⟨Av

s ⟩ drops out
Get super-Hagedorn density of states exp(≫ E )
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1 Generalities on TT

2 Deformations by current bilinears
How energy levels vary
Deformed conserved currents: operators At

s
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3 Two studies
Study I: KdV charges under TT flow
Study II: super-Hagedorn in Lorentz-breaking flow

4 Work in progress: d > 2
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Two studies
Work in progress: d > 2

Study I: KdV charges under TT flow
Study II: super-Hagedorn in Lorentz-breaking flow

Study I: Deforming by TT

2∂λTT
⟨Ps⟩ = ⟨P1⟩⟨A−1

s ⟩ − ⟨P−1⟩⟨A1
s ⟩

Need to understand A±1
s . Two steps.

Understand ∂L

Relate A±1
s to As

±1 in Lorentz-invariant theories
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

Study I: KdV charges under TT flow
Study II: super-Hagedorn in Lorentz-breaking flow

Changing the length
We know ∂LH =

∫
dx Txx = 1

2π

∫
dx (A1

1 − A−1
1 + A1

−1 − A−1
−1)

Use conservation [H, ∂LPs ] = [Ps , ∂LH] to deduce

∂LPs = 1
2π

∫
dx (A1

s − A−1
s )

For states with zero momentum (⟨P1 − P−1⟩ = 0), we’re done:

2∂λTT
⟨Ps⟩ = ⟨H⟩∂L⟨Ps⟩

In fact, for zero momentum (⟨P1 − P−1⟩ = 0),

∂λ⟨Ps⟩ = ⟨Q⟩∂L⟨Ps⟩ under ϵµνJµTxν deformation

The deformation “scales space according to ⟨Q⟩”
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Study II: super-Hagedorn in Lorentz-breaking flow

Changing the length
We know ∂LH =

∫
dx Txx = 1

2π

∫
dx (A1

1 − A−1
1 + A1

−1 − A−1
−1)

Use conservation [H, ∂LPs ] = [Ps , ∂LH] to deduce
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

Study I: KdV charges under TT flow
Study II: super-Hagedorn in Lorentz-breaking flow

Relating At
s and As

t

Example (CFT): T2 = T , T4 = :T 2:, T6 = :T 3: + c+2
12 :(∂T )2:

A1
1 = T2 A3

1 = T4 A5
1 = T6

A1
3 = 3T4 + ∂(. . . ) A3

3 = . . . A5
3 = 3

5A3
5 + . . .

A1
5 = 5T6 + ∂(. . . ) A3

5 = . . .

Observe t At
s = s As

t up to improvements of currents T4, T6, . . .
This selects preferred improvements of higher-spin currents:
Ts+1 = 1

s A1
s is uniquely defined (up to shifts by the identity)

More generally true in Lorentz-invariant theories
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Generalities on TT
Deformations by current bilinears

Two studies
Work in progress: d > 2

Study I: KdV charges under TT flow
Study II: super-Hagedorn in Lorentz-breaking flow

Evolution of KdV charges under TT deformation
Combining (up to factors)

⟨n|A1
s − A−1

s |n⟩ = ∂L⟨n|Ps |n⟩

⟨n|A1
s + A−1

s |n⟩ = s
L⟨n|Ps |n⟩

we get the linear equation

∂λ⟨Ps⟩ = ⟨H⟩∂L⟨Ps⟩ + s
L⟨P⟩⟨Ps⟩

All charges propagate along the same characteristics

Starting from a CFT we can solve

⟨Ps⟩ =
{

#⟨P1⟩s for holomorphic currents
#⟨P1⟩−s for antiholomorphic currents
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Work in progress: d > 2

Study I: KdV charges under TT flow
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Study II: zero-momentum sector
In the TT deformation, for zero-momentum states, [Cardy]

∂λTT
En = ⟨n|∂λTT

H|n⟩ = L ⟨n|T00|n⟩︸ ︷︷ ︸
−En/L

⟨n|T11|n⟩︸ ︷︷ ︸
−∂LEn

−L ⟨n|T01|n⟩︸ ︷︷ ︸
=0

⟨n|T10|n⟩︸ ︷︷ ︸
who cares?

Lorentz-invariance not used!

Our variant: deform by X 1,u − X−1,u so

1
π
∂λ⟨Ps⟩ = ⟨P1 − P−1⟩⟨Au

s ⟩ − ⟨Pu⟩⟨A1
s − A−1

s ⟩

One has ⟨A1
s − A−1

s ⟩ = −2π∂L⟨Ps⟩, so for zero-momentum states,

∂λ⟨Ps⟩ = 2π2⟨Pu⟩∂L⟨Ps⟩ if ⟨P1 − P−1⟩ = 0
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Deformations by current bilinears
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Work in progress: d > 2

Study I: KdV charges under TT flow
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∂λ⟨Ps⟩ = 2π2⟨Pu⟩∂L⟨Ps⟩ if ⟨P1 − P−1⟩ = 0

⟨Pu⟩ obeys the inviscid Burgers equation
other ⟨Ps⟩ are probes riding this flow

Starting from a CFT, spectrum is exactly solvable.
Asymptotic density of states ρCFT(E ) = exp(∼

√
E ) becomes

ρ(E ) = exp
(
∼ E (|u|+1)/2)

For u = 0 (JT deformation) get Cardy growth with a different coefficient
For u = ±1 (TT deformation) get Hagedorn behaviour

∑
e−βE blows up at βc

For |u| > 1 completely new behaviour, arbitrarily strong
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Work in progress: d > 2

Continuous q-form symmetries d ⋆ J (q+1) = 0 (standard case: q = 0)
Gauge theory U(1) on RD → “electric” 1-form symmetry (J = F )

→ “magnetic” (D − 3)-form symmetry (J = ⋆F )

Collision ⋆J (1) ∧ ⋆J (2) defined up to derivatives
Example:

∫
d3x ϵµνρF µνJρ in 3D (with conditions)

Example: (mixed) theta term
∫

F ∧ F for 4D U(1) gauge theory

Analogue of JT : Lorentz-breaking deformation
∫

uµT µν∂νϕ for some fixed
direction u

Factorization works too!
These constructions seem to work in lattice gauge theories too

Thank you!
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