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The most ambitious object of the two-dimensional relativistic field
theory (RFT) is the classification of all possible local RFT's.

[...] every local RFT corresponds to a particular RG trajectory, which
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The most ambitious object of the two-dimensional relativistic field
theory (RFT) is the classification of all possible local RFT's.

[...] every local RFT corresponds to a particular RG trajectory, which
typically (in all the known examples) starts from a [UV fixed point]

[...] it is not clear now whether any RFT exists with another type of
UV behavior

Zamolodchikov, From tricritical Ising to critical Ising by
thermodynamic Bethe ansatz, Nucl.Phys.B 358 (1991) 524-546
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o free fields (or CFT) in the UV
@ relevant interactions
@ RG flow towards the IR
— gapped TQFT

— free fields
— non-trivial IR CFT
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Renormalizable QFT:
o free fields (or CFT) in the UV
@ relevant interactions

@ RG flow towards the IR
— gapped TQFT
— free fields
— non-trivial IR CFT

Examples:
@ 2d action S = f((a¢)2 + ¢2(m’1))d2x flows to minimal model M,

@ (minimal model Mp) + [ ¢1,3d’x flows to Mpm_1
From tricritical Ising (Ma) to critical Ising (M3) [Zamolodchikov]

@ 2d action S = I(D(Dbd) + (D3)d2x d?0 flows to M

adding gf dd?x d*0 breaks supersymmetry, flows to free fermion (M3)
[Kastor, Martinec, Shenker]

Sur = / (8% + 63 + 0T + 882y JOY + ... |d*x
~

T T
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Effective field theory:
SefF - 5ren. + Z )\i / Oi(X) d2X

Oj irrelevant

— UV divergences
— accumulation of counterterms
— no predictive power

However, sometimes there is a nice UV completion

Seir= [ [8% + 4D + GO% + 8g 2 p0u DY + .. |d%
\1—/
TT

@ Generalitieson TT
© Deformations by current bilinears

@ How energy levels vary

@ Deformed conserved currents: operators At

@ How charges vary: main evolution equation
© Two studies

@ Study I: KdV charges under T T flow

@ Study II: super-Hagedorn in Lorentz-breaking flow
@ Work in progress: d > 2



Generalities on TT

T T operator

Universal irrelevant operator (in translation-invariant 2d QFTs)

“TT' =detT = TooTi1— TuTio =TT — 00 (x22)

More precisely, € To,,(x) T1.(y) = (T T)(y) + derivatives.
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Generalities on TT

T T operator

Universal irrelevant operator (in translation-invariant 2d QFTs)

“TT' =detT = TooTi1— TuTio =TT — 00 (x22)

More precisely, € To,,(x) T1.(y) = (T T)(y) + derivatives.

Factorization of matrix elements on S! x R of circumference L,

(n| TT|n) = €"(n| Tou|n){n| Tay|n)
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Generalities on TT

T T deformation

- _ 2 = _ =
Deforming by 8>\T75 = [d*x TT namely 8>\T7H = [dx TT(x)
@ preserves symmetries
o calculable spectrum 0y __E = OL(E? — P?) /4 (Burgers eq.)
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Generalities on TT

T T deformation

- _ 2 = _ =
Deforming by 8>\T75 = [d*x TT namely 8>\T7H = [dx TT(x)
@ preserves symmetries
o calculable spectrum 0y __E = OL(E? — P?) /4 (Burgers eq.)

e.g., T T-deformed free scalars — (gs = 0) Nambu—Goto in light-cone gauge

Related to Jackiw—Teitelboim gravity (Dubovsky, Gorbenko, ... ), 2d random geometry
(Cardy), AdS3 holography (McGough, Mezei, Verlinde, Giveon, Kutasov, Guica, ...)
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Generalities on TT

T T deformation

- _ 2 = _ =
Deforming by 6>\T75 = [d*x TT namely 8>\T7H = [dx TT(x)
@ preserves symmetries
o calculable spectrum 0y __E = OL(E? — P?) /4 (Burgers eq.)

e.g., T T-deformed free scalars — (gs = 0) Nambu—Goto in light-cone gauge

Related to Jackiw—Teitelboim gravity (Dubovsky, Gorbenko, ... ), 2d random geometry
(Cardy), AdS3 holography (McGough, Mezei, Verlinde, Giveon, Kutasov, Guica, ...)

Derivation of Burgers equation

Ox,=En = (n|Ox__H|n) = L{n|Too|n) (n|T11|n) —L {n[To1|n) (n| T1o|n)

In a relativistic theory: —E,/L —0LE, iPn/L iPn/L
2
8>‘T7 E,=E,0 E,+ Tn (needs either Lorentz-invariance or P, = 0)
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How energy levels vary
Deformed conserved currents: operators —\:
How charges vary: main evolution equation

Deformations by current bilinears

Current bilinears

Generalize TT, JT, JJ

Xab = €, J'Jy (point-split) defined modulo derivatives
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How energy levels vary
Deformed conserved currents: operators —\:
How charges vary: main evolution equation

Deformations by current bilinears

Current bilinears

Generalize TT, JT, JJ

Xab = €, J'Jy (point-split) defined modulo derivatives

Proof. 5 5 )
s W = (50 + 57 ) ewe L OO W)
use OPE
e 3 0pcilx = V)0 (1) = eup 3 i = 1), 0 (1)
so any O; with non-constant c(x — y) must be a total derivative 8, (...) O
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How energy levels vary
Deformed conserved currents: operators —\:
How charges vary: main evolution equation

Deformations by current bilinears

Current bilinears

Generalize TT, JT, JJ

Xab = €, J'Jy (point-split) defined modulo derivatives

Proof. 5 5 )
s W = (50 + 57 ) ewe L OO W)
use OPE
e 3 Bpeilx V)OI () = eup 3 i~ )01 ()
so any O; with non-constant c(x — y) must be a total derivative 8, (...) O

Oy\avS = /d2x X,p deformation

Only makes sense if J, and J,, are still conserved at order O()) etc.

This happens if and only if [Qa, Qp] = O (see later for “if” direction)
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How energy levels vary
Deformed conserved currents: operators —\:
How charges vary: main evolution equation

Deformations by current bilinears

Evolution of energies under deformation by current bilinears
Xab = € iy — 0\aS = [ d®x Xap — Oy H = [ dx Xap
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How energy levels vary
Deformed conserved currents: operators —\:
How charges vary: main evolution equation

Deformations by current bilinears

Evolution of energies under deformation by current bilinears
Xab = € iy — 0\aS = [ d®x Xap — Oy H = [ dx Xap

On St x R of circumference L, factorization
(n|Xap|n) = € (n[J[n){n[J5|n)
Ozav En = Le (n|J4 |n)(n|Jg|n)
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How energy levels vary
Deformed conserved currents: operators —\:
How charges vary: main evolution equation

Deformations by current bilinears

Evolution of energies under deformation by current bilinears
Xab = € iy — 0\aS = [ d®x Xap — Oy H = [ dx Xap

On St x R of circumference L, factorization
(n|Xap|n) = e (n[J5[n)(n|Jg|n)
Orav En = L (n[ 2| m)(nl )

O\avEp =2 L<n|J[oa|n> <n|Jg]|n>
——

(Qa)n

e Compact flavour symmetry = @, quantized
e Spatial translation = Q, = iP, € (27i/L)Z
@ Time translation — Q, = —E,

o KdV charges — ‘need O\ Qn equation‘
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How energy levels vary
Deformed conserved currents: operators —\:
How charges vary: main evolution equation

Deformations by current bilinears

Evolution of energies under deformation by current bilinears
Xab = € iy — 0\aS = [ d®x Xap — Oy H = [ dx Xap

On St x R of circumference L, factorization
(n|Xap|n) = e (n[J5[n)(n|Jg|n)
Orav En = L (n[ 2| m)(nl )

O\avEp =2 L<n|J[oa|n> <n|Jé]}n>
——— | ———

(Qa)n ?

e Compact flavour symmetry = @, quantized
e Spatial translation = Q, = iP, € (27i/L)Z
@ Time translation — Q, = —E,

o KdV charges — ‘need O\ Qn equation‘
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How energy levels vary
Deformed conserved currents: operators —\:
How charges vary: main evolution equation

Deformations by current bilinears

Strategy to study O\»E, = 2 ”‘Q[a‘”><”‘Jl:1>]‘ >
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How energy levels vary
Deformed conserved currents: operators —\:
How charges vary: main evolution equation

Deformations by current bilinears

Strategy to study O\ E, = 2(n\Q[a\n><n‘Jg]‘n>

First, about (Q.), = (n|Qc|n):
playing with commutators get similar equation 0ya(Qc)n = . ..
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How energy levels vary
Deformed conserved currents: operators —\:
How charges vary: main evolution equation

Deformations by current bilinears

Strategy to study O\ E, = 2(n\Q[a\n><n‘Jg]‘n>

First, about (Q.), = (n|Qc|n):
playing with commutators get similar equation 0ya(Qc)n = . ..
Then, for {n|J%|n), two case studies (much shorter)

Study I: TT deformation of Lorentz-invariant theory,
KdV charges “ride the Burgers flow”

Study Il: T1,J, deformation of zero-momentum sector
super-Hagedorn density of states exp(E(>1)
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How energy levels vary
Deformed conserved currents: operators A;
How charges vary: main evolution equation

Deformations by current bilinears

Cartan subalgebra: KdV charges P;

Focus on commuting subset {Ps} of all charges {Q.,}:
translations, Cartan of flavour symmetries, KdV charges

Conserved currents 9 T,1 = 0Qs_1 of spin s € Z, charges

1
Po= o 7( (Top1dz + Os_1d2)
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How energy levels vary
Deformed conserved currents: operators A;
How charges vary: main evolution equation

Deformations by current bilinears

Cartan subalgebra: KdV charges P;

Focus on commuting subset {Ps} of all charges {Q.,}:
translations, Cartan of flavour symmetries, KdV charges

Conserved currents 9 T,1 = 0Qs_1 of spin s € Z, charges

1
Po= o 7( (Top1dz + Os_1d2)

with stress-tensor T ©)\_(T2 %o
) © T) \To -

[P1,0] = —idO and [P_1, 0] = i0O with P1y = —3(H £ P)
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How energy levels vary
Deformed conserved currents: operators A;
How charges vary: main evolution equation

Deformations by current bilinears

Cartan subalgebra: KdV charges P;

Focus on commuting subset {Ps} of all charges {Q.,}:
translations, Cartan of flavour symmetries, KdV charges

Conserved currents 9 T,1 = 0Qs_1 of spin s € Z, charges

1
Po= o 7( (Top1dz + Os_1d2)

with stress-tensor T ©)\_(T2 %o
© T) \To -

[P1,0] = —idO and [P_1, 0] = i0O with P1y = —3(H £ P)

Example (CFT): T,=T, T4::T2:, T6::T3:+ %:(8T)2:'___ O _ok :ﬁ'
Op=0y=04=--=To=T o=T_4=---=0

KdV currents fixed (up to improvements) by spin and [Ps, P:] =0
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How energy levels vary
Deformed conserved currents: operators A;
How charges vary: main evolution equation

Deformations by current bilinears

The operators AL

Integrating [Ps, Tr;1dz+©;_1dZ] on a contour C gives [Ps, P] =0
so the one-form is exact:

[Ps, Tes1] = —i0A: = [P1, A]]

[Ps,©;_1] = —i0AL = —[P_1, Al]
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. - How energy levels var,
Deformations by current bilinears 4 y t
Deformed conserved currents: operators A_
How charges vary: main evolution equation

The operators AL

Integrating [Ps, T¢+1dz+©;_1dz] on a contour C gives [Pk, Pf] =0
so the one-form is exact:

[Ps, Teqa] = —i0A; = [P, A{]
[Ps,©;_1] = —i0AL = —[P_1, Al]

In particular Ai = Tt+1 and At_l = —O¢_1 | (up to shifts by identity)

Generic AL are not in conserved currents

Bruno Le Floch (Sorbonne Université and CNRS)

Quadratic irrelevant deformations



How energy levels vary
Deformed conserved currents: operators A;
How charges vary: main evolution equation

Deformations by current bilinears

The operators AL

Integrating [Ps, T¢+1dz+©;_1dz] on a contour C gives [Pk, Pf] =0
so the one-form is exact:

[Ps, Teqa] = —i0A; = [P, A{]
[Ps,©;_1] = —i0AL = —[P_1, Al]

In particular Ai = Tt+1 and At_l = —O¢_1 | (up to shifts by identity)
Generic AL are not in conserved currents

Example (CFT): To = T, T4 =:T%, To = T3 + £2:(9T)2%

Al =T, A=T, AS=Ts
AL =3T,+0(...) AI=4T3—<2:(0T)%

T4, . 2. _ 2y.( 9212
Al=5Ts1a(..) A=1T%_ 5(13+2c)3.T(8T) : S 47+4CJ;2c ):(82T)2:
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How energy levels vary
Deformed conserved currents: operators A;
How charges vary: main evolution equation

Deformations by current bilinears

The operators AL

Integrating [Ps, T¢+1dz+©;_1dz] on a contour C gives [Pk, Pf] =0
so the one-form is exact:

[Ps, Teqa] = —i0A; = [P, A{]
[Ps,©;_1] = —i0AL = —[P_1, Al]

In particular Ai = Tt+1 and At_l = —O¢_1 | (up to shifts by identity)
Generic AL are not in conserved currents

Example (CFT): To =T, Ty =:T?, To =:T°:+ 32 2:(0T)%:

Al =T, A=T, AS=Ts
AL =3T,+0(...) A3=4T3— S2:(0T)%

T4, . 2. _ 2y.( 9212
Al=5Ts1a(..) A=1T%_ 5(13+2c)3.T(8T) : S 47+4CJ;2c ):(82T)2:
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How energy levels vary
Deformed conserved currents: operators A;
How charges vary: main evolution equation

Deformations by current bilinears

The operators AL

A]t_ = Tt+1 and At_l = _@t—l
so the definition is equivalent to [Py1, Al] = [Ps, AL4]

The symmetry generalizes: ‘ [Ps, AY] = [Pz, AY]
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How energy levels vary
Deformed conserved currents: operators A;
How charges vary: main evolution equation

Deformations by current bilinears

The operators AL

A]t_ = Tt+1 and At_l = _@t—l
so the definition is equivalent to [Py1, Al] = [Ps, AL4]

The symmetry generalizes: ‘ [Ps, AY] = [Pz, AY]

Proof.
['Dla [P[SvAltl]]]
= [Pys|, [P, Ayl (Jacobi)
= [P, [Py, AY]]  (definition of A)
=0 (Jacobi)
Likewise [P_1, [Ps, Ayl] =0
so [P, Aj] = multiple of identity = 0 (because traceless) O

Bruno Le Floch (Sorbonne Université and CNRS) Quadratic irrelevant deformations



How energy levels vary
Deformed conserved currents: operators A;
How charges vary: main evolution equation

Deformations by current bilinears

Deforming by current bilinears preserves symmetries

For two spins u, v consider 0H = /dx XY
with XY = (Ty410©v_1 — ©4—1Ty41)reg current bilinear

To preserve conservation, 6P; = 7
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How energy levels vary
Deformed conserved currents: operators A;
How charges vary: main evolution equation

Deformations by current bilinears

Deforming by current bilinears preserves symmetries

For two spins u, v consider 0H = /dx XY
with XY = (Ty410©v_1 — ©4—1Ty41)reg current bilinear

To preserve conservation, 6P; = 7

[H,5P,] = [Py, §H] = / dx [Ps, X (x)]

total derivative?
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How energy levels vary
Deformed conserved currents: operators A;
How charges vary: main evolution equation

Deformations by current bilinears

Deforming by current bilinears preserves symmetries

For two spins u, v consider 0H = /dx XY
with XY = (Ty410©v_1 — ©4—1Ty41)reg current bilinear

To preserve conservation, 6P; = 7

[H,5P,] = [Py, §H] = / dx [Ps, X (x)]

total derivative? yes!

Proof. [Ps, X""'] = [Ps, Tu419v-1 — ©y_1T\41]
= [PL,AO -1 + [P, Al Tuq1 — (U > v)
= [Pl, Ag@v—l] + [P_l, A;’ Tv+1] — (U < V) OJ
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How energy levels vary
Deformed conserved currents: operators A;
How charges vary: main evolution equation

Deformations by current bilinears

Deforming by current bilinears preserves symmetries

For two spins u, v consider 0H = /dx XY
with XY = (Ty410©v_1 — ©4—1Ty41)reg current bilinear

To preserve conservation, 6P; = 7

[H,5P,] = [Py, §H] = / dx [Ps, X (x)]

total derivative? yes!

Proof. [Ps, X""'] = [Ps, Tu419v-1 — ©y_1T\41]
= [PL,AO -1 + [P, Al Tuq1 — (U > v)
= [Pl, Ag@v—l] + [P_l, A;’ Tv+1] — (U < V) OJ

1 u,v u,v u,v v v
0Ps = 5 / dx (X5 + XU15) | where XZ1y = (ALAY — AYAY)reg
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How energy levels vary
Deformed conserved currents: operators —\:
How charges vary: main evolution equation

Deformations by current bilinears

Toward an evolution equation

Goal: d(n|Ps|n) = (n|OxPs|n) = ... for states |n) on S! x R

We've just seen 0yPs = 3 [ dx (X[} + X"y;) so we compute

(n|Xs'|n) =
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How energy levels vary
Deformed conserved currents: operators —\:
How charges vary: main evolution equation

Deformations by current bilinears

Toward an evolution equation

Goal: d(n|Ps|n) = (n|OxPs|n) = ... for states |n) on S! x R

We've just seen 0yPs = 3 [ dx (X[} + X"y;) so we compute

<n|XSLf’tV|n> = (n|AY|n)(n|AY|n)—(n|A{|n)(n|AY|n) (factorization)
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How energy levels vary

o
Deformed conserved currents: operators A,
How charges vary: main evolution equation

Deformations by current bilinears

Toward an evolution equation

Goal: d(n|Ps|n) = (n|OxPs|n) = ... for states |n) on S! x R

We've just seen 0yPs = 3 [ dx (X[} + X"y;) so we compute

<n|XSLf’tV|n> = (n|AY|n)(n|AY|n)—(n|A{|n)(n|AY|n) (factorization)

Proof summary. Insert complete set of states (eigenstates of all Ps)
(alx2 1) = 3 ((alA¢1m) (ml Y )~ (ol At ) (ml21))
[m)
For any spin r, compute a bit to show
(nl[Pr, AST[m) (m|AY[n) — (n[[Pr, A{]|m)(m|AS|n) = 0

This is (m|P;|m) — (n|P,|n) times the summand,
so summand = 0 except for |m) = |n) (assumes nondegenerate spectrum) ]
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How energy levels vary

o
Deformed conserved currents: operators A,
How charges vary: main evolution equation

Deformations by current bilinears

Side comment on collisions

In fact we can define more general collisions

KIAL () . A (a) = XE7 +Z[Ps,

o defined up to commutators > ;[Ps,, . . -]
(like X" is defined up to derivatives)

@ obey factorization

(n| X35k In) = KKnl AR [n) .. (n|Ag|n)

S1,

@ obey
[P[507 ;]:_l: sk]] - 0

(but deforming by these operators breaks all symmetries,
so they are most likely not that useful)
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How energy levels vary .
Deformed conserved currents: operators A,

Deformations by current bilinears
How charges vary: main evolution equation

Main evolution equation

Denoting (O) := (n|O|n), we end up with

205, (Ps) = (Pu)(Ag) — (Py)(AS)

Sadly, 0y, , (Af) = nothing in general

Quadratic irrelevant deformations
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How energy levels vary

o
Deformed conserved currents: operators A,
How charges vary: main evolution equation

Deformations by current bilinears

Main evolution equation

Denoting (O) := (n|O|n), we end up with

205, (Ps) = (Pu)(Ag) — (Py)(AS)

Sadly, 0y, , (Af) = nothing in general

Study I: TT deformation (u,v) = (1,—1)
Lorentz-invariance relates (Al) ~ (A$) ~ (Ps)
We learn that KdV charges ride the Burgers flow
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How energy levels vary

o
Deformed conserved currents: operators A,
How charges vary: main evolution equation

Deformations by current bilinears

Main evolution equation

Denoting (O) := (n|O|n), we end up with

205, (Ps) = (Pu)(Ag) — (Py)(AS)

Sadly, 0y, , (Af) = nothing in general

Study I: TT deformation (u,v) = (1,—1)
Lorentz-invariance relates (Al) ~ (A$) ~ (Ps)
We learn that KdV charges ride the Burgers flow

Study Il: T1,J, deformation (difference of u = +1, arbitrary v)
In zero-momentum sector (AY) drops out
Get super-Hagedorn density of states exp(>> E)
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Study |: KdV charges under TT flow

Two studies Study II: super-Hagedorn in Lorentz-breaking flow

© Generalitieson TT

@ Deformations by current bilinears
@ How energy levels vary
@ Deformed conserved currents: operators AL
@ How charges vary: main evolution equation

© Two studies o
@ Study I: KdV charges under T T flow
@ Study II: super-Hagedorn in Lorentz-breaking flow

@ Work in progress: d > 2
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Study |: KdV charges under TT flow
Two studies Study II: super-Hagedorn in Lorentz-breaking flow

Study |: Deforming by TT

205 (Ps) = (PL)(AST) — (P-1){Aq)

Need to understand AFl. Two steps.
@ Understand 0;

o Relate AF! to A% in Lorentz-invariant theories
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Study |: KdV charges under TT flow
Two studies Study II: super-Hagedorn in Lorentz-breaking flow

Changing the length

1
We know O, H = /dx Too = o /dx (Al - AT+ AL, —ATD
7T
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Study |: KdV charges under TT flow
Two studies Study II: super-Hagedorn in Lorentz-breaking flow

Changing the length

1
\NemezhH::/dek::Eg/lu(Ai—A;1+A£1—A:b
Use conservation [H, 9, Ps] = [Ps, 0. H] to deduce

1
mP:%/wm}Aj)
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Study |: KdV charges under TT flow
Two studies Study II: super-Hagedorn in Lorentz-breaking flow

Changing the length

1

We know O, H = /dx Too = o /dx (Al - AT+ AL, —ATD

Use conservation [H, 9, Ps] = [Ps, 0. H] to deduce

1
ouPs = - [ax(al- A
For states with zero momentum ((P; — P_1) = 0), we're done:

205, (Ps) = (H)L(P)
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Study |: KdV charges under TT flow
Two studies Study II: super-Hagedorn in Lorentz-breaking flow

Changing the length

1

We know O, H = /dx Too = o /dx (Al - AT+ AL, —ATD

Use conservation [H, 9, Ps] = [Ps, 0. H] to deduce

1
ouPs = - [ax(al- A
For states with zero momentum ((P; — P_1) = 0), we're done:

205, (Ps) = (H)L(P)

In fact, for zero momentum ((P; — P_1) = 0),
O\(Ps) = (Q)0L(Ps) under €"”J, T, deformation

The deformation “scales space according to (Q)”
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Study |: KdV charges under TT flow
Two studies Study II: super-Hagedorn in Lorentz-breaking flow

Relating AL and A;
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Study |: KdV charges under TT flow

Two studies Study II: super-Hagedorn in Lorentz-breaking flow

Relating AL and A;

Example (CFT): T, =T, Ty =:T%, Tg =:T3:+ <52:(0T)%

Ar=Ts M=T, =T,
AL=3T,+0(...) AA=... =3A+...

Al =5Ts+0(...) Al=...

Quadratic irrelevant deformations
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Study |: KdV charges under TT flow
Two studies Study II: super-Hagedorn in Lorentz-breaking flow

Relating AL and A;

Example (CFT): T, =T, Ty =:T%, Tg =:T3:+ <52:(0T)%

Al=T, AB=T, AA=Ts
A3 =3T4+0(...) AA=... A3=3AF+...
Al =5Ts+0(...) Al=...

Observe t AL = s A up to improvements of currents Ty, T, ...
This selects preferred improvements of higher-spin currents:
T5+1 = %Al‘ is uniquely defined (up to shifts by the identity)

More generally true in Lorentz-invariant theories
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Study |: KdV charges under TT flow
Two studies Study II: super-Hagedorn in Lorentz-breaking flow

Evolution of KdV charges under T T deformation

Combining (up to factors)
(nAg — ASHn) = Oc(n|Ps|n)
(nlAL+ A |n) = Z(n|Ps|n)
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Study |: KdV charges under TT flow
Two studies Study II: super-Hagedorn in Lorentz-breaking flow

Evolution of KdV charges under T T deformation

Combining (up to factors)
(nAg — ASHn) = Oc(n|Ps|n)
(nlAL+ A |n) = Z(n|Ps|n)

we get the linear equation

On(Ps) = (H)IL(Ps) + —(P){Ps)
All charges propagate along the same characteristics
Starting from a CFT we can solve

#(P1)°  for holomorphic currents
<PS> =

#(P1)~° for antiholomorphic currents
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Study |: KdV charges under TT flow
Two studies Study II: super-Hagedorn in Lorentz-breaking flow

Study Il: zero-momentum sector

In the TT deformation, for zero-momentum states, [Cardy]
8>‘T7En = <n]8)\T7H]n> =1L <n| T00]n> (n[ T11]n> —L <n\ T01‘n> <n\ Tlo‘n>
—E,/L —0LEn =0 who cares?

Lorentz-invariance not used!
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Study |: KdV charges under TT flow
Two studies Study II: super-Hagedorn in Lorentz-breaking flow

Study Il: zero-momentum sector

In the TT deformation, for zero-momentum states, [Cardy]
8>‘T7En = <n]8)\T7H]n> =1L <n| T00]n> (n[ T11]n> —L <n\ T01‘n> <n\ Tlo‘n>
—E,/L = =0 who cares?

Lorentz-invariance not used!

Our variant: deform by X1¥ — X~1¥ 5o

S S

%MPS) = (P1 = P1)(AY) — (Pu)(A; — A7)

One has (Al — A-1) = —270, (Ps), so for zero-momentum states,

On(Ps)y = 2m2(P,)OL(Ps) if (P1 —P_1) =0
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Study |: KdV charges under TT flow

Two studies Study II: super-Hagedorn in Lorentz-breaking flow

O (Ps)y = 2m2(P,)OL(Ps) if (P1 —P_1) =0

e (P,) obeys the inviscid Burgers equation

@ other (Ps) are probes riding this flow
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Study |: KdV charges under TT flow

Two studies Study II: super-Hagedorn in Lorentz-breaking flow

O (Ps)y = 2m2(P,)OL(Ps) if (P1 —P_1) =0

e (P,) obeys the inviscid Burgers equation
@ other (Ps) are probes riding this flow

Starting from a CFT, spectrum is exactly solvable.
Asymptotic density of states pcrr(E) = exp(~ vE) becomes

p(E) = exp(~ E(\u|+1)/2)

For u =0 (JT deformation) get Cardy growth with a different coefficient
For u = =41 (T T deformation) get Hagedorn behaviour Z e~ PE blows up at f¢
For |u| > 1 completely new behaviour, arbitrarily strong
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Work in progress: d > 2

Work in progress: d > 2

Continuous g-form symmetries d x J(@+1) = 0 (standard case: q = 0)
Gauge theory U(1) on RP — “electric” 1-form symmetry (J=F)
— “magpnetic” (D — 3)-form symmetry (J = +F)
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Work in progress: d > 2

Work in progress: d > 2

Continuous g-form symmetries d x J(@+1) = 0 (standard case: q = 0)
Gauge theory U(1) on RP — “electric” 1-form symmetry (J=F)
— “magpnetic” (D — 3)-form symmetry (J = +F)

Collision xJM) A xJ(2) defined up to derivatives
@ Example: fd3>< €uvpF* JP in 3D (with conditions)
@ Example: (mixed) theta term f F A F for 4D U(1) gauge theory

@ Analogue of JT: Lorentz-breaking deformation f uy, THY 0y ¢ for some fixed
direction u

Factorization works too!

These constructions seem to work in lattice gauge theories too
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Work in progress: d > 2

Work in progress: d > 2

Continuous g-form symmetries d x J(@+1) = 0 (standard case: q = 0)
Gauge theory U(1) on RP — “electric” 1-form symmetry (J=F)
— “magpnetic” (D — 3)-form symmetry (J = +F)

Collision xJM) A xJ(2) defined up to derivatives
@ Example: fd3>< €uvpF* JP in 3D (with conditions)
@ Example: (mixed) theta term f F A F for 4D U(1) gauge theory

@ Analogue of JT: Lorentz-breaking deformation f uy, THY 0y ¢ for some fixed
direction u

Factorization works too!

These constructions seem to work in lattice gauge theories too

Thank you!
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