Soutenance d'Habilitation à Diriger des Recherches Topological defects and other properties of multicomponent superconductors

Julien Garaud

Tours - January 6, 2022

Julien Garaud Topological defects in multicomponent superconductors

1/32

Outline

Based on works from 2011 – 2021 with

E. Babaev, J. Carlström, M. Speight, M. Silaev, D. Agterberg, J. Jäykka, K. Sellin, A. Zyuzin, A. Corticelli, F. Rybakov

Introduction

- Topological defects Superconductors and superfluids
- Multicomponent superconductors

2 Topological defects in multicomponent superconductors

- Flux quantization and fractional vortices
- Topological properties
- Skyrmions and exotic vortex states

Superconducting states that break the time-reversal symmetry

- Mechanism for time-reversal symmetry breaking
- Domain-walls and skyrmions in the s+is state
- Modified electrodynamics and thermoelectric properties

Topological defects in multicomponent superconductors Superconducting states that break the time-reversal symmetry

Outline

Introduction

- Topological defects Superconductors and superfluids
- Multicomponent superconductors

2) Topological defects in multicomponent superconductors

- Flux quantization and fractional vortices
- Topological properties
- Skyrmions and exotic vortex states

Superconducting states that break the time-reversal symmetry

- Mechanism for time-reversal symmetry breaking
- Domain-walls and skyrmions in the s+is state
- Modified electrodynamics and thermoelectric properties

Topological defects – Superconductors and superfluids Multicomponent superconductors

Topological defects in multicomponent superconductors Superconducting states that break the time-reversal symmetry Topological defects – Superconductors and superfluids Multicomponent superconductors

Topological defects and vortices

Topological defects are ubiquitous in modern physics

superfluid, superconductors, cold atoms BEC, (chiral) magnets, ferroelectric, (liquid) crystals, spin ices,... also in models of early universe cosmology, high-energy, ...

e.g. dislocations, monopoles, domain-walls, skyrmions, ...

(quantum) vortices (superfluid, superconductors)

- [Onsager 1949; Feynman 1955]: circulation of the superflow is quantized; [Abrikosov 1957]: magnetic vortices in SC
- [Onsager 1949; Peskin 1978; Dasgupta, Halperin 1981]: phase transitions: thermal proliferation of vortex loops
- [Berezinskii 1971; Kosterlitz, Thouless 1972]: in 2d (V/AV)
- Overall, vortices control the thermal, rotational/magnetic responses of superfluids and superconductors

[Kelvin 1867]: atoms consist in topologically inequivalent linked and knotted loops of vortices in the luminferous aether

Vortex [Helmholtz 1858]

Topological defects in multicomponent superconductors Superconducting states that break the time-reversal symmetry Topological defects – Superconductors and superfluids Multicomponent superconductors

Superconductivity – Generalities

Topological defects in multicomponent superconductors Superconducting states that break the time-reversal symmetry Topological defects – Superconductors and superfluids Multicomponent superconductors

Superconductivity – Properties & Ginzburg-Landau

$$E = \int_{\mathbb{R}^3} |\nabla \times \boldsymbol{A}|^2 + D_{\mu} \Psi^* D^{\mu} \Psi + \kappa (|\Psi|^2 - 1)^2, \text{ with } D_{\mu} = \nabla_{\mu} - i A_{\mu}$$

Spontaneous symmetry breaking

- at the mean field level, one macroscopic wave function (density of Cooper pairs), the gap function $\Psi = |\Psi|e^{i\varphi}$
- Ψ : charged bosonic scalar field; **A** gauge field (photon)
- longitudinal component of the photon becomes massive
- Anderson-Higgs mechanism [Anderson 1962; Higgs 1964]

Properties of superconductors

- dissipationless current (no viscosity for BEC)
- perfect diamagnetism (Meissner effect): B is screened by the superflow of Cooper pairs J = 2e|Ψ|²(∇φ + A)
- Massive photon \Rightarrow London eq.: $\lambda \nabla \times \nabla \times B = B$ (Proca)
- Quantized flux $\Phi = \frac{\Phi_0}{2\pi} \oint \nabla \varphi d\ell = n\Phi_0$ and $n \in \pi_1(S^1) = \mathbb{Z}$
- ⇒ topo. defects (vortices) [Onsager 1949; Abrikosov 1957]

Meissner effect

Topological defects in multicomponent superconductors Superconducting states that break the time-reversal symmetry Topological defects – Superconductors and superfluids Multicomponent superconductors

Properties of superconducting vortices and loops

Topological defects in multicomponent superconductors Superconducting states that break the time-reversal symmetry

Multicomponent superconductors

Many recently discovered materials are multi-band

- pairing on several sheets of a Fermi Surface; Cooper pairs can tunnel btw FS [Suhl, Matthias, Walker 1959; Moskalenko 1959]
- the gap function cannot be reduced to a single complex field thus Ψ → Ψ = (Ψ₁, Ψ₂, · · ·) ∈ C^N

intercomponent interactions open many new physical phenomena

Multicomponent Ginzburg-Landau

$$\Psi = (\Psi_1, \Psi_2, \cdots) \in \mathbb{C}^N$$

$$\boldsymbol{E} = \int_{\mathbb{R}^3} |\boldsymbol{\nabla} \times \boldsymbol{A}|^2 + \sum |\boldsymbol{D} \Psi_{\boldsymbol{a}}|^2 + V[\Psi^{\dagger}, \Psi], \text{ with } \boldsymbol{D} = \boldsymbol{\nabla} + i \boldsymbol{e} \boldsymbol{A}$$

- potential $V[\Psi^{\dagger},\Psi]$, such that the ground state is $\Psi^{\dagger}\Psi \neq 0$
- in SC, V typically contains explicitly breaks symmetries terms

Multicomponent theories are relevant to many systems beyond the solid state

e.g. mixtures of charged condensates (LMH, LMD); metallic superfluids; nuclear SC in neutron stars; superfluid He; spinor condensates; Weinberg-Salam theory; ...

Introduction	Flux quantization and fractional vortices
Topological defects in multicomponent superconductors	Topological properties
Superconducting states that break the time-reversal symmetry	Skyrmions and exotic vortex states

Outline

Introductio

- Topological defects Superconductors and superfluids
- Multicomponent superconductors

2 Topological defects in multicomponent superconductors

- Flux quantization and fractional vortices
- Topological properties
- Skyrmions and exotic vortex states

Superconducting states that break the time-reversal symmetry

- Mechanism for time-reversal symmetry breaking
- Domain-walls and skyrmions in the s+is state
- Modified electrodynamics and thermoelectric properties

Introduction
Topological defects in multicomponent superconductors
Superconducting states that break the time-reversal symmetry
Skyrmions and exotic vortex states

Ginzburg-Landau theory for multicomponent superconductors

Ginzburg-Landau free energy

$$\Psi = (\psi_1, \psi_2, \cdots) \in \mathbb{C}^N$$
 and $\psi_a = |\psi_a| e^{i\varphi_a}$

$$\mathcal{F}/\mathcal{F}_{0} = \int \frac{1}{2} |\boldsymbol{\nabla} \times \boldsymbol{A}|^{2} + \sum_{a} \frac{1}{2} |\boldsymbol{D}\psi_{a}|^{2} + V(\Psi, \Psi^{\dagger}), \text{ and } \boldsymbol{D} \equiv \boldsymbol{\nabla} + ie\boldsymbol{A}$$

and $V(\Psi, \Psi^{\dagger}) = \alpha_{ab}\psi_{a}^{*}\psi_{b} + \beta_{abcd}\psi_{a}^{*}\psi_{b}^{*}\psi_{c}\psi_{d} \in \mathbb{R}$

Ginzburg-Landau and Ampère-Maxwell equations

 $\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A}$

 $DD\psi_a = 2\delta V/\delta\psi_a^*$ and $\nabla \times B + J = 0$, with $J = e \text{Im}(\Psi^{\dagger}D\Psi)$

Meissner supercurrent

$$\boldsymbol{J} := \delta \mathcal{F} / \delta \boldsymbol{A} = \boldsymbol{e} \operatorname{Im}(\boldsymbol{\Psi}^{\dagger} \boldsymbol{D} \boldsymbol{\Psi})$$

$$\boldsymbol{J} = \boldsymbol{e}^{2} \varrho^{2} \boldsymbol{A} + \boldsymbol{e} \sum_{a} |\psi_{a}|^{2} \boldsymbol{\nabla} \varphi_{a}, \text{ with } \varrho^{2} = \sum_{a} |\psi_{a}|^{2}$$

Separation in charged and neutral modes

 $\varphi_{ab} = \varphi_b - \varphi_a$

$$\mathcal{F}/\mathcal{F}_{0} = \int \frac{\mathbf{B}^{2}}{2} + \sum_{a} \frac{1}{2} (\nabla |\psi_{a}|)^{2} + \frac{\mathbf{J}^{2}}{2e^{2}\varrho^{2}} + \sum_{a,b>a} \frac{|\psi_{a}|^{2} |\psi_{b}|^{2}}{2\varrho^{2}} (\nabla \varphi_{ab})^{2} + V(\Psi, \Psi^{\dagger}).$$

Julien Garaud

Flux quantization and fractional vortices Topological properties Skyrmions and exotic vortex states

Flux quantization and fractional vorticity

Flux quantization – Fractional vortices

(at ∞ , $\boldsymbol{J}
ightarrow$ 0)

Composite vorticity

$$\Phi = \int_{\mathbb{R}^2} \mathbf{B} d\mathbf{S} = \oint_{\infty} \mathbf{A} d\ell = \oint_{\infty} \frac{\mathbf{J}}{e^2 \varrho^2} - \sum_{a} \frac{|\psi_a|^2}{e \varrho^2} \nabla \varphi_a$$
$$= \frac{-\Phi_0 \sum_{a} |\Psi_a|^2}{2\pi \varrho^2} \oint_{\infty} \nabla \varphi_a \cdot d\ell \quad \text{with} \quad \oint_{\infty} \nabla \varphi_a = 2\pi n_a \text{ and } \Phi_0 = \frac{2\pi}{e}$$

• thus e.g. $(n_1, n_2) = (1, 0)$ carries a fraction $|\psi_1|^2 / (|\psi_1|^2 + |\psi_2|^2)$ of Φ_0

⇒ elementary topological excitations are fractional vortices in different components

if only $n_1 \neq 0$, the neutral sector has a contribution

$$\mathcal{F} = \int \dots + \frac{\sum_{b \neq 1} |\psi_1|^2 |\psi_b|^2}{e^2 \varrho^2} (\nabla \varphi_{1b})^2 + \dots$$

- but $\int^{R} r dr \left(\frac{2\pi}{r}\right)^{2} \rightarrow \text{divergent energy} \sim \log R$
- only the configurations with all $n_b = n_1$ have finite energy

Composite vortex: either singular (singularities overlap) or coreless (they do not)

Introduction	Flux quantization and fractional vortices
Topological defects in multicomponent superconductors	Topological properties
Superconducting states that break the time-reversal symmetry	Skyrmions and exotic vortex states

Fractional vortices

see e.g. [Chibotaru, Dao 2007; Silaev 2011; Agterberg, Babaev, JG 2014;...]

Extra topological properties in multicomponent superconductors

Fractional vortices are characterized by with the winding $\oint \nabla \varphi_a = 2\pi n_a$

elems. of the 1st homotopy of the circle: $n \in \pi_1(S^1) = \mathbb{Z}$ [maps $S^1 \to S^1$]

Multicomponent SC are characterized by additional topological invariants

Whenever $\Psi \neq 0$, *i.e.* if singularities do not overlap, the index $\mathcal{Q}(\Psi) \in \mathbb{Z}$

$$\mathcal{Q}(\Psi) = \int_{\mathbb{R}^2} \frac{i\varepsilon_{ji}}{2\pi |\Psi|^4} \Big[|\Psi|^2 \partial_i \Psi^{\dagger} \partial_j \Psi + \Psi^{\dagger} \partial_i \Psi \partial_j \Psi^{\dagger} \Psi \Big] dxdy \quad \text{and} \quad \int \boldsymbol{B} = \Phi_0 \mathcal{Q}(\Psi)$$

In 3d, for two-components: the Hopf invariant

In 2d: $\mathbb{C}P^{N-1}$ topological invariants

$\Psi \neq 0 \Leftrightarrow \textbf{Coreless}$

[JG, Carlstrom, Babaev, Speight 2013]

- SC *d.o.f.* are cast in a 4d unit vector $\boldsymbol{\zeta} = (\operatorname{Re}\psi_1, \operatorname{Im}\psi_1, \operatorname{Re}\psi_2, \operatorname{Im}\psi_2)/\sqrt{\Psi^{\dagger}\Psi}$
- maps from the compactified space to the target \mathbb{S}^3 , $\zeta : \mathbb{S}^3 [\cong \mathbb{R}^3 \cup \{\infty\}] \mapsto \mathbb{S}^3_{\Psi}$
- since $\pi_3(\mathbb{S}^3_{\Psi}) = \mathbb{Z}$, these maps are characterized the degree of the map $\mathcal{T} := \deg \mathcal{L} = \begin{bmatrix} -1 & \int \exp (-2\beta \mathcal{L}) \partial \mathcal{L} \partial$

$$\mathcal{I} := \deg \boldsymbol{\zeta} = \frac{-1}{12\pi^2} \int_{\mathbb{R}^3} \varepsilon_{ijk} \varepsilon_{abcd} \, \zeta_a \, \partial_i \zeta_b \, \partial_j \zeta_c \, \partial_k \zeta_d \, d\boldsymbol{r} \quad \in \mathbb{Z}$$

 \mathcal{I} = Hopf charge of the combined Hopf map $h \circ \zeta : \mathbb{S}^3 \to \mathbb{S}^2$ as long as $\Psi \neq 0$

Mapping to the Faddeev-Skyrme model

(for two-components)

A pseudo-spin unit vector $n \in \mathbb{S}^2$ can be defined as the projection $n = \frac{\psi^{\dagger} \sigma \psi}{\psi^{\dagger} \psi}$

And the free energy can be mapped onto a Faddeev-Skyrme model coupled to

$$\mathcal{F} = \int \frac{\mathbf{B}^2}{2} + \frac{1}{2} (\nabla \varrho)^2 + \frac{\varrho^2}{8} \partial_k n_a \partial_k n_a + \frac{\mathbf{J}^2}{2e^2 \varrho^2} + V(\varrho, \mathbf{n})$$

where the magnetic field is $B_k = \varepsilon_{ijk} \left(\partial_i \left(\frac{J_j}{e^2 \varrho^2} \right) - \frac{1}{4e} \varepsilon_{abc} n_a \partial_i n_b \partial_j n_c \right)$

Since $\boldsymbol{n} : \mathbb{S}^2 [\cong \mathbb{R}^3 \cup \{\infty\}] \mapsto \mathbb{S}_n^2$ it is classified by $\pi_2(\mathbb{S}_n^2)$

$$\mathcal{Q}(\boldsymbol{n}) = \frac{1}{4\pi} \int_{\mathbb{R}^2} \boldsymbol{n} \cdot \partial_x \boldsymbol{n} \times \partial_y \boldsymbol{n} \, dx dy \in \mathbb{Z} \quad \text{as long as } \Psi \neq 0$$

There, fractional vortices \mapsto merons, and composite vortices \mapsto skyrmions

Introduction Flux quantization and fractional vortio Topological defects in multicomponent superconductors Superconducting states that break the time-reversal symmetry Skyrmions and exotic vortex states

Interaction between fractional vortices

There are new topological properties when fractional vortices do not overlap

In the London limit ($|\psi_a|$ =const); *R* is a cut-off; λ is the London penetration depth

The interaction between fractional vortices is

$$\frac{z_{ab}^{(int)}}{2\pi} = \frac{|\psi_a|^2 |\psi_b|^2}{\varrho^2} \left(\ln \frac{r}{R} + K_0 \left(\frac{r}{\lambda} \right) \right)$$

$$\frac{\frac{(int)}{aa}}{2\pi} = -\frac{|\psi_a|^2 \sum_{c \neq a} |\psi_c|^2}{\varrho^2} \ln \frac{r}{R} + \frac{|\psi_a|^4}{\varrho^2} K_0\left(\frac{r}{\lambda}\right)$$

charged sector mediates repulsion

E

• neutral mode is attractive if $a \neq b$

London limit: bulk fractional vortices are log/linearly confined

- Is it possible to have skyrmions or coreless vortices? ⇒ Yes
- beyond the London limit because of some potential terms
- or modify the simplest multicomponent Ginzburg-Landau

Flux quantization and fractional vortices Topological properties Skyrmions and exotic vortex states

Scenarii that promote coreless (composite) vortices

Why should we bother about skyrmions?

- they are observable and behave differently than usual vortices
- they can reveal the presence of fractional vortices

Skyrmions can be stabilized by various mechanisms

- mixtures of commensurately charged condensates (e.g. LMD) [JG, Babaev 2017]
- dissipationless drag: Andreev-Bashkin effect [JG, et al. 2014; 2019] (see next)
- interaction with domain-walls \Rightarrow chiral $\mathbb{C}P^2$ skyrmions [JG, et al. 2013] (see next)

Also by condensate repulsion (i.e. beyond the London limit)

- interface superconductors [Agterberg, Babaev, JG 2014]
- immiscible mixtures of condensates [JG, Babaev 2014; 2015]
- nematic superconductors with odd-parity pairing [Zyuzin, Babaev, JG 2017]
- chiral *p*+*ip* superconductors [**JG**, Babaev 2012; 2015] also [**JG**, *et al.* 2016; 2021]

[it's nice :)]

Skyrmions can be stabilized by condensate repulsion

Numerical construction: Finite Elements + Non Linear Conjugate Gradients

- choose an initial configuration with desired topological property
- minimize topological barriers prevent the change of topological sectors

Skyrmions and hopfions stabilized by dissipationless drag (1/2)

[Andreev, Bashkin 1975] effect in multicomponent superfluids Core-splitting

- originates from the interactions between two superfluids, (forms quasi-particles with nonzero content of either ψ_a)
- The flow of one component is accompanied by mass transport of the other component: j₁ = ρ₁₁ v₁ + ρ₁₂ v₂ ⇒ superflow j₁ is partially induced by superfluid velocity v₂

Ginzburg-Landau theory with Andreev-Bashkin term

$$\mathcal{F} = \int \cdots + \sum_{a,b} \mu_{ab} \mathbf{J}_a \cdot \mathbf{J}_b + \cdots$$

 $\mu_{ab} > 0$ favours counterflow and penalizes co-flow

AB-term favours conterflows thus induces core-"splitting"

- the London limit is modified [JG, Sellin, Jäykkä, Babaev 2013]
- skyrmions exist and form unsual lattices that differ from usual vortices $\Psi \neq 0 \Rightarrow Q(\Psi) \in \mathbb{Z}$

Introduction Flux quantization and fractional vortices
Topological defects in multicomponent superconductors
Superconducting states that break the time-reversal symmetry
Skyrmions and exotic vortex states

Skyrmions and hopfions stabilized by dissipationless drag (2/2)

Introduction	Mechanism for time-reversal symmetry breaking
Topological defects in multicomponent superconductors	Domain-walls and skyrmions in the <i>s</i> + <i>is</i> state
Superconducting states that break the time-reversal symmetry	Modified electrodynamics and thermoelectric properties

Outline

Introduction

- Topological defects Superconductors and superfluids
- Multicomponent superconductors

2) Topological defects in multicomponent superconductors

- Flux quantization and fractional vortices
- Topological properties
- Skyrmions and exotic vortex states

Superconducting states that break the time-reversal symmetry

- Mechanism for time-reversal symmetry breaking
- Domain-walls and skyrmions in the s+is state
- Modified electrodynamics and thermoelectric properties

States that Break the Time-Reversal Symmetry (BTRS)

Mechanism for time-reversal symmetry breaking Domain-walls and skyrmions in the s+is state Modified electrodynamics and thermoelectric properties

Phase diagram for the s+is state

[JG, et al. 2011; 2014; 2017; 2018]

the time-reversal symmetry breaking transition usually occurs at $T_c^{\mathbb{Z}_2} < T_c$

- typically a dome of BTRS state inside the superconducting state
- the BTRS transition is associated with a divergent length-scale

(2nd order)

Mechanism for time-reversal symmetry breaking Domain-walls and skyrmions in the s+is state Modified electrodynamics and thermoelectric properties

Domain-walls in the BTRS *s+is*

[JG, Babaev 2014]

Domain-walls are produced by Kibble-Zurek mechanism during the transition

- Domain-walls can be pinned by impurities or non-convex geometries
- Domain-walls react to thermal gradients

Mechanism for time-reversal symmetry breaking Domain-walls and skyrmions in the s+is state Modified electrodynamics and thermoelectric properties

Domain-walls can be pinned e.g. by impurities

[JG, Babaev 2014]

Domain-walls and skyrmions in the s+is state

Domain-walls can be pinned *e.g.* by impurities

[JG, Babaev 2014]

DW trap FV

Chiral CP² skyrmions: Domain-walls and vortices [JG, et al. 2011; 2013]

Bulk fractional vortices are linearly confined

On a domain-wall fractional vortices are linearly deconfined

- field gradients suppress the superfluid density at domain-walls
 ⇒ vortices are confined on the domain-wall
- domain-wall has energetically unfavourable relative phase φ_{ab} \Rightarrow integer vortices are split and repel on the domain-wall
- closed domain-walls shrink due to the line tension

Composite fractional vortices and closed domain-walls are stable

Fractional vortices do not overlap

- since $\Psi \neq 0$ then $\mathcal{Q}(\Psi) \in \mathbb{Z}$
- **B** is distributed along the domain-wall
- chiral CP² skyrmions carry quantized flux, and can be discriminated from singular vortices

Julien Garaud

Mechanism for time-reversal symmetry breaking Domain-walls and skyrmions in the s+is state Modified electrodynamics and thermoelectric properties

Chiral CP² skyrmions have very exotic profile of **B** [JG, et al. 2011; 2013]

Mechanism for time-reversal symmetry breaking Domain-walls and skyrmions in the *s*+*is* state Modified electrodynamics and thermoelectric properties

Electrodynamics of multicomponent superconductors

Current in multicomponent systems reads as

$$oldsymbol{J} = oldsymbol{e}arrho^2 oldsymbol{Q}_{\Sigma} + rac{oldsymbol{e}}{N} \sum_{a, \, b > a} ig(|\psi_b|^2 - |\psi_a|^2ig) oldsymbol{
abla} arphi_{ab}$$

 $\varphi_{ab} = \varphi_b - \varphi_a$: inter-components relative phase

Condensate's com momentum

$$oldsymbol{Q}_{\Sigma} = oldsymbol{
abla} arphi_{\Sigma} - oldsymbol{e}oldsymbol{A}; arphi_{\Sigma} = \sum_{a}arphi_{a}/N$$

Gauge invariant potential Φ

$$\Phi = A_0 - \partial_t \varphi_{\Sigma}$$

Extra contribution to London's electrodynamics

$$\begin{split} \boldsymbol{B} &= \boldsymbol{\nabla} \times \left(\frac{\boldsymbol{J}}{\boldsymbol{e}^{2} \boldsymbol{\varrho}^{2}}\right) - \boldsymbol{\nabla} \times \boldsymbol{\nabla} \boldsymbol{\varphi}_{\Sigma} + \sum_{a, b > a} \boldsymbol{\nabla} \times \left(\frac{|\psi_{a}|^{2} - |\psi_{b}|^{2}}{N \boldsymbol{e} \boldsymbol{\varrho}^{2}} \boldsymbol{\nabla} \boldsymbol{\varphi}_{ab}\right) \\ \boldsymbol{E} &= \partial_{t} \left(\frac{\boldsymbol{J}}{\boldsymbol{e}^{2} \boldsymbol{\varrho}^{2}}\right) - \boldsymbol{\nabla} \Phi + \sum_{a, b > a} \partial_{t} \left(\frac{|\psi_{b}|^{2} - |\psi_{a}|^{2}}{N \boldsymbol{e} \boldsymbol{\varrho}^{2}} \boldsymbol{\nabla} \boldsymbol{\varphi}_{ab}\right) \end{split}$$

The extra contribution to London's magnetostatics is nonzero

especially when relative density gradients: $\nabla \times \left(\frac{|\psi_a|^2 - |\psi_b|^2}{Ne\varrho^2}\right)$ are non-collinear with the relative phase gradients $\nabla \varphi_{ab}$ \Rightarrow possible non-screened contributions

Introduction Mechanism for time Topological defects in multicomponent superconductors Domain-walls and s Superconducting states that break the time-reversal symmetry Modified electrodyr

Mechanism for time-reversal symmetry breaking Domain-walls and skyrmions in the s+is state Modified electrodynamics and thermoelectric properties

Ex.: domain-walls react to thermal gradients [Silaev, JG, Babaev 2015]

Magnetic response of a domain-wall to thermal gradients

Because of the modified electrodynamics and thermoelectric properties

$$\boldsymbol{B} = \boldsymbol{\nabla} \times \left(\frac{\boldsymbol{J}}{\boldsymbol{e}^2 \boldsymbol{\varrho}^2}\right) + \sum_{\boldsymbol{a}, \boldsymbol{b} > \boldsymbol{a}} \boldsymbol{\nabla} \left(\frac{|\psi_{\boldsymbol{a}}|^2 - |\psi_{\boldsymbol{b}}|^2}{N \boldsymbol{e} \boldsymbol{\varrho}^2}\right) \times \boldsymbol{\nabla} \varphi_{\boldsymbol{a} \boldsymbol{b}}$$

Mechanism for time-reversal symmetry breaking Domain-walls and skyrmions in the *s*+*is* state Modified electrodynamics and thermoelectric properties

Ex.: a hotspot can induce magnetic fields

[JG, Silaev, Babaev 2016]

Mechanism for time-reversal symmetry breaking Domain-walls and skyrmions in the *s*+*is* state Modified electrodynamics and thermoelectric properties

Ex.: a hotspot can induce magnetic fields

[JG, Silaev, Babaev 2016]

Inducing variations of the contributions to the screening by local heating

 additional contributions to the electrodynamics due to relative phases

$$\propto \boldsymbol{\nabla} \times \left(\frac{\left| \psi_{\text{a}} \right|^2 - \left| \psi_{\text{b}} \right|^2}{\textit{Ne} \varrho^2} \boldsymbol{\nabla} \varphi_{\text{ab}} \right) \neq \mathbf{0}$$

 these can be excited when the contribution to screening varies in space [\u03c6_a(x)], then :

$$\mathbf{
abla}\left(rac{|\psi_{a}|^{2}-|\psi_{b}|^{2}}{Nearrho^{2}}
ight)
otin\mathbf{
abla}
abla_{ab}$$

• varying the contribution to the screening can be done by locally heating the sample

 \Rightarrow in other words deplete density by locally heating the system

Conclusion

y Modified electrodynamics and thermoelectric p

Multicomponent superconductors allow for a rich physics

- broad variety of topological defects: fractional vortices, singular vortices, domain-walls, skyrmions (coreless vortices), hopfions (knots), ...
- many mechanisms allow to stabilize the coreless vortices (skyrmions)
- modified electrodynamics and thermoelectric properties

Many aspects of multicomponent superconductivity where not discussed here

- only isolated topological defects but what is the response in external fields?
 ⇒ magnetization processes, field cooled experiments, ...
- microscopic theories that yield the multicomponent Ginzburg-Landau theories
 ⇒ can be consistently derived from BCS, Eilenberger (clean), Usadel (dirty)
- singular vortices can interact non-trivially due to multiple length-scales ⇒ semi-Meissner/type-1.5 superconductivity, vortex aggregates
- other pairing symmetries s+id, d+d, p+ip, d+id, d+ig, ...
- numerical methods

Mechanism for time-reversal symmetry breaking Domain-walls and skyrmions in the *s*+*is* state Modified electrodynamics and thermoelectric properties

Thank you for your attention!

Based on works from 2011 - 2021 with

E. Babaev, J. Carlström, M. Speight, M. Silaev, D. Agterberg, J. Jäykka, K. Sellin, A. Zyuzin, A. Corticelli, F. Rybakov