Selective and Robust Time Optimal SO(3)-Transformations

Séminaire Physique-Mathématiques, IMB

Quentin Ansel

Institut UTINAM, Université de Franche-Comté

2022

UNIVERSITě "

 FRANCHE-COMTĕ
Self introduction

Career :

PhD Thesis: Steffen Glaser \& Dominique Sugny.
Postdocs / ATER : Bruno Bellomo, Dominique Sugny, David Viennot, José Lages, Dima Shepelyansky, Alexei Chepelianskii.

Fields of research

Table of Contents

1. Background: Control of Spin-1/2 Particles
2. Introduction to Optimal Control Theory
3. Selective and Robust Time Optimal SO(3)-transformations

■ Main definitions

- Classification of Trajectories

■ Time Optimal Selective Transformations

- Time Optimal Robust Transformations

4. Conclusion

Optimal Control of Spin-1/2 Particles: Motivations

Spin-1/2 particles and magnetization vector

Spin-1/2 particle

A spin-1/2 particle can be considered as an "elementary magnetic dipole" (source of the magnetic field), which can be described (at least in our case study), by its magnetization vector $\vec{M}=\left(M_{x}, M_{y}, M_{z}\right) \in \mathbb{R}^{3}$.

Dynamics of a single spin-1/2 can be modeled using the Bloch equation (without relaxation):

$$
\frac{d \vec{M}}{d t}=-\gamma \vec{B}(\vec{q}, t) \wedge \vec{M}(t)
$$

With $\vec{B}(\vec{q}, t) \in \mathbb{R}^{3}$ a position and time dependent magnetic
 field, $\gamma \in \mathbb{R}_{+}$is the gyromagnetic ratio, and \wedge denotes the vector cross product.

Spin-1/2 and applications

Behaviors of spin- $1 / 2$ systems (or 2 level quantum systems) are at the core of many technologies. For examples:

Magnetic Resonance Spectroscopy

Magnetic Resonance Imaging

Quantum Computing

Figure 1: a) NMR spectrum b) a MRI scanner and c) Structure of IBM's 127-qubits processor.

a)

Control of Spin-1/2 particles

Global idea:

Environment:

- decoherence
- Inhomogeneity of the physical parameters : resonance frequency, interaction strength,...
Usually, the environment reduces the fidelity of the output with respect to the expected/idealized result.

An example of inhomogeneity effect

In a given rotating frame, we can rewrite the Bloch equation into:

$$
\frac{d \vec{M}}{d t}=-\left(\begin{array}{c}
\omega_{x}(t, \vec{q}) \\
\omega_{y}(t, \vec{q}) \\
\Delta(\vec{q})
\end{array}\right) \wedge \vec{M}(t)
$$

with Δ the offset from a given frequency ω_{z} of reference. ω_{x} and ω_{y} are two control fields.

An example of inhomogeneity effect

- Bloch's equation:

$$
\frac{d \vec{M}}{d t}=-\left(\begin{array}{c}
\omega_{x}(t, \vec{q}) \\
\omega_{y}(t, \vec{q}) \\
\Delta(\vec{q})
\end{array}\right) \wedge \vec{M}(t) .
$$

- We can perform simple rotations of the Bloch vector using ω_{x} and ω_{y} constant over a time interval.
- Example: for $\Delta=0, \vec{M}(0)=(0,0,1)$, and using $\omega_{x} T=\pi / 2, \omega_{y}=0$, we have $\vec{M}(T)=(0,1,0)$. The solution is not robust against modifications of Δ.
- Square pulse
- Optimal pulse

Introduction to Optimal Control Theory

General statement

- Let us consider a system whose physical configuration (at time t) is modeled by a vector $x(t)=\left\{x^{a}(t)\right\}_{a=1 . . n} \in \mathbb{R}^{n}$, and is controlled by a control field $u(t) \in \mathbb{R}^{m}$.
- System dynamics are governed by the differential equation:

$$
\begin{equation*}
\frac{d}{d t} x^{a}(t)=f^{a}(x(t), u(t), t) \tag{1}
\end{equation*}
$$

- The goal is to transform the initial state $x(0)=x_{0}$ into a target state $x_{\text {target }}$ at $t=t_{f} \geq 0$, by using only the control field u, while minimizing one or several quantities, called cost function (or figure of merit).

General statement

Cost functions can be decomposed into two different categories:

Terminal cost

A function $h\left(x\left(t_{f}\right), t_{f}\right)$ that depends only on the final state.

Dynamical cost

A functional:

$$
\int_{0}^{t_{f}} f_{0}(x(t), u(t), t) d t
$$

It can depend on the entire trajectory of x and u.
A general cost function is:

$$
\begin{equation*}
F=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{0}^{t_{f}} f_{0}(x(t), u(t), t) d t . \tag{2}
\end{equation*}
$$

General statement

Problem

How can we determine: $u^{\star}=\min _{u} F$, such that $\frac{d x^{a}}{d t}=f^{a}(x, u, t)$?

Looks like classical mechanics! \rightarrow calculus of variation...
...but, we have a few differences:

- We have two quantities x and u, which are not treated exactly in the same manner.
- There is no natural canonical momentum \rightarrow "usual" Lagrangian may not be useful.

The "optimal control trick"

We consider an extended state of configuration $X=(x, \dot{x}, p, \dot{p}, u, \dot{u})$, where $p \in \mathbb{R}^{n}$ is called the adjoint sate of x.

We define a Lagrangian $L(X(t))$, and an action S :

$$
\begin{equation*}
S=\int_{t_{0}}^{t_{f}} L(X) d t=\int_{t_{0}}^{t_{f}} d t\left[f_{0}(x, u, t)+p_{a}\left(\dot{x}^{a}-f^{a}(x, u, t)\right)\right] \tag{3}
\end{equation*}
$$

Note:

- Einstein's notation is used.
- p plays the role of Lagrange multipliers.
- By construction of L, we have extremums of S when $\dot{x}^{a}=f^{a}$.

See: M.Contreras, \& al., 'Dynamic Optimization and Its Relation to Classical and Quantum Constrained Systems', Physica A, 479 (2017), for a detailed and pedagogical discussion.

Euler-Lagrange equations

Minimization of the action $S \rightarrow$ Computation of the first order variations of S from an arbitrary trajectory of reference.

Theorem 1

Let \mathbf{C} be the set of all curves $X:\left[t_{i}, t_{f}\right] \rightarrow \mathbb{R}^{n}$ of class C^{2}. Let $\gamma \in \mathbf{C}$ be a reference curve with extremities $\left(t_{0}, x_{0}\right)$, $\left(t_{1}, x_{1}\right)$. Let $\gamma^{\prime} \in \mathbf{C}$ be another curve with extremities $\left(t_{0}+\delta t_{0}, x_{0}+\delta x_{0}\right),\left(t_{1}+\delta t_{1}, x_{1}+\delta x_{1}\right)$. We define $h(t)=\gamma^{\prime}(t)-\gamma(t)$. Then, if we set $\Delta S=S\left(\gamma^{\prime}\right)-S(\gamma)$, we have:

$$
\begin{aligned}
\Delta S=\int_{t_{0}}^{t_{1}} & \left(\frac{\partial L}{\partial X^{a}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{X}^{a}}\right)_{\mid \gamma} h^{a} d t+\left[\left.\frac{\partial L}{\partial \dot{X}^{a}}\right|_{\gamma} \delta X^{a}\right]_{t_{0}}^{t_{1}} \\
+ & {\left[\left(L-\frac{\partial L}{\partial \dot{X}^{a}} \dot{X}^{a}\right)_{\left.\right|_{\gamma}} \delta t\right]_{t_{0}}^{t_{1}}+o^{2}\left(D\left(\gamma, \gamma^{\prime}\right)\right) }
\end{aligned}
$$

With $D\left(\gamma, \gamma^{\prime}\right)$ a distance between the curves in \mathbf{C}.

Euler-Lagrange equations

We consider the case of fixed boundaries (i.e. $\delta X^{a}=0$ ans $\delta t=0$). Then, extremums of S, given by $\Delta S=0$, are characterized by the Euler-Lagrange equation:

$$
\frac{\partial L}{\partial X^{a}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{X}^{a}}=0
$$

Application to the O.C. Lagrangian:

$$
\left\{\begin{array} { r l }
{ \frac { \partial L } { \partial x ^ { a } } - \frac { d } { d t } \frac { \partial L } { \partial \dot { x } ^ { a } } } & { = 0 } \tag{4}\\
{ \frac { \partial L } { \partial p _ { a } } - \frac { d } { d t } \frac { \partial L } { \partial \dot { p } _ { a } } } & { = 0 } \\
{ \frac { \partial L } { \partial u ^ { c } } - \frac { d } { d t } \frac { \partial L } { \partial \dot { u } _ { c } } } & { = 0 }
\end{array} \Rightarrow \left\{\begin{array}{rl}
\dot{p}_{a} & =\frac{\partial}{\partial x^{a}}\left(f_{0}-f^{b} \delta^{a}{ }_{b}\right) \\
\dot{x}^{a} & =f^{a} \\
\frac{\partial f_{0}}{\partial u^{c}} & =p_{b} \frac{\partial f^{b}}{\partial u^{c}} .
\end{array}\right.\right.
$$

The equation $\frac{\partial f_{0}}{\partial u^{c}}=p_{b} \frac{\partial f^{b}}{\partial u^{c}} \longrightarrow$ allows us to determine $u(t)=u(x(t), p(t))$.

Hamiltonian formalism

Equivalently, we can use the Hamiltonian formalism:

Hamiltonian

$$
\begin{gathered}
H_{p}=P_{a} \dot{X}^{a}-L \\
=p_{a} f^{a}-f_{0}+p_{u, c} \dot{u}^{c},
\end{gathered}
$$

with $p_{u, c}$ the adjoint state of the control field, that we can set to 0 in our case, because there is no constraint of the form $\dot{u}^{c}=$

Hamilton's equations

$$
\frac{\partial H_{p}}{\partial X^{a}}=-\dot{P}_{a} ; \frac{\partial H_{p}}{\partial P^{a}}=\dot{X}^{a}
$$

Hamiltonian formalism

The correspondence between the equations of dynamics is then:

$$
\left\{\begin{array} { r }
{ \frac { \partial L } { \partial x ^ { a } } - \frac { d } { d t } \frac { \partial L } { \partial \dot { x } ^ { a } } = 0 } \\
{ \frac { \partial L } { \partial p _ { a } } - \frac { d } { d t } \frac { \partial L } { \partial \dot { p } _ { a } } = 0 } \\
{ \frac { \partial L } { \partial u ^ { c } } - \frac { d } { d t } \frac { \partial L } { \partial \dot { u } _ { c } } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { c }
{ \frac { \partial H _ { p } } { \partial x ^ { a } } = - \dot { p } _ { a } } \\
{ \frac { \partial H _ { p } } { \partial p _ { a } } = \dot { x } _ { a } } \\
{ \frac { \partial H _ { p } } { \partial u ^ { c } } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
\dot{p}_{a}=\frac{\partial}{\partial x^{a}}\left(f_{0}-f^{b} \delta_{b}^{a}\right) \\
\dot{x}^{a}=f^{a} \\
\frac{\partial f_{0}}{\partial u^{c}}=p_{b} \frac{\partial f^{b}}{\partial u^{c}} .
\end{array}\right.\right.\right.
$$

Theorem 2

Weak Pontryagin Minimum (Maximum) Principle (PMP) :

$$
\frac{\partial H_{p}}{\partial u^{c}}=0 .
$$

The case of bounded control fields

In the case where the control field is in $U \subset \mathbb{R}^{m}$

Theorem 3

The general PMP :

$$
\frac{\partial H_{p}}{\partial u^{c}}=0
$$

or

$$
u(t) \in \partial U
$$

Summary

- Control field \rightarrow generalized coordinates.
- Introduce the adjoint state p.
- Extremums of the action \rightarrow equations of dynamics in the extended space of configurations.
- The PMP provides constrains on the control field, which can be expressed as a function of the state x and its adjoint state p.

Optimization problem \rightarrow analysis of trajectories of a classical dynamical system.

Classification of trajectories

Singular trajectory

The trajectory of the extended system X is said singular on $I=\left[t_{1}, t_{2}\right]$ if $\frac{\partial H_{p}}{\partial u^{c}}=$ $0 \forall t \in I$.

Regular trajectory

The trajectory of the extended system X is said regular on $I=\left[t_{1}, t_{2}\right]$ if $u(t) \in$ $\partial U \forall t \in I$.

Selective and Robust Time Optimal SO(3) Transformations

SO(3) transformations

Due to the cross product in the Bloch equation, we have $\vec{M}(t)=\hat{U}(t) \vec{M}(0)$ and $\hat{U}(t) \in S O(3)$.
$\hat{U}(t)$ is the solution of the differential equation:

$$
\begin{align*}
\frac{d \hat{U}(\Delta, t)}{d t} & =\left(\begin{array}{ccc}
0 & \Delta & -\omega_{y}(t) \\
-\Delta & 0 & \omega_{x}(t) \\
\omega_{y}(t) & -\omega_{x}(t) & 0
\end{array}\right) \hat{U}(\Delta, t) \tag{5}\\
& =\left(\omega_{x}(t) \hat{\epsilon}_{x}+\omega_{y}(t) \hat{\epsilon}_{y}+\Delta \hat{\epsilon}_{z}\right) \hat{U}(\Delta, t), \\
\hat{U}(\Delta, 0) & =\hat{\mathbb{I}},
\end{align*}
$$

- $\Delta \in \mathbb{R}$ is the frequency offset (resonance at $\Delta=0$).
- $\omega_{x}(t) \in \mathbb{R}$ and $\omega_{y}(t) \in \mathbb{R}$ are two control fields such that $\omega_{x}(t)^{2}+\omega_{y}(t)^{2} \leq \omega_{0}^{2}$.
- $\hat{\epsilon}_{x}, \hat{\epsilon}_{y}$ and $\hat{\epsilon}_{z}$ are generators of the $\mathfrak{s o}(3)$ algebra.
- $\hat{\mathbb{I}}$ is the identity matrix.

The control problem

$$
\begin{align*}
\frac{d \hat{U}(\Delta, t)}{d t} & =\left(\omega_{x}(t) \hat{\epsilon}_{x}+\omega_{y}(t) \hat{\epsilon}_{y}+\Delta \hat{\epsilon}_{z}\right) \hat{U}(\Delta, t), \tag{6}\\
\hat{U}(\Delta, 0) & =\hat{\mathbb{I}},
\end{align*}
$$

- At resonance $(\Delta=0)$ we would like to produce a transformation of the form $\hat{U}_{\text {target }}(0)=e^{\phi \hat{\epsilon}_{x}}$ at the final time T.
- For $\Delta \neq 0$, we have in general $\hat{U}(\Delta, T) \neq e^{\phi \hat{\epsilon}_{x}}$.

To quantify the selectivity or robustness of a control field, we introduce the following fidelity function:

$$
\begin{equation*}
F(\Delta)=\left\|\hat{U}\left(\Delta, T, \omega_{x}, \omega_{y}\right)-\hat{U}_{\text {target }}(\Delta=0)\right\|^{2} \tag{7}
\end{equation*}
$$

where $\|\cdot\|$ is the Frobenius norm.

The control problem

Robust transformation

A transformation is said "robust" on the interval $I=\left[\Delta_{a}, \Delta_{b}\right]$ if for all $\Delta \in I$, $F(\Delta) \leq \varepsilon$, with ε quantifying the maximum permissible error.

Selective transformation

A transformation is said "selective" if it produces the desired $\hat{U}_{\text {target }}$ at $\Delta=0$, and leaves the system unchanged for $\Delta \neq 0$, i.e. $\hat{U}(\Delta, T) \approx \hat{\mathbb{I}}$ for $\Delta \neq 0$.

State-of-the-art approach

1. Discretize the Δ axis, specify a target state $\hat{U}_{\text {target }}(\Delta)$ at each discretization point, and solve the optimal control problem simultaneously for all the points. This requires (in general) a lot of points.
2. Taylor expand F, and cancel the first-order derivatives around a specific value of Δ, i.e. $\left.\frac{\partial^{n} F}{\partial \Delta^{n}}\right|_{\Delta=\Delta^{\prime}}=0, n=1,2, \ldots, n_{\max }$. Works well for robust controls, less for selective ones.

A novel approach

Figure 2: Example of fidelity function

$$
\begin{equation*}
F(\Delta)=\left\|\hat{U}\left(\Delta, T, \omega_{x}, \omega_{y}\right)-\hat{U}_{\text {target }}(\Delta=0)\right\|^{2} \tag{8}
\end{equation*}
$$

A novel approach

As a first approximation, we can focus on only two offsets: $\Delta=0$, and $\Delta=\Delta_{1}$. The target states are:

$$
\begin{equation*}
\hat{U}_{\text {target }}(0)=e^{\phi \hat{\epsilon}_{x}} ; \hat{U}_{\text {target }}\left(\Delta_{1}\right)=\hat{\mathbb{I}} \tag{9}
\end{equation*}
$$

The position of Δ_{1} sets the level of robustness/selectivity of the control sequence.

Definition of OC quantities

The terminal cost function is $C=\frac{1}{6} \sum_{n=1}^{2}\left\|\hat{U}_{n}\left(T, \omega_{x}\right)-\hat{U}_{n, \text { target }}\right\|^{2}$.
The dynamical cost function is: $\int_{0}^{T} d t=T$.
The Hamiltonian is:

$$
H_{p}=\sum_{n=1}^{2}\left\langle\hat{P}_{n}\right| \omega_{x} \hat{\epsilon}_{x}+\Delta_{(n)} \hat{\epsilon}_{z}\left|\hat{U}_{n}\right\rangle .
$$

- \hat{P}_{n} is a 3×3 matrix, which is the adjoint state of \hat{U}_{n}.
- $\langle A \mid B\rangle=\operatorname{Tr}\left[A^{\top} B\right]$ is the matrix scalar product.
- For symmetry reasons, we can set $\omega_{y}=0$, and keep only a single control ω_{x}.

Structure of trajectories

Proposition 1

Singular trajectories S are given by constant controls of amplitude $\left|\omega_{S}\right|<\omega_{0}$.

Proposition 2

Regular trajectories are given by piecewise constant control fields of amplitude $\pm \omega_{0}$, with switchings when $l_{x}=$ $\sum_{n=1}^{2}\left\langle\hat{P}_{n}\right| \hat{\epsilon}_{x}\left|\hat{U}_{n}\right\rangle=0$.
A constant part of a regular trajectory is called "a bang" B.

Figure 3: Structure of a regular control field with several switchings.

General expression of \hat{U}

Because the control field is piecewise constant, we have:

$$
\begin{equation*}
\hat{U}(T)=\prod_{j=1}^{N_{p}} e^{\left(\omega_{j} \hat{\epsilon}_{x}+\Delta \hat{\epsilon}_{z}\right) t_{j}}, \quad \omega_{j} \in\left[-\omega_{0}, \omega_{0}\right], t_{j}>0 \tag{10}
\end{equation*}
$$

In the case of a single singular trajectory, we have:

$$
\begin{equation*}
\hat{U}\left(\Delta, T_{S}\right)=e^{T_{S}\left(\omega_{S} \hat{\epsilon}_{x}+\Delta \hat{\epsilon}_{z}\right)} \tag{11}
\end{equation*}
$$

and the target states are reached if:

$$
\left\{\begin{array}{l}
T_{S} \omega_{S}=\phi \tag{12}\\
T_{S} \sqrt{\omega_{S}^{2}+\Delta_{1}^{2}}=2 k \pi, k \in \mathbb{N}
\end{array}\right.
$$

We define Δ_{0}, the smallest solution of (12), such that $\omega_{S}=\omega_{0}$. And we denote by T_{0} the corresponding control duration.

Selective Time Optimal Transformations

Selective Time Optimal transformations

Due to the specific structures of the trajectories, we define selective controls such that: $\Delta_{1} \leq \Delta_{0}$. At the opposite $\Delta_{1} \geq \Delta_{0}$ is used for robust controls.

Proposition 3
In the selective case, the following trajectories are not time-optimal:

- $B-B$
- $B-B-B$
- $B-B-B-B$
- $S-B$
- $B-S-B$
- $B-\ldots-B-S-\ldots$

Conjecture 1

Time-optimal selective transformations are given by singular trajectories S of Pontryagin's Hamiltonians.

Selective Time Optimal transformations

(a): C as a function T and Δ_{1}, for a selective rotation of angle $\phi=\pi$ and $\omega_{0}=1$. (b): C as a function of T and ϕ. We set $\omega_{0}=1$ and $\Delta_{1}=\sqrt{3}$. In the two cases, each point of the contour plot corresponds to a numerical optimization. Blue solid lines are defined by the equation $\Delta_{1}=\sqrt{4 \pi^{2}-\phi^{2}} / T_{S}$.

Robust Time Optimal Transformations

Robust Time optimal transformations

We consider $\Delta_{1}>\Delta_{0}$

Time-optimal robust transformations

Time optimal robust transformations are given by regular trajectories.
For a regular control, the general form of \hat{U} is:

$$
\hat{U}(T)=\prod_{j=1}^{N_{p}} e^{\left(\omega_{j} \hat{\epsilon}_{x}+\Delta \hat{\epsilon}_{z}\right) t_{j}}, \quad \omega_{j}= \pm \omega_{0}, t_{j}>0
$$

Calculations can be performed for a small number of switchings (i.e., $N p=2,3)$.

1-switching regular controls

- Using the the fact that
$\hat{U}_{\text {target }}(0)=e^{\phi \hat{\epsilon}_{x}}$ and
$\hat{U}_{\text {target }}\left(\Delta_{1}\right)=\hat{\mathbb{I}}$, we can determine the durations t_{1} and t_{2} of each bang:

$$
t_{1}=t_{2}+\frac{\phi}{\omega_{0}} ; t_{2}=\frac{\phi}{2 \omega_{0}}\left(\frac{n}{k}-1\right)
$$

- The pulses are then parameterized by two integers: n and k.

Figure 4: Fidelity of 1 -switching controls for different (n, k).

2-switchings regular controls

- Similarly, we can determine the duration t_{1}, t_{2} and t_{3} of each bang:

$$
\begin{gathered}
t_{1}+t_{3}=\frac{\phi}{\omega_{0}}\left(\frac{n}{k}-1\right) ; t_{1}=\alpha t_{3} ; \\
t_{2}=\left(t_{1}+t_{3}\right)+\phi / \omega_{0}
\end{gathered}
$$

- The pulses are then parameterized by two integers: n and k, and one real parameter α.
- Using $\frac{\partial^{2} F}{\partial \Delta^{2}}(0)=0$, we can find the optimal α. For $\phi=\pi, \alpha=1$.

Figure 5: Fidelity of 2-switching controls for different (n, k), and $\alpha=1$.

2-switchings regular controls

(a)

(b)

Figure 6: (a) Fidelity function F for a π-pulse for different values of (n, k), and for the solution of [42] (obtained with a numerical optimization). The inset shows F near $\Delta=0$. (b) Control field associated with each solution. Control times are respectively: $3 \pi, 2 \pi, 2.34 \pi, 2.34 \pi$ (top to bottom in the legend).

Conclusion

Conclusion

- Design of selective and robust $S O(3)$-transformations.
- Computations are based on a model of two matrices of rotation, associated with two different offsets.
- Time optimal selective transformations are given by constant control fields of amplitude $\left|\omega_{S}\right|<\omega_{0}$.
- Robust transformations are given by regular "bang-bang" control fields parameterized by a few parameters. It is then easy to find a "good

Figure 7: Transition from the area of selective controls characterized by singular solutions of the PMP, to the area of robust controls characterized by regular trajectories.

Outlook

- Using a larger number of offset can improve the selectivity or the robustness.
- For example, we can use the offsets: $0, \Delta_{1}, \Delta_{2}$ such that the target states are: $e^{\phi \hat{\epsilon}_{x}}, \hat{\mathbb{I}}, \hat{\mathbb{I}}$.
- With these more elaborated systems, no analytical expression of the optimal pulses is known in general.
The results presented in this talk are published in: Quentin Ansel \& al, J. Phys. A: Math. Theor. 54 085204, 2021.

