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Optimal Control of
Spin-1/2 Particles:
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Spin-1/2 particles and magnetization vector

Spin-1/2 particle
A spin-1/2 particle can be considered as an "elementary magnetic dipole"
(source of the magnetic field), which can be described (at least in our case
study), by its magnetization vector ~M = (Mx,My,Mz) ∈ R3.

Dynamics of a single spin-1/2 can be modeled using the
Bloch equation (without relaxation):

d ~M

dt
= − γ ~B(~q, t) ∧ ~M(t).

With ~B(~q, t) ∈ R3 a position and time dependent magnetic
field, γ ∈ R+ is the gyromagnetic ratio, and ∧ denotes the
vector cross product.
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Spin-1/2 and applications
Behaviors of spin-1/2 systems (or 2 level quantum systems) are at the core of many
technologies. For examples:

Magnetic Resonance Spectroscopy

Magnetic Resonance Imaging

Quantum Computing

a) b) c)

Figure 1: a) NMR spectrum b) a MRI scanner and c) Structure of IBM’s 127-qubits processor. 6/42



Control of Spin-1/2 particles
Global idea:

Input Ensemble of spins Output
(E.M. field) → (Ns ≥ 1) → (back-reaction of the

↑ ensemble to the E.M. field)
Environement

Environment:
• decoherence
• Inhomogeneity of the physical parameters : resonance frequency,

interaction strength,...
Usually, the environment reduces the fidelity of the output with respect to
the expected/idealized result.
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An example of inhomogeneity effect
In a given rotating frame, we can rewrite the Bloch equation into:

d ~M

dt
= −

 ωx(t, ~q)
ωy(t, ~q)
∆(~q)

 ∧ ~M(t).

with ∆ the offset from a given frequency ωz of reference. ωx and ωy are two
control fields.
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An example of inhomogeneity effect

• Bloch’s equation:

d ~M

dt
= −

 ωx(t, ~q)
ωy(t, ~q)
∆(~q)

 ∧ ~M(t).

• We can perform simple rotations of the Bloch vector using ωx and ωy
constant over a time interval.
• Example: for ∆ = 0, ~M(0) = (0, 0, 1), and using ωxT = π/2, ωy = 0, we

have ~M(T ) = (0, 1, 0). The solution is not robust against modifications of
∆.
• Square pulse

• Optimal pulse
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Introduction to Optimal
Control Theory
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General statement

• Let us consider a system whose physical configuration (at time t) is
modeled by a vector x(t) = {xa(t)}a=1..n ∈ Rn, and is controlled by a
control field u(t) ∈ Rm.
• System dynamics are governed by the differential equation:

d

dt
xa(t) = fa(x(t), u(t), t), (1)

• The goal is to transform the initial state x(0) = x0 into a target state
xtarget at t = tf ≥ 0, by using only the control field u, while minimizing
one or several quantities, called cost function (or figure of merit).
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General statement
Cost functions can be decomposed into two different categories:

Terminal cost
A function h(x(tf ), tf ) that depends only on the final state.

Dynamical cost
A functional: ∫ tf

0
f0(x(t), u(t), t)dt.

It can depend on the entire trajectory of x and u.
A general cost function is:

F = h(x(tf ), tf ) +

∫ tf

0
f0(x(t), u(t), t)dt. (2)
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General statement

Problem
How can we determine: u? = minu F , such that dxadt = fa(x, u, t) ?

Looks like classical mechanics!→ calculus of variation...

...but, we have a few differences:
• We have two quantities x and u, which are not treated exactly in the

same manner.
• There is no natural canonical momentum→ "usual" Lagrangian may not

be useful.
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The "optimal control trick"
We consider an extended state of configurationX = (x, ẋ, p, ṗ, u, u̇), where
p ∈ Rn is called the adjoint sate of x.

We define a Lagrangian L(X(t)), and an action S:

S =

∫ tf

t0

L(X) dt =

∫ tf

t0

dt [f0(x, u, t) + pa (ẋa − fa(x, u, t))] (3)

Note:
• Einstein’s notation is used.
• p plays the role of Lagrange multipliers.
• By construction of L, we have extremums of S when ẋa = fa.

See: M.Contreras, & al., ‘Dynamic Optimization and Its Relation to Classical and Quantum Con-
strained Systems’, Physica A, 479 (2017), for a detailed and pedagogical discussion.
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Euler-Lagrange equations
Minimization of the action S→ Computation of the first order variations of S from an arbitrary
trajectory of reference.

Theorem 1
Let C be the set of all curves X : [ti, tf ] → Rn of class C2. Let γ ∈ C be a reference
curve with extremities (t0, x0), (t1, x1). Let γ′ ∈ C be another curve with extremities
(t0 + δt0, x0 + δx0), (t1 + δt1, x1 + δx1). We define h(t) = γ′(t)− γ(t). Then, if we set
∆S = S(γ′)− S(γ), we have:

∆S =

∫ t1

t0

(
∂L

∂Xa
− d

dt

∂L

∂Ẋa

)
|γ
hadt+

[
∂L

∂Ẋa |γ
δXa

]t1
t0

+

[(
L− ∂L

∂Ẋa
Ẋa

)
|γ
δt

]t1
t0

+ o2(D(γ, γ′))

WithD(γ, γ′) a distance between the curves in C. 15/42



Euler-Lagrange equations
We consider the case of fixed boundaries (i.e. δXa = 0 ans δt = 0).
Then, extremums of S, given by ∆S = 0, are characterized by the
Euler-Lagrange equation:

∂L

∂Xa
− d

dt

∂L

∂Ẋa
= 0.

Application to the O.C. Lagrangian:

∂L

∂xa
− d

dt

∂L

∂ẋa
= 0

∂L

∂pa
− d

dt

∂L

∂ṗa
= 0

∂L

∂uc
− d

dt

∂L

∂u̇c
= 0

⇒


ṗa =

∂

∂xa
(f0 − f bδab)

ẋa = fa

∂f0

∂uc
= pb

∂f b

∂uc
.

(4)

The equation ∂f0
∂uc = pb

∂fb

∂uc −→ allows us to determine u(t) = u(x(t), p(t)). 16/42



Hamiltonian formalism
Equivalently, we can use the Hamiltonian formalism:

Hamiltonian

Hp = PaẊ
a − L

= paf
a − f0 + pu,cu̇

c,

with pu,c the adjoint state of the control field, that we can set to 0 in our case, because there is
no constraint of the form u̇c = ....

Hamilton’s equations

∂Hp

∂Xa
= −Ṗa ;

∂Hp

∂P a
= Ẋa
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Hamiltonian formalism
The correspondence between the equations of dynamics is then:

∂L

∂xa
− d

dt

∂L

∂ẋa
= 0

∂L

∂pa
− d

dt

∂L

∂ṗa
= 0

∂L

∂uc
− d

dt

∂L

∂u̇c
= 0

⇔



∂Hp
∂xa

= −ṗa
∂Hp
∂pa

= ẋa

∂Hp
∂uc

= 0

⇒


ṗa =

∂

∂xa
(f0 − fbδab)

ẋa = fa

∂f0
∂uc

= pb
∂fb

∂uc
.

Theorem 2
Weak Pontryagin Minimum (Maximum) Principle (PMP) :

∂Hp

∂uc
= 0.
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The case of bounded control fields
In the case where the control field is in
U ⊂ Rm

Theorem 3
The general PMP :

∂Hp

∂uc
= 0

or
u(t) ∈ ∂U.
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Summary

• Control field→ generalized coordinates.
• Introduce the adjoint state p.
• Extremums of the action→ equations of dynamics in the extended

space of configurations.
• The PMP provides constrains on the control field, which can be

expressed as a function of the state x and its adjoint state p.

Optimization problem→ analysis of trajectories of a classical
dynamical system.
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Classification of trajectories

Singular trajectory
The trajectory of the extended systemX is said singular on I = [t1, t2] if ∂Hp∂uc =
0 ∀t ∈ I.

Regular trajectory
The trajectory of the extended system X is said regular on I = [t1, t2] if u(t) ∈
∂U ∀t ∈ I.
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Selective and Robust
Time Optimal SO(3)
Transformations
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SO(3) transformations
Due to the cross product in the Bloch equation, we have ~M(t) = Û(t) ~M(0)
and Û(t) ∈ SO(3).
Û(t) is the solution of the differential equation:

dÛ(∆, t)

dt
=

 0 ∆ −ωy(t)
−∆ 0 ωx(t)
ωy(t) −ωx(t) 0

 Û(∆, t)

= (ωx(t)ε̂x + ωy(t)ε̂y + ∆ε̂z) Û(∆, t),

Û(∆, 0) = Î,

(5)

• ∆ ∈ R is the frequency offset (resonance at ∆ = 0).
• ωx(t) ∈ R and ωy(t) ∈ R are two control fields such that ωx(t)2 + ωy(t)2 ≤ ω2

0 .
• ε̂x, ε̂y and ε̂z are generators of the so(3) algebra.
• Î is the identity matrix. 23/42



The control problem

dÛ(∆, t)

dt
= (ωx(t)ε̂x + ωy(t)ε̂y + ∆ε̂z) Û(∆, t),

Û(∆, 0) = Î,
(6)

• At resonance (∆ = 0) we would like to produce a transformation of the
form Ûtarget(0) = eφε̂x at the final time T .
• For ∆ 6= 0, we have in general Û(∆, T ) 6= eφε̂x .

To quantify the selectivity or robustness of a control field, we introduce the
following fidelity function:

F (∆) = ‖Û(∆, T, ωx, ωy)− Ûtarget(∆ = 0)‖2, (7)

where ‖ · ‖ is the Frobenius norm.
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The control problem

Robust transformation
A transformation is said "robust" on the interval I = [∆a,∆b] if for all ∆ ∈ I ,
F (∆) ≤ ε, with ε quantifying the maximum permissible error.

Selective transformation
A transformation is said "selective" if it produces the desired Ûtarget at ∆ = 0,
and leaves the system unchanged for ∆ 6= 0, i.e. Û(∆, T ) ≈ Î for ∆ 6= 0.
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State-of-the-art approach

1. Discretize the ∆ axis, specify a target state Ûtarget(∆) at each
discretization point, and solve the optimal control problem
simultaneously for all the points. This requires (in general) a lot of points.

2. Taylor expand F , and cancel the first-order derivatives around a specific
value of ∆, i.e. ∂nF∂∆n |∆=∆′ = 0, n = 1, 2, ..., nmax. Works well for robust
controls, less for selective ones.
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A novel approach

Figure 2: Example of fidelity function

F (∆) = ‖Û(∆, T, ωx, ωy)− Ûtarget(∆ = 0)‖2 (8)
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A novel approach

As a first approximation, we can focus on only two offsets: ∆ = 0, and ∆ = ∆1.
The target states are:

Ûtarget(0) = eφε̂x ; Ûtarget(∆1) = Î. (9)

The position of ∆1 sets the level of robustness/selectivity of the control sequence. 28/42



Definition of OC quantities
The terminal cost function is C = 1

6

∑2
n=1 ‖Ûn(T, ωx)− Ûn,target‖2.

The dynamical cost function is:
∫ T

0 dt = T .
The Hamiltonian is:

Hp =

2∑
n=1

〈P̂n|ωxε̂x + ∆(n)ε̂z|Ûn〉.

• P̂n is a 3× 3 matrix, which is the adjoint state of Ûn.
• 〈A|B〉 = Tr[AᵀB] is the matrix scalar product.
• For symmetry reasons, we can set ωy = 0, and keep only a single control
ωx.
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Structure of trajectories

Proposition 1
Singular trajectoriesS are given by con-
stant controls of amplitude |ωS | < ω0.

Proposition 2
Regular trajectories are given by piece-
wise constant control fields of ampli-
tude ±ω0, with switchings when lx =∑2

n=1〈P̂n|ε̂x|Ûn〉 = 0.
A constant part of a regular trajectory
is called "a bang" B.

Figure 3: Structure of a regular control field
with several switchings.
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General expression of Û
Because the control field is piecewise constant, we have:

Û(T ) =

Np∏
j=1

e(ωj ε̂x+∆ε̂z)tj , ωj ∈ [−ω0, ω0] , tj > 0. (10)

In the case of a single singular trajectory, we have:

Û(∆, TS) = eTS(ωS ε̂x+∆ε̂z), (11)

and the target states are reached if:{
TSωS = φ

TS

√
ω2
S + ∆2

1 = 2kπ, k ∈ N.
(12)

We define ∆0, the smallest solution of (12), such that ωS = ω0. And we denote
by T0 the corresponding control duration. 31/42



Selective Time Optimal
Transformations
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Selective Time Optimal transformations
Due to the specific structures of the trajectories, we define selective controls
such that: ∆1 ≤ ∆0. At the opposite ∆1 ≥ ∆0 is used for robust controls.
Proposition 3
In the selective case, the following trajectories are not time-optimal:
• B −B
• B −B −B
• B −B −B −B
• S −B
• B − S −B
• B − ...−B − S − ...

Conjecture 1
Time-optimal selective transformations are given by singular trajectories S of
Pontryagin’s Hamiltonians. 33/42



Selective Time Optimal transformations

(a): C as a function T and ∆1 , for a selective rotation of angle φ = π and ω0 = 1. (b): C as a function of T
and φ. We set ω0 = 1 and ∆1 =

√
3. In the two cases, each point of the contour plot corresponds to a

numerical optimization. Blue solid lines are defined by the equation ∆1 =
√

4π2 − φ2/TS .
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Robust Time Optimal
Transformations
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Robust Time optimal transformations
We consider ∆1 > ∆0

Time-optimal robust transformations
Time optimal robust transformations are given by regular trajectories.

For a regular control, the general form of Û is:

Û(T ) =

Np∏
j=1

e(ωj ε̂x+∆ε̂z)tj , ωj = ±ω0 , tj > 0.

Calculations can be performed for a small number of switchings (i.e.,
Np = 2, 3).

36/42



1-switching regular controls

• Using the the fact that
Ûtarget(0) = eφε̂x and
Ûtarget(∆1) = Î, we can determine
the durations t1 and t2 of each
bang:

t1 = t2 +
φ

ω0
; t2 =

φ

2ω0

(n
k
− 1
)

• The pulses are then
parameterized by two integers: n
and k. Figure 4: Fidelity of 1-switching controls

for different (n, k).
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2-switchings regular controls

• Similarly, we can determine the
duration t1, t2 and t3 of each bang:

t1 + t3 =
φ

ω0

(n
k
− 1
)

; t1 = αt3 ;

t2 = (t1 + t3) + φ/ω0

• The pulses are then
parameterized by two integers: n
and k, and one real parameter α.
• Using ∂2F

∂∆2 (0) = 0, we can find the
optimal α. For φ = π, α = 1.

Figure 5: Fidelity of 2-switching controls
for different (n, k), and α = 1.
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2-switchings regular controls
(a) (b)

Figure 6: (a) Fidelity function F for a π-pulse for different values of (n, k), and for the
solution of [42] (obtained with a numerical optimization). The inset shows F near
∆ = 0. (b) Control field associated with each solution. Control times are respectively:
3π, 2π , 2.34π, 2.34π (top to bottom in the legend).

[42] L. Van Damme, & al, Phys. Rev. A, 95:063403, Jun 2017. 39/42



Conclusion
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Conclusion

• Design of selective and robust
SO(3)-transformations.

• Computations are based on a model
of two matrices of rotation,
associated with two different offsets.

• Time optimal selective
transformations are given by
constant control fields of amplitude
|ωS | < ω0.

• Robust transformations are given by
regular "bang-bang" control fields
parameterized by a few parameters.
It is then easy to find a "good
solution".

Figure 7: Transition from the area of selective
controls characterized by singular solutions of
the PMP, to the area of robust controls
characterized by regular trajectories.
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Outlook

• Using a larger number of offset can improve the selectivity or the
robustness.
• For example, we can use the offsets: 0, ∆1, ∆2 such that the target states

are: eφε̂x , Î, Î.
• With these more elaborated systems, no analytical expression of the

optimal pulses is known in general.
The results presented in this talk are published in: Quentin Ansel & al, J. Phys.
A: Math. Theor. 54 085204, 2021.
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