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Optimal Control of
Spin-1/2 Particles:
Motivations
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Spin-1/2 particles and magnetization vector

Spin-1/2 particle
A spin-1/2 particle can be considered as an "elementary magnetic dipole"
(source of the magnetic field), which can be described (at least in our case
study), by its magnetization vector M = (M, M,, M) € R3.

Dynamics of a single spin-1/2 can be modeled using the
Bloch equation (without relaxation):
dM S S
—— = —yB(q,t) A M(2).
i YB(q,t) A M(2)
With B(g,t) € R? a position and time dependent magnetic

field, v € R, is the gyromagnetic ratio, and A denotes the
vector cross product.



Spin-1/2 and applications

Behaviors of spin-1/2 systems (or 2 level quantum systems) are at the core of many
technologies. For examples:

I Magnetic Resonance Spectroscopy
I Magnetic Resonance Imaging

I Quantum Computing
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Figure 1: a) NMR spectrum b) a MRI scanner and c¢) Structure of IBM's 127-qubits processor. 6/42




Control of Spin-1/2 particles

Global idea:
Input Ensemble of spins Output
(E-M. field) — (Ns > 1) — (back-reaction of the

0 ensemble to the E.M. field)
Environement

Environment:
e decoherence
® Inhomogeneity of the physical parameters : resonance frequency,
interaction strength,...
Usually, the environment reduces the fidelity of the output with respect to
the expected/idealized result.
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An example of inhomogeneity effect
In a given rotating frame, we can rewrite the Bloch equation into:
dnT @t @)\
ar ( wy(, 7) ) A M(2).
A(q)

with A the offset from a given frequency w, of reference. w, and w, are two
control fields.
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An example of inhomogeneity effect

® Bloch’s equation:

v wz(t, Q) -
‘%4 _ ( oy (£, ) ) A NE(E).
A(q)

We can perform simple rotations of the Bloch vector using w, and w,
constant over a time interval.

Example: for A = 0, M(0) = (0,0, 1), and using w,T = 7/2, wy = 0, we
have M (T) = (0,1,0). The solution is not robust against modifications of
A.
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Introduction to Optimal
Control Theory
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General statement

® et us consider a system whose physical configuration (at time ¢) is
modeled by a vector z(t) = {2(t) }a=1., € R", and is controlled by a
control field u(t) € R™.

e System dynamics are governed by the differential equation:

d oii a
270 = S (= (t), u(t), 1),

® The goal is to transform the initial state 2(0) = z( into a target state
Tiarget @t t =ty > 0, by using only the control field «, while minimizing
one or several quantities, called cost function (or figure of merit).
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General statement

Cost functions can be decomposed into two different categories:

Terminal cost
A function h(z(ts),ts) that depends only on the final state.

Dynamical cost

A functional: .
£
fo(z(t), u(t), t)dt.

0
It can depend on the entire trajectory of x and w.
A general cost function is:

.
F = b)) + | " (@), u(t), ydt.
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General statement

How can we determine: u* = min,, F, such that 2= = f%(z,u,t) ?
Looks like classical mechanics! — calculus of variation...

...but, we have a few differences:

® We have two quantities « and u, which are not treated exactly in the
same manner.

® There is no natural canonical momentum — “usual” Lagrangian may not
be useful.
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The "optimal control trick”

We consider an extended state of configuration X = (z, &, p, p, u, @), where
p € R" is called the adjoint sate of x.

We define a Lagrangian L(X (t)), and an action S:

tr tr
s= [ Lex)yd= / dt [fo(x,u,t) + pa (3 — P2z u )] ()

to to

Note:
® Einstein's notation is used.
® p plays the role of Lagrange multipliers.
® By construction of L, we have extremums of S when % = f.

See: M.Contreras, & al., 'Dynamic Optimization and Its Relation to Classical and Quantum Con-
strained Systems’, Physica A, 479 (2017), for a detailed and pedagogical discussion.
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Euler-Lagrange equations

Minimization of the action S — Computation of the first order variations of S from an arbitrary
trajectory of reference.

Theorem 1

Let C be the set of all curves X : [t;,tf] — R™ of class C2. Let v € C be a reference
curve with extremities (¢o, o), (t1,z1). Let v/ € C be another curve with extremities
(to + dto, xo + dx0), (t1 + Ot1,x1 + dx1). We define h(t) = +/(t) — ~v(¢). Then, if we set
AS = S(v') — S(v), we have:

t1 t1
AS = ( o L > hdt + [8L 6Xa}
Iy oXxe

W \9Xe  di gxa ly to
oL "

- <L-aXa> 5t| +0*(D(v,7)
8X |7 to

With D(v,+’) a distance between the curves in C. 15/42




Euler-Lagrange equations

We consider the case of fixed boundaries (i.e. §X* = 0 ans 6t = 0).

Then, extremums of S, given by AS = 0, are characterized by the
Euler-Lagrange equation:

oL d oL _
oxe dtpxe
Application to the O.C. Lagrangian:
(0L d 0L
Dzt dt 9o ba = 52 (fo = 1'0%)
oL _d oL _ so— go
Op, dtOp, = N )
0L d oL 9f _ Of
- = ouc _pba c’
ouc  dt O, u u

The equation 2% — , 9" _; allows us to determine u(t) = u(x(t), p(t)).
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Hamiltonian formalism
Equivalently, we can use the Hamiltonian formalism:

Hamiltonian

H,=P,X* - L
= pafa - fO + pu,cuca

with p... the adjoint state of the control field, that we can set to 0 in our case, because there is
no constraint of the form @< = ...

Hamilton's equations

oM,
ax¢

OH,

oP?

=—F,;
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Hamiltonian formalism

The correspondence between the equations of dynamics is then:

oL d oL OH,

oz dt 0o dn P P = axa(fo—f 3%)
L  d AL _ oH, . jo = fa
Opa  dtdpa ) Opa 0T IR
oL _ d oL _ o, _ |2k,
oue  dt Ou. oue Oue Oue
Theorem 2
Weak Pontryagin Minimum (Maximum) Principle (PMP) :
OH, _
uf
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The case of bounded control fields

In the case where the control field is in
UcCR™

Theorem 3 /r
The general PMP :

>

w
\
S

S

oH,

ous

or

u(t) € oU.

{

c
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Summary

Control field — generalized coordinates.

Introduce the adjoint state p.

Extremums of the action — equations of dynamics in the extended
space of configurations.

The PMP provides constrains on the control field, which can be
expressed as a function of the state = and its adjoint state p.

Optimization problem — analysis of trajectories of a classical
dynamical system.
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Classification of trajectories

Singular trajectory
The trajectory of the extended system X is said singularon I = [t1, to] if %Zf =
ovt el

Regular trajectory
The trajectory of the extended system X is said regularon I = [t1, to] if u(t) €
oUu vt e I.

—7 U

P\.ﬂ !Sl Qu
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Selective and Robust
Time Optimal SO(3)
Transformations
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SO(3) transformations

Due to the cross product in the Bloch equation, we have M (t) = U (t)M(0)
and U(t) € SO(3).
U (t) is the solution of the differential equation:

A 0 A —wy(t)
dU(At Y N
WA _ [ A 0w o
dt
wy(t) —wg(t) 0

= (wa(t)éx +wy(t)éy + AE) U(A, 1),
ﬁ(A’ O) = TL
A € R is the frequency offset (resonance at A = 0).
w.(t) € Rand wy(t) € R are two control fields such that w. (¢)? + wy (t)* < Wj.
€z, €y and €. are generators of the so(3) algebra.
Iis the identity matrix.
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The control problem

dU(At) R . N
il = (wa(t)és + wy(t)éy + A) U(A, L), ©)
U(A,0) =1,

® At resonance (A = 0) we would like to produce a transformation of the
form Usarget(0) = €= at the final time 7.

® For A # 0, we have in general U(A,T) # e%%.
To quantify the selectivity or robustness of a control field, we introduce the
following fidelity function:

F(A) = HU(A7T7 W:cva) - Utarget(A = 0)||27 (7)

where || - || is the Frobenius norm.
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The control problem

Robust transformation
A transformation is said "robust” on the interval I = [A,, A if forall A € I,
F(A) < g, with £ quantifying the maximum permissible error.

A transformation is said "selective" if it produces the desired Umget atA =0,
and leaves the system unchanged for A # 0,i.e. U(A,T) ~ I for A # 0.

3

Roloust

> A 25/42




State-of-the-art approach

1. Discretize the A axis, specify a target state Utarget(A) at each
discretization point, and solve the optimal control problem
simultaneously for all the points. This requires (in general) a lot of points.

2. Taylor expand F, and cancel the first-order derivatives around a specific
value of A, i.e. 35 [a—ar = 0,n = 1,2, ..., paq. Works well for robust

controls, less for selective ones.

3

Ra‘bus*
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A novel approach

Flil

F(4)
F [[jtmyet(O)]
Figure 2: Example of fidelity function
F(A) = [U(A, T, ws,wy) = Urarger(A = 0)|” (8)
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A novel approach

As a first approximation, we can focus on only two offsets: A = 0,and A = A;.
The target states are:

Utarget(o) = 6¢€I ; Utarget(Al) = ﬁ (9)

28/42

The position of A1 sets the level of robustness/selectivity of the control sequence.




Definition of OC quantities

A

The terminal cost functionis C' = L 32 |Un(T,ws) — U target ||
The dynamical cost function is: fOT dt =T.
The Hamiltonian is:

2
Hy = (Polwats + Agyéz|Un).

n=1

e P, is a3 x 3 matrix, which is the adjoint state of U,,.
® (A|B) = Tr[ATB] is the matrix scalar product.
® For symmetry reasons, we can set w, = 0, and keep only a single control

Wi
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Structure of trajectories

Proposition 1
Singular trajectories S are given by con- )
stant controls of amplitude |wg| < wp.

Proposition 2 Lo |
Regular trajectories are given by piece- - 0 !
wise constant control fields of ampli- '
tude +wp, with switchings when I, = G ; ;
Zi:l<ﬁn|€w|fjn> =0. tZE C ity tf;'
A constant part of a regular trajectory Lo
is called "a bang" B. o !

Figure 3: Structure of a regular control field
with several switchings.



General expression of U/

Because the control field is piecewise constant, we have:
NP

U(T) = H e(WitatA&)t; wj € [—wo,wo] , tj > 0. (10)
j=1

In the case of a single singular trajectory, we have:
U(A, Tg) = eTs(@séatiréz) (11)
and the target states are reached if:

{Tsws =¢

12
Tsy/w? + A2 = 2kn, k € N. (12)

We define Ag, the smallest solution of (12), such that ws = wy. And we denote
by T}, the corresponding control duration.
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Selective Time Optimal
Transformations
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Selective Time Optimal transformations

Due to the specific structures of the trajectories, we define selective controls
such that: A; < A(. At the opposite A; > Ay is used for robust controls.

Proposition 3
In the selective case, the following trajectories are not time-optimal:

®* 3—-B

®* 3—-B-B

®* B—-B-B-B

e S—B

®* B—-S5—

® B—..—B-5—..

Conjecture 1
Time-optimal selective transformations are given by singular trajectories S of

Pontryagin's Hamiltonians. 33/42




Selective Time Optimal transformations

(a) . ] ] . )

0.61

20F

0.5

0

0.0k L L L ul
0.0 0.5 1.0 1.5 20

AIV3

(a): C as a function T" and A1, for a selective rotation of angle ¢ = 7 and wp = 1. (b): C as a function of T’
and ¢. We set wg = 1 and A; = /3. In the two cases, each point of the contour plot corresponds to a
numerical optimization. Blue solid lines are defined by the equation A = \/4n2 — ¢2/Ts.
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Robust Time Optimal
Transformations
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Robust Time optimal transformations

We consider A; > Ay

Time-optimal robust transformations

Time optimal robust transformations are given by regular trajectories.

For a regular control, the general form of U is:

H (wjézr+Aé)t i, wj = +wp , t; > 0.

Calculations can be performed for a small number of switchings (i.e.,

Np=2,3).
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1-switching regular controls

® Using the the fact that
Utarget(o) = e and
Utarget(A1) = T, we can determine
the durations ¢; and ¢, of each
bang:

t1=t2+£; t2=i<2—1)
wo 2w0
® The pulses are then
parameterized by two integers: n
and k.

Figure 4: Fidelity of 1-switching controls
for different (n, k).



2-switchings regular controls

e Similarly, we can determine the
duration ¢4, t5 and t3 of each bang:

t1+t3:j0<2—1) ;61 = ats;

to = (t1 +t3) + ¢/wo

® The pulses are then
parameterized by two integers: n

and £, a2nd one real parameter a. Figure 5: Fidelity of 2-switching controls
o°F

® Using 533 (0) = 0, we can find the for different (n, k), and a = 1.
optimal a. For¢ = m, a = 1.




2-switchings regular controls

(a) (b)
Y oo - - R e —————————eww
081 <002 \ /
< s R , 05
3 ok, 000 IS« LR k=1, n=2
N -02 0.0 0.2 %
= , a —— k=2,n=3 §°0

""" Solution of
[42]

00 05 10 15 20 25 30
t/t

Figure 6: (a) Fidelity function F for a 7-pulse for different values of (n, k), and for the
solution of [42] (obtained with a numerical optimization). The inset shows F near

A = 0. (b) Control field associated with each solution. Control times are respectively:
3m, 2, 2.34m, 2.347 (top to bottom in the legend).

[42] L. Van Damme, & al, Phys. Rev. A, 95:063403, Jun 2017.
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Conclusion

® Design of selective and robust
SO(3)-transformations.

® Computations are based on a model
of two matrices of rotation,
associated with two different offsets.

® Time optimal selective
transformations are given by

. TR
constant control fields of amplitude Selective Robust
|WS| < wp. area area

Figure 7: Transition from the area of selective
controls characterized by singular solutions of
the PMP to the area of robust controls
characterized by regular trajectories.

® Robust transformations are given by
regular "bang-bang" control fields
parameterized by a few parameters.
It is then easy to find a "good
solution".



Outlook

® Using a larger number of offset can improve the selectivity or the
robustness.

® For example, we can use the offsets: 0, Ay, A, such that the target states
are: e I, 1.

e With these more elaborated systems, no analytical expression of the
optimal pulses is known in general.

The results presented in this talk are published in: Quentin Ansel & al, J. Phys.
A: Math. Theor. 54 085204, 2021.
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