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Quantum trajectories and quantum jumps -



Introduction




1913: Bohr on Quantum Jumps

On the constitution of atoms and molecules
e .. the emission lines correspond to a radiation emitted
during the passing of the system between two different
stationary states ...
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1990’s: Quantum Jumps Observed

e First (clean) observations of quantum jumps

Fluorescence monitoring and photon counting
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FIG. 2. A typical trace of the 493-nm fluorescence from
the 62P/, level showing the quantum jumps after the hollow
cathode lamp is turned on. The atom is definitely known to
be in the shelf level during the low fluorescence periods.
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2000’s: Quantum Jumps and Repeated

Measurements

e Birth and death of a photon in a cavity

e S. Gleyzes et al (including S. Haroche), 446 (2007) 297-300,
Quantum jumps of light recording ...

e A model of thermalization observed by a non-demolition
measurement
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2000’s: Quantum Jumps and Repeated

Measurements

e Birth and death of a photon in a cavity

e S. Gleyzes et al (including S. Haroche), 446 (2007) 297-300,
Quantum jumps of light recording ...
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e A model of thermalization observed by a non-demolition
measurement
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Aims and Miscellanies

o Aims:
e Describe some of the tools involved in the manipulation of
simple quantum systems
e |n particular the observation of quantum jumps

e Describe the mathematical framework in discrete and in
continuous time

e |n particular how jumps appear and are characterized
e Results alluded to in this presentation:

e All obtained in collaboration with Tristan Benoist, Denis
Bernard, and Antoine Tilloy
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Markovian Open Quantum
Systems




Indirect Measurements




Indirect measurements (1)

e For a compound system C = AU B with Hilbert space

Ha® Hp

e Learn something on A...
e .. by measuring on B.

e In this context, A is called the system and B is called the

probe.

@
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Indirect measurements(2)

e Thus measure an observable A = Idy ® Ag that does nothing
on A.

e lf[¢)c=|p)a®|¥)p (resp. pc = pa® pg) is a pure tensor
product just before the measurement...

o .. thenitis|p)a® |9 )p (resp. pa ® pj) just after the
measurement.

e But

o If |®)c (resp. pc) is not a pure tensor product just before the
measurement...

e ..something really happens to A in the measurement process.

e This is due to entanglement.
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Indirect measurements(3)

e Common protocol:
e Start from tensor product state [®)c =|p)a® |1 )5 (resp.

pc = pa @ pB),
e System-probe interaction goes on for a while,
|®)c — U|®)c (resp. pc — UpcU™Y)
e The state is not a pure tensor product anymore.

e Measure the probe.

QO

e For an indirect measurement, it is natural to view the
system-probe interaction as part of the measurement process.

Quantum trajectories and quantum jumps - Sec. 2: Markovian Open Quantum Systems



Indirect measurements(4)

e This is the abstract setting of the real experiment.

FS:?

e Rydberg atoms are sent one after the other to interact with
the photons in the cavity
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Repeated indirect measurements

Generic protocol

e Make several indirect measurements in a row, for a given
system but for different probes.

O 10 OO

Idealizations

e Assume the probes do not interact with each other.

e Assume the system-probe interaction time is finite.
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Repeated indirect measurements

Mathematical setting
e Thus H =H5®HP1 ® - ® Hpn.
e Time evolution during the interaction with probe k is given

by Uk, acting as U on Hs ® H «x and doing nothing to the
other probes.

e There is a sequence i1, - - , i, of outcomes of the probe
measurements (assuming that A, = > .. Ail 7 )( i |, all A;
distinct).

O 10 OO
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Dynamical Equations




Discrete Time Equations(1)

e |teration of the random dynamical system

o AAT
72'6/’ s with proba 7, := ZTI"HS A,-pA:[

iel,

p—rp =
Tr

e p is the density matrix of the system
o A; i€l aresuch that 3, ATA; = Idy,
e | =U,l is a partition

e Any family A; can be realized as
A= (i|U]¥)

for some appropriate probe Hilbert space H,, some unitary
evolution U on Hs ® Hp, some orthonormal basis | i) in #,
and some fixed state |1 )in Hp.

y
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Discrete Time Equations (2)

Extreme cases

e |deal indirect measurement: (of a non-degenerate observable
on M, projecting on the basis | /))

AipAl
p—p = % with proba 7 := Try, A,~pA:.r

1

e No reading at all of the measurement outcome:

/L T
p—p = AipAl
i€l
e Describes also the Markovian limit of interaction with an
environment (partial trace on H = Hs ® H,)

> AipAl =Ty, Upy U
i€l

v
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Continuous Time Limit Equations:

Barchielli, Belavkin ... Pellegrini

dpe = (=ilH, ped+ Y La,(pe)+ Y Luy(pe)) dt+D . Qw, (pe) W
a b b

v

e dt : general Lindbladian, H is a self-adjoint operator
(Hamiltonian), the B;s and Nps are arbitrary operators on

S

¢ Lo(p) := OpOT — 3(0T0p + p0O'0)

o th(b): stochastic innovation term, the WJ/s are centered
continuous Gaussian Markov processes with independent
increments and covariance

o dWPdw ) = dt(6"" — /B ) (Yppp=1)
e Qo(p) :== Op+ pOf — pTry, (Op + pOT)  (non-linear term)

v
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Non Demolition Experiments




Non

Demolition Experiments (1)

Definition
Time evolution during the interaction with probe k is given
by Uk, acting as U on Hs @ H « and doing nothing to the
other probes.

A Non Demolition experiment is when the Uy's commute.

Consequence

There is an orthonormal basis | ) (pointer states) in Hs
such that
U= la)a|® U

In the pointer basis, the operators A; are diagonal.

(Ai)ap = dapc(ile)
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Non Demolition Experiments (3)

A real experiment

F’;‘\“s‘:?
Al / : \i/

e Each probe (a Rydberg atom) behaves as a two-level system
e The preferred basis is that of photon number n=0,1,- - -
e In an appropriate basis, U, = e’z where 0, = (5 ).
e Due to the value of 0, U, is periodic modulo 8.
e The probe observable A is a Pauli matrix along some axis
perpendicular to the z axis.

4
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The Cavity
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Non Demolition Experiments (2)

Non demolition dynamics

e In the pointer basis, iteration of :

. clilo)c(ilB)
Pas = PeB s onle(il)

2 with proba prlc(i\’y)lz
v
e For each a, p(i|a) := |c(i|a)|?
probe measurement outcomes.
e The measurement is called non-degenerate if the p(-|a) are
distinct for different as, i.e. if measurements discriminate the
different as (assumed in what follows)

is a probability measure on

Consequence

e The (non)diagonal elements of p are (super)martingales
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Non Demolition Experiments (3)

Von Neumann equivalence

At large times (L.e. after many iterates) p, converges to a
projector on some pointer |I)(T |

e Beware that I is random (i.e. depends on the experiment)
e Convergence is exponential, rates given by relative entropies

The probability that p, ends in [v)(~v] is
P(r=7)=(vlpolv).

Reading the outcome

The asymptotic frequency of outcome / in a given experiment
is p(i|l")

Holography
As the sequence of probe outcomes iy, i, - - - is exchangeable
(the nondemolition condition) any (infinite, very large)
subsequence ip,, in,, - - allows to recover I'.

v
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e |terated non demolition measurements are a subtle tool to
implement standard measurements on a fragile quantum
system

e Aims in what follows:

e Use probes coupled with a non demolition interaction to a
system whose intrinsic time evolution does not preserve
pointer states

e Study the strong measurement regime, when time between
probes is small with respect to the time scales of the system
(in this regime, asymptotic holography holds)

e Make contact with some real experiments
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Quantum Jumps and Spikes




Two-levels Systems: dim Hg =2

e The general 2 by 2 density matrix is

1(14Z X—iY
P=3\X+iy 1-2Z

X2 +vY24+27°<1

e The Bloch sphere

v

e Our illustrations involve real 2 by 2 density matrices

_1/1+2z
2\ X

X
1-Z7

X?+272<1

e The Bloch disk Z? + X2 < 1 bounded by the Bloch circle

e Set Q=:(1+2)/2

Quantum trajectories and quantum jumps
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Thermal Noise plus Measurement




The Experiment

e Birth and death of a photon in a cavity

e S. Gleyzes et al (including S. Haroche), 446 (2007) 297-300,
Quantum jumps of light recording ...

e A model of thermalization observed by a non-demolition
measurement
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The Experiment

e Birth and death of a photon in a cavity

e S. Gleyzes et al (including S. Haroche), 446 (2007) 297-300,
Quantum jumps of light recording ...
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e A model of thermalization observed by a non-demolition
measurement
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Physical setting

F‘s:?

e The setting is very much the same as before but :

e Due to the value of 6, U, is periodic modulo 2

e The cavity is modeled by a two-level system, containing 0
photon (i.e. an even number of photons) or 1 photon (i.e. an
odd number of photons)

e Thermal noise may induce transition between 0 (Q = 1,
Z=1)and 1 (Q =0, Z= —1) photon states
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Mathematical Model

Basic SDE

dZ; = M(tanhBe — Z;)dt — (1 — Z?) dB;

A 72
dXt = _EXt dt — ?Xt dt—i—"}/XtZt dBt

A plot of Q;, small v

e Fluctuations around the stationary limit
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Mathematical Model

Thermal Noise

dZ. = A(tanhBe— Z:)dt

dXt = *%Xt dt

e Markovian approximation
e No memory effects
e Diagonal elementary processes

e In the photon number basis, the elementary processes trigger
only transition from 0 to 1 photon and from 1 to O photon.

e Equilibrium at temperature :
0 0 _ 1 0
e Energy H := <0 6) and peg oc e PH = <0 eﬁs)
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Mathematical Model

Measurement
dZ, = — (1 — Z2) dB;
2
dX; = . %Xt dt + X Z; dB,

e Continuous time approximation

e Each probe measurement has a small effect on the cavity

e Time resolution large compared to lapse between two probes
e Measurement is responsible for non-linearities
e Each probe measurement can have two outcomes

e Measurement statistics is a random walk correlated to the
cavity
e In continuous time, leads to a diffusion

e The probes couple to the photon number in the cavity
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Mathematical Model

Measurement
dZ, = — (1 — Z2) dB;
2
dX; = . %Xt dt + X Z; dB,

Convergence of Q; to 0

WALATYOI

e Rapid convergence to 0
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Mathematical Model

Measurement
dZ; = *7(1*2152) dB;
2
dx, = - %Xt dt +~vX: Z; dB:

Convergence of Q; to ?

T e

e Hesitations
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Mathematical Model

Measurement
dZ, = — (1 — Z2) dB;
2
dX; = . %Xt dt + X Z; dB,

Convergence of Q; to 1

e Rapid convergence to 1
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Mathematical Model

Competition between thermal fluctuations and measurement

dZ. = M(tanhBe — Z,)dt —~(1 — Z?) dB;

A %
dXt = —EXt dt — 7Xt dt + ")/tht dBt

A plot of Q;, v =10

e Convergence to the stationary limit
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Mathematical Model

Competition between thermal fluctuations and measurement

dZ. = M(tanhBe — Z,)dt —~(1 — Z?) dB;

A %
dXt = —EXt dt — 7Xt dt + ")/tht dBt

A plot of Q;, small

e Fluctuations around the stationary limit

Quantum trajectories and quantum jumps - Sec. 3: Quantum Jumps and Spikes



Mathematical Model

Competition between thermal fluctuations and measurement

dZ. = M(tanhBe — Z,)dt —~(1 — Z?) dB;

A %
dXt = —EXt dt — 7Xt dt + ")/tht dBt

A plot of Q;, moderate ~

e Progressive deformation of the shape
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Mathematical Model

Competition between thermal fluctuations and measurement

dZ. = M(tanhBe — Z,)dt —~(1 — Z?) dB;

A %
dXt = —EXt dt — 7Xt dt + ")/tht dBt

A plot of Q;, large
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e Emergence of jumps and spikes
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e The equation seems to account for jumps (at large 7, i.e. in
the many probes per unit time limit)

e Describe the limiting jump process
e The equations exhibits also unexpected spikes

e Are the spikes mathematically and/or physically real ?
e |f so, describe the limiting spike process

T LA I L 1) w“w

o J\JJ . ‘ lhl IHJ dw.\.l.\\“ L

\L b lln ] ‘Ii”.‘ 1l

L
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Strategy

e The Markov kernel of the measurement part
dZ; = —y(1 — Z?) dB; can be computed explicitly

e At large v treat the thermal noise part as a perturbation

Theorem

e In the limit v — oo, the finite dimensional distributions of
Q: = %(1 + Z;) converge weakly (i.e. in law) towards those
of a finite state Markov process with states 0 (Q ~ 1) and 1
(Q ~ 0) with Markov generator

A (—1%—tanh526 1+tanh/326>

2 1—tanh% —1—tanh%

e The Markov matrix is already apparent in the thermal noise
part (i.e. master equation) dE (Z;) = A(tanh fe — E(Z;)) dt
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Strategy

e Let 7(q;, gr) be the random time it takes to go to gr starting
from g;

e Describe the original process in terms of 7(qj, gf)

e Limiting law of 7(qj, gr) for v — oo can be computed

i i\ pA —p2 1
i(S(If)dt + (1 — q) PR tar pi== <1 + tanh ﬂe)
ar ar) ar 2 2

Theorem

e One can reconstruct the process in the limit v — oo and in
law from two time-homogeneous space-time Poisson point
processes Poisp and Pois; on [0, 1] x [0, 400].

e For instance, the density of Poisg is:

dyg = (5(1 —q)dg + ZZ) pAdt
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Reconstructing Spikes (and Jumps)

Initial condition
e Bernoulli random variable with parameter Qg }
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Reconstructing Spikes (and Jumps)

Initial condition

e Bernoulli random variable with parameter Qg

From Poisson to Spikes

e Poisg
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Reconstructing Spikes (and Jumps)

Initial condition

e Bernoulli random variable with parameter Qg

From Poisson to Spikes

e Pois;
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Reconstructing Spikes (and Jumps)

Initial condition

e Bernoulli random variable with parameter Qg

From Poisson to Spikes

e Pois; and Pois;
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Reconstructing Spikes (and Jumps)

Initial condition

e Bernoulli random variable with parameter Qg

From Poisson to Spikes

e Spike process from Pois; and Poisg
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Reconstructing Spikes (and Jumps)

Initial condition

e Bernoulli random variable with parameter Qg

From Poisson to Spikes

e Spike process
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Reconstructing Spikes (and Jumps)

Initial condition

e Bernoulli random variable with parameter Qg

From Poisson to Spikes

e More points
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Reconstructing Spikes (and Jumps)

Initial condition

e Bernoulli random variable with parameter Qg

From Poisson to Spikes
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e More points
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Reconstructing Spikes (and Jumps)

Initial condition

e Bernoulli random variable with parameter Qg

Original process at large 7

e More points

T m
i n JL..‘ { ‘
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The Status of Spikes

Mathematical status

e Spikes are predicted by both the discrete and the continuous
time model

v

Physical status

e Experiments are not yet precise enough to see spikes (but
they should be there)
e Spikes do not have an unavoidable quantum origin ...
e The equation
dZ, = A(tanh Be — Z,) dt — (1 — Z?) dB;
also describes a cavity jumping between the 0 and the 1
photon states according to a thermal Markovian law, as

observed by a fuzzy but purely classical (no disturbance of
the cavity) repeated measurement

... and possibly no physical reality
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To Summarize

The mathematical model for thermal fluctuations observed by
repeated non-demolition measurements

e Accounts for jumps
e Predicts (unexpected?) spikes
e Jumps are described by a finite state Markov process whose
Markov matrix can be read on the averaged equations of
motion
e Spikes are described by Poisson point processes, and are
aborted jumps
e Spikes are scale invariant (dg/q? at small q)

e What about other systems ?

e A simple possibility is to replace the thermal noise by a
Hamiltonian evolution
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Rabi Oscillations plus Measurement




Mathematical Model

Basic SDE

dZ; = UXpdt—~(1— Z?)dB;
2
dX, = —UZ dt— %Xt dt + X, Z; dB

A plot of Z; and X, small v

Y

e Small deformation of Rabi oscillations, purification
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Mathematical Model

Measurement
% = — (1 — Z?) dB;
2
dx, = - %xt dt + v X: Z: dB;
e No difference with the previous system J
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Mathematical Model

Rabt oscillations

dZt = UXt
dXt = *UZt dt

o Of the form dpe = —i[H, p¢] dt with H := <,(()/ _(;U>
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Mathematical Model

Quantum Zeno Effect

dZ, = UX;dt—~(1— Z?)dB;
2
dX, = —UZ dt— %Xt dt +~vX: Z; dB:

e In the large v limit, complete freezing of the dynamics
e Seen in explicit divergences of transition times

e Need to rescale U with «y to get a limit
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Mathematical Model

Basic SDE
dZ, = ~yuXdt—~(1— Z?)dB;
2
dX; = —~uZdt— %xt dt + v X: Z: dB;

e In the large v limit, complete freezing of the dynamics
e Need to rescale U with v to get a limit
e Set U:= uy, u> 0 fixed as v — 0
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Mathematical Model

Basic SDE
dZ: = ~yuXedt—~(1— Z?)dB;
2
dX; = —~uZidt— %Xt dt + X+ Z: dB;

A plot of Z; and X;, vy =0 U finite

e Rabi oscillations
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Mathematical Model

Basic SDE
dZ: = ~yuXedt—~(1— Z?)dB;
2
dX; = —~uZidt— %Xt dt + X+ Z: dB;

A plot of Z; and X;, small v, u fixed

Y

e Small deformation of Rabt oscillations
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Mathematical Model

Basic SDE

dZ, = ~yuXedt—~(1— Z?)dB;
2
dX, = —uZ dt— %Xt dt + v X, Z; dB

A plot of Z;, and X,, larger 7, u fixed

e Rabi oscillations fade away
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Mathematical Model

Basic SDE

dZ, = ~yuXedt—~(1— Z?)dB;
2
dX, = —uZ dt— %Xt dt + v X, Z; dB

A plot of Z; and X,, still larger v, u fixed

e Rabi oscillations fade away
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Mathematical Model

Basic SDE

dZ, = ~yuXedt—~(1— Z?)dB;
2
dX, = —uZ dt— %Xt dt + v X, Z; dB

A plot of Z; and X,, large v, u fixed
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e Jumps and spikes again
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Strategy

The Markov kernel of the measurement part

dZ; = —y(1 — Z?) dB; can be computed explicitly

At large v treat the thermal noise part as a perturbation
Additional difficulty : X; cannot be left aside

Theorem

In the limit v — oo, the finite dimensional distributions of
Q: = %(1 + Z;) converge weakly (i.e. in law) towards those
of a finite state Markov process with states 0 (Q ~ 1) and 1
(Q ~ 0) with Markov generator

—U2 U2
U2 —U2
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The Markov Matrix, Quick and Dirty

e Rescale X; := K;/v
dZy = uK;dt—~(1— Z?)dB;

dK, = —2 (uZt o ;Kt> dt + vK;Z, dB;
o Take expectations (remember Q; = (1 + Z;))
dE(Q) = SE(K:) dt
dE(K:) = —? <u(2E(Qt) — 1)+ ;E(Kt)> dt
o For large v set u(2E (Q¢) — 1) + 2E(K:) = 0 to get correct

master equation

dE(Q:) = v*(1 — 2E(Q;)) dt

- Sec. 3: Quantum Jumps and Spikes

Quantum trajectories and quantum jumps




Large v Behavior for K;

e Depending whether Z; = +1, K; is distributed according to
the stationary measure of

1
dK; = —72(5;@ + u) dt + vK; dB;

e Using s = 72t as time, Ws := ~vdB; is a standard Brownian,
and

1
dKs = —(5 K¢ + u) ds £ Ky dW,

e Brownian representation
La +o00 —
w —
Ko = ﬂpu/ ds et Bs—s
0

Law has large tail, density:

pr(k) = Fhu

1
2 gEu/k = e
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Strategy

e The strategy remains the same

Theorem

e One can reconstruct the process in the limit v — oo and in
law from two time-homogeneous space-time Poisson point
processes Poisy and Pois; on [0, 1] x [0, 4+00].

e For instance, the density of Poisy is:

d
dyy == <5(1 —q)dg + qZ) u?dt

Remarks
e The space factor is unchanged

e The time factor is dictated by the finite state Markov process
jump rates
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A Glance at the General Case




The General Case(1)

Starting point

dpe = (=ilH, pel+Y_ Lo,(pe)+ Y Ly (pe))dt+D . O, (pe)dW
a b b

e Ly, quadratic and Qy, linear in N

e Non demolition : Nps are diagonal in the pointer state basis

v

Strong measurement regime

e Np — vNp, large v limit
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The General Case(2)

Strong measurement regime

e Zeno freezing
e The appropriate rescalings in H and some pieces of the B,s
are understood
e Jumps
e In the large v limit, convergence of f.d.d. to a Markov process
whose states are the pointer states
e Explicit formula for the Markov transition kernel M, 3
e Spikes
e Spikes are conjectured to occur, involving mixtures between
two pointer states

e Spikes from « to [ are described by a Poisson process with
measure

d
dve s = (5(1 — q)dq + q‘;) M, sdt
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Conclusions




Conclusions

Iterated non demolition measurements

e Thorough understanding of asymptotic equivalence with
standard Von Neumann measurements

e Standard mathematical tools (martingales, decomposition in
extremal measures)

e Puzzling connections with De Finetti's theory and Sanov’s
large deviation theorem
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Conclusions

Dynamics observed by iterated non demolition measurements

e Thorough understanding (jump, spikes) in two-levels systems

e For general systems:
e Jumps are inherent to the strong continuous measurement
regime
e Well-understood and well-controlled finite state Markov
processes

e Spikes are present and conjectured to be described in terms
of universal scale invariant Poisson processes

e Standard weak convergence theorems do not apply

e Even the right space to formulate appropriate weak
convergence is unknown
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Conclusions

e Bohr and the other fathers of quantum mechanics would be
astonished by today’s experiments

e Fast electronics and low temperature mastery allow to
understand in detail

e Simple quantum systems
e Fundamental predictions of quantum mechanics

e Jumps are observed daily in laboratories
e Are quantitative aspects of spikes accessible to experiments ?

e The hunt for quantum computing building blocks goes on
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