Quantum Trajectories, Quantum Jumps, and Classical Probability

Michel Bauer Joint work with Denis Bernard and Antoine Tilloy

Le monde quantique, IHES, Bures-sur-Yvette, February 25, 2015

Plan

Introduction

2 Markovian Open Quantum Systems

- Indirect Measurements
- Dynamical Equations
- Non Demolition Experiments

Quantum Jumps and Spikes

- Thermal Noise plus Measurement
- Rabi Oscillations plus Measurement
- A Glance at the General Case

4 Conclusions

Introduction

1913: Bohr on Quantum Jumps

On the constitution of atoms and molecules

• ... the emission lines correspond to a radiation emitted during the passing of the system between two different stationary states ...

THE	
LONDON, EDINBURGH, AND DUBLIN	10000
PHILOSOPHICAL MAGAZINE	10000
AND	
JOURNAL OF SCIENCE.	
	11000
[SIXTH SERIES.]	
JUL Y 1913.	
I. On the Constitution of Atoms and Molecules, By N. BOHR, Dr. phil. Copenhagen*,	
Introduction.	
The short is a spin bulk more that of a spin problem of the spin p	
* E. Rotherford, Phil. Mag. xik, p. 609 (1911). † See also Griger and Narreden, Phil. Mag. April 1913. Phil. Mag. S. 6, Vol. 26, No. 151, July 1913. B	

Quantum trajectories and quantum jumps

Sec. 1: Introduction

1990's: Quantum Jumps Observed

- First (clean) observations of quantum jumps
 - Fluorescence monitoring and photon counting

FIG. 2. A typical trace of the 493-nm fluorescence from the $6^2 P_{1/2}$ level showing the quantum jumps after the hollow cathode lamp is turned on. The atom is definitely known to be in the shelf level during the low fluorescence periods.

2000's: Quantum Jumps and Repeated Measurements

- Birth and death of a photon in a cavity
 - S. Gleyzes et al (including S. Haroche), 446 (2007) 297-300, Quantum jumps of light recording ...

• A model of thermalization observed by a non-demolition measurement

2000's: Quantum Jumps and Repeated Measurements

- Birth and death of a photon in a cavity
 - S. Gleyzes et al (including S. Haroche), **446** (2007) 297-300, Quantum jumps of light recording ...

• A model of thermalization observed by a non-demolition measurement

Quantum trajectories and quantum jumps

Aims and Miscellanies

• Aims:

- Describe some of the tools involved in the manipulation of simple quantum systems
 - In particular the observation of quantum jumps
- Describe the mathematical framework in discrete and in continuous time
 - In particular how jumps appear and are characterized
- Results alluded to in this presentation:
 - All obtained in collaboration with Tristan Benoist, Denis Bernard, and Antoine Tilloy

Markovian Open Quantum Systems

Indirect Measurements

Indirect measurements (1)

- For a compound system $C = A \cup B$ with Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$
 - Learn something on A...
 - ... by measuring on B.
- In this context, *A* is called the system and *B* is called the probe.

Indirect measurements(2)

- Thus measure an observable $\Lambda = Id_A \otimes \Lambda_B$ that does nothing on A.
 - If $|\phi\rangle_C = |\varphi\rangle_A \otimes |\psi\rangle_B$ (resp. $\rho_C = \rho_A \otimes \rho_B$) is a pure tensor product just before the measurement...
 - ... then it is $|\varphi\rangle_A \otimes |\psi'\rangle_B$ (resp. $\rho_A \otimes \rho'_B$) just after the measurement.
- But
 - If |Φ⟩_C (resp. ρ_C) is not a pure tensor product just before the measurement...
 - ...something really happens to A in the measurement process.
- This is due to entanglement.

Indirect measurements(3)

- Common protocol:
 - Start from tensor product state $|\Phi\rangle_{C} = |\varphi\rangle_{A} \otimes |\psi\rangle_{B}$ (resp. $\rho_{C} = \rho_{A} \otimes \rho_{B}$),
 - System-probe interaction goes on for a while, $|\Phi\rangle_C \rightarrow U |\Phi\rangle_C$ (resp. $\rho_C \rightarrow U \rho_C U^{-1}$)
 - The state is not a pure tensor product anymore.
 - Measure the probe.

 For an indirect measurement, it is natural to view the system-probe interaction as part of the measurement process.

Indirect measurements(4)

• This is the abstract setting of the real experiment.

• Rydberg atoms are sent one after the other to interact with the photons in the cavity

Repeated indirect measurements

Idealizations

- Assume the probes do not interact with each other.
- Assume the system-probe interaction time is finite.

Repeated indirect measurements

Mathematical setting

- Thus $\mathcal{H} = \mathcal{H}_s \otimes \mathcal{H}_{p^1} \otimes \cdots \otimes \mathcal{H}_{p^n}$.
- Time evolution during the interaction with probe k is given by U_k , acting as U on $\mathcal{H}_s \otimes \mathcal{H}_{p^k}$ and doing nothing to the other probes.
- There is a sequence i_1, \dots, i_n of outcomes of the probe measurements (assuming that $\Lambda_p = \sum_{i \in E} \lambda_i |i\rangle \langle i|$, all λ_i distinct).

Dynamical Equations

Discrete Time Equations(1)

• Iteration of the random dynamical system

$$ho o
ho' := rac{\sum_{i \in I_r} A_i
ho A_i^{\dagger}}{\pi_r}$$
 with proba $\pi_r := \sum_{i \in I_r} \operatorname{Tr}_{\mathcal{H}_s} A_i
ho A_i^{\dagger}$

• ρ is the density matrix of the system

•
$$A_i$$
, $i \in I$ are such that $\sum_i A_i^{\dagger} A_i = \operatorname{Id}_{\mathcal{H}_s}$

• $I = \bigcup_r I_r$ is a partition

• Any family A_i can be realized as

$$A_i := \langle i | U | \psi \rangle$$

for some appropriate probe Hilbert space \mathcal{H}_p , some unitary evolution U on $\mathcal{H}_s \otimes \mathcal{H}_p$, some orthonormal basis $|i\rangle$ in \mathcal{H}_p and some fixed state $|\psi\rangle$ in \mathcal{H}_p .

Discrete Time Equations (2)

Extreme cases

 Ideal indirect measurement: (of a non-degenerate observable on *H_p* projecting on the basis | *i*))

$$ho o
ho' := rac{{\cal A}_i
ho {\cal A}_i^\dagger}{
ho_i}$$
 with proba $\pi_i := {
m Tr}_{{\cal H}_s} {\cal A}_i
ho {\cal A}_i^\dagger$

• No reading at all of the measurement outcome:

$$\rho \to \rho' := \sum_{i \in I} A_i \rho A_i^{\dagger}$$

• Describes also the Markovian limit of interaction with an environment (partial trace on $\mathcal{H} = \mathcal{H}_s \otimes \mathcal{H}_p$)

$$\sum_{i\in I} A_i \rho A_i^{\dagger} = \operatorname{Tr}_{\mathcal{H}_p} U \rho_{\mathcal{H}} U^{\dagger}$$

Quantum trajectories and quantum jumps

Continuous Time Limit Equations: Barchielli, Belavkin ... Pellegrini

$$d\rho_t = (-i[H,\rho_t] + \sum_a \mathcal{L}_{B_a}(\rho_t) + \sum_b \mathcal{L}_{N_b}(\rho_t)) \, dt + \sum_b \mathcal{Q}_{N_b}(\rho_t) \, dW_t^{(b)}$$

• dt: general Lindbladian, H is a self-adjoint operator (Hamiltonian), the B_a s and N_b s are arbitrary operators on \mathcal{H}_s

•
$$\mathcal{L}_O(\rho) := O\rho O^{\dagger} - \frac{1}{2}(O^{\dagger}O\rho + \rho O^{\dagger}O)$$

 dW_t^(b): stochastic innovation term, the W_t^bs are centered continuous Gaussian Markov processes with independent increments and covariance

•
$$dW_t^{(b)} dW_t^{(b')} = dt(\delta^{b,b'} - \sqrt{p_b p_{b'}})$$
 ($\sum_b p_b = 1$

• $\mathcal{Q}_{\mathcal{O}}(\rho) := \mathcal{O}\rho + \rho \mathcal{O}^{\dagger} - \rho \operatorname{Tr}_{\mathcal{H}_{s}}(\mathcal{O}\rho + \rho \mathcal{O}^{\dagger})$ (non-linear term)

Non Demolition Experiments

Non Demolition Experiments (1)

Definition

- Time evolution during the interaction with probe k is given by U_k , acting as U on $\mathcal{H}_s \otimes \mathcal{H}_{p^k}$ and doing nothing to the other probes.
- A Non Demolition experiment is when the U_k 's commute.

Consequence

- There is an orthonormal basis $|\,\alpha\,\rangle$ (pointer states) in $\mathcal{H}_{\rm s}$ such that

$$U = \sum_{\alpha} |\alpha\rangle \langle \alpha | \otimes U_{\alpha}.$$

• In the pointer basis, the operators A_i are diagonal.

$$(A_i)_{\alpha\beta} = \delta_{\alpha\beta} c(i|\alpha)$$

Non Demolition Experiments (3)

- Each probe (a Rydberg atom) behaves as a two-level system
- The preferred basis is that of photon number $n=0,1,\cdots$
- In an appropriate basis, $U_n = e^{i\theta n\sigma_z}$ where $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
 - Due to the value of θ , U_n is periodic modulo 8.
- The probe observable Λ is a Pauli matrix along some axis perpendicular to the *z* axis.

Quantum trajectories and quantum jumps

17/41

The Cavity

Quantum trajectories and quantum jumps

18/41

Sec. 2: Markovian Open Quantum Systems

Non Demolition Experiments (2)

Non demolition dynamics

• In the pointer basis, iteration of :

$$ho_{lphaeta}' =
ho_{lphaeta} rac{c(i|lpha)\overline{c(i|eta)}}{\sum_{\gamma}
ho_{\gamma\gamma} |c(i|\gamma)|^2}$$
 with proba $\sum_{\gamma}
ho_{\gamma\gamma} |c(i|\gamma)|^2$

- For each α , $p(i|\alpha) := |c(i|\alpha)|^2$ is a probability measure on probe measurement outcomes.
 - The measurement is called non-degenerate if the p(·|α) are distinct for different αs, i.e. if measurements discriminate the different αs (assumed in what follows)

Consequence

• The (non)diagonal elements of ρ are (super)martingales

Non Demolition Experiments (3)

Von Neumann equivalence

- At large times (i.e. after many iterates) ρ_n converges to a projector on some pointer $|\Gamma\rangle\langle\Gamma|$
 - Beware that Γ is random (i.e. depends on the experiment)
 - Convergence is exponential, rates given by relative entropies
- The probability that ρ_n ends in $|\gamma\rangle\langle\gamma|$ is $\mathcal{P}(\Gamma = \gamma) = \langle\gamma|\rho_0|\gamma\rangle$.

Reading the outcome

• The asymptotic frequency of outcome i in a given experiment is $p(i|\Gamma)$

Holography

• As the sequence of probe outcomes i_1, i_2, \cdots is exchangeable (the nondemolition condition) any (infinite, very large) subsequence i_{n_1}, i_{n_2}, \cdots allows to recover Γ .

Outlook

- Iterated non demolition measurements are a subtle tool to implement standard measurements on a fragile quantum system
- Aims in what follows:
 - Use probes coupled with a non demolition interaction to a system whose intrinsic time evolution does not preserve pointer states
 - Study the strong measurement regime, when time between probes is small with respect to the time scales of the system (in this regime, asymptotic holography holds)
 - Make contact with some real experiments

Quantum Jumps and Spikes

Two-levels Systems: dim $\mathcal{H}_s = 2$

• The general 2 by 2 density matrix is

$$\rho = \frac{1}{2} \begin{pmatrix} 1 + Z & X - iY \\ X + iY & 1 - Z \end{pmatrix}$$
$$X^{2} + Y^{2} + Z^{2} \le 1$$

• The Bloch sphere

Our illustrations involve real 2 by 2 density matrices

$$\rho = \frac{1}{2} \begin{pmatrix} 1+Z & X \\ X & 1-Z \end{pmatrix} \qquad X^2 + Z^2 \le 1$$

- The Bloch disk $Z^2 + X^2 \leq 1$ bounded by the Bloch circle
- Set Q =: (1 + Z)/2

Thermal Noise plus Measurement

The Experiment

- Birth and death of a photon in a cavity
 - S. Gleyzes et al (including S. Haroche), **446** (2007) 297-300, Quantum jumps of light recording ...

• A model of thermalization observed by a non-demolition measurement

The Experiment

- Birth and death of a photon in a cavity
 - S. Gleyzes et al (including S. Haroche), **446** (2007) 297-300, Quantum jumps of light recording ...

• A model of thermalization observed by a non-demolition measurement

Physical setting

- The setting is very much the same as before but :
 - Due to the value of θ , U_n is periodic modulo 2
 - The cavity is modeled by a two-level system, containing 0 photon (i.e. an even number of photons) or 1 photon (i.e. an odd number of photons)
 - Thermal noise may induce transition between 0 (Q = 1, Z = 1) and 1 (Q = 0, Z = -1) photon states

Mathematical Model

Basic SDE

$$dZ_t = \lambda(\tanh\beta\epsilon - Z_t) dt - \gamma(1 - Z_t^2) dB_t$$

$$dX_t = -\frac{\lambda}{2} X_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

A plot of Q_t , small γ

Quantum trajectories and quantum jumps

Mathematical Model

Thermal Noise

$$dZ_t = \lambda(\tanh\beta\epsilon - Z_t) dt - \gamma(1 - Z_t^2) dB_t$$

$$dX_t = -\frac{\lambda}{2} X_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

- Markovian approximation
 - No memory effects
- Diagonal elementary processes
 - In the photon number basis, the elementary processes trigger only transition from 0 to 1 photon and from 1 to 0 photon.
- Equilibrium at temperature β :

• Energy
$$H := \begin{pmatrix} 0 & 0 \\ 0 & \epsilon \end{pmatrix}$$
 and $\rho_{eq} \propto e^{-\beta H} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\beta \epsilon} \end{pmatrix}$

Mathematical Model

Measurement

$$dZ_t = \lambda(\tanh\beta\epsilon - Z_t) dt - \gamma(1 - Z_t^2) dB_t$$

$$dX_t = -\frac{\lambda}{2} X_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

- Continuous time approximation
 - Each probe measurement has a small effect on the cavity
 - Time resolution large compared to lapse between two probes
- Measurement is responsible for non-linearities
- Each probe measurement can have two outcomes
 - Measurement statistics is a random walk correlated to the cavity
 - In continuous time, leads to a diffusion
- The probes couple to the photon number in the cavity

25/41
Measurement

$$dZ_t = \lambda(\tanh\beta\epsilon - Z_t) dt - \gamma(1 - Z_t^2) dB_t$$

$$dX_t = -\frac{\lambda}{2} X_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

Convergence of Q_t to 0

Quantum trajectories and quantum jumps

25/41

Sec. 3: Quantum Jumps and Spikes

Measurement

$$dZ_t = \lambda(\tanh\beta\epsilon - Z_t) dt - \gamma(1 - Z_t^2) dB_t$$

$$dX_t = -\frac{\lambda}{2} X_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

Measurement

$$dZ_t = \lambda(\tanh\beta\epsilon - Z_t) dt - \gamma(1 - Z_t^2) dB_t$$

$$dX_t = -\frac{\lambda}{2} X_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

Convergence of Q_t to 1

Competition between thermal fluctuations and measurement

$$dZ_t = \lambda(\tanh\beta\epsilon - Z_t) dt - \gamma(1 - Z_t^2) dB_t$$

$$dX_t = -\frac{\lambda}{2} X_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

A plot of Q_t , $\gamma = 0$

Competition between thermal fluctuations and measurement

$$dZ_t = \lambda(\tanh\beta\epsilon - Z_t) dt - \gamma(1 - Z_t^2) dB_t$$

$$dX_t = -\frac{\lambda}{2} X_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

A plot of Q_t , small γ

Competition between thermal fluctuations and measurement

$$dZ_t = \lambda(\tanh\beta\epsilon - Z_t) dt - \gamma(1 - Z_t^2) dB_t$$

$$dX_t = -\frac{\lambda}{2} X_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

A plot of Q_t , moderate γ

Competition between thermal fluctuations and measurement

$$dZ_t = \lambda(\tanh\beta\epsilon - Z_t) dt - \gamma(1 - Z_t^2) dB_t$$

$$dX_t = -\frac{\lambda}{2} X_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

A plot of Q_t , large γ

Quantum trajectories and quantum jumps

Sec. 3: Quantum Jumps and Spikes

Goals

- The equation seems to account for jumps (at large γ , i.e. in the many probes per unit time limit)
 - Describe the limiting jump process
- The equations exhibits also unexpected spikes
 - Are the spikes mathematically and/or physically real ?
 - If so, describe the limiting spike process

Jumps

Strategy

- The Markov kernel of the measurement part $dZ_t = -\gamma(1 Z_t^2) dB_t$ can be computed explicitly
- At large γ treat the thermal noise part as a perturbation

Theorem

• In the limit $\gamma \to \infty$, the finite dimensional distributions of $Q_t = \frac{1}{2}(1 + Z_t)$ converge weakly (i.e. in law) towards those of a finite state Markov process with states 0 ($Q \simeq 1$) and 1 ($Q \simeq 0$) with Markov generator

$$\frac{\lambda}{2} \begin{pmatrix} -1 + \tanh \frac{\beta \epsilon}{2} & 1 + \tanh \frac{\beta \epsilon}{2} \\ 1 - \tanh \frac{\beta \epsilon}{2} & -1 - \tanh \frac{\beta \epsilon}{2} \end{pmatrix}$$

• The Markov matrix is already apparent in the thermal noise part (i.e. master equation) $d\mathbb{E}(Z_t) = \lambda(\tanh \beta \epsilon - \mathbb{E}(Z_t)) dt$

Spikes

Strategy

- Let $\tau(q_i, q_f)$ be the random time it takes to go to q_f starting from q_i
- Describe the original process in terms of $\tau(q_i, q_f)$
- Limiting law of $au(q_i, q_f)$ for $\gamma o \infty$ can be computed

$$rac{q_i}{q_f}\delta(t)dt + \left(1-rac{q_i}{q_f}
ight)rac{p\lambda}{q_f}e^{-rac{p\lambda}{q_f}t}dt \qquad p:=rac{1}{2}\left(1+ anhrac{eta\epsilon}{2}
ight)$$

Theorem

- One can reconstruct the process in the limit $\gamma \to \infty$ and in law from two time-homogeneous space-time Poisson point processes $\mathbb{P}ois_0$ and $\mathbb{P}ois_1$ on $[0, 1] \times [0, +\infty]$.
 - For instance, the density of $\mathbb{P}\text{ois}_0$ is:

$$d
u_0 := \left(\delta(1-q)dq + rac{dq}{q^2}
ight)p\lambda dt$$

Initial condition

• Bernoulli random variable with parameter Q_0

Initial condition

• Bernoulli random variable with parameter Q_0

• Bernoulli random variable with parameter Q_0

• Pois₁

Initial condition

• Bernoulli random variable with parameter Q_0

From Poisson to Spikes

• Pois₁ and Pois₁

• Bernoulli random variable with parameter Q_0

From Poisson to Spikes

Spike process from Pois₁ and Pois₁

Initial condition

• Bernoulli random variable with parameter Q_0

Initial condition

• Bernoulli random variable with parameter Q_0

From Poisson to Spikes

More points

• Bernoulli random variable with parameter Q_0

Initial condition

• Bernoulli random variable with parameter Q_0

The Status of Spikes

Mathematical status

• Spikes are predicted by both the discrete and the continuous time model

Physical status

- Experiments are not yet precise enough to see spikes (but they should be there)
- Spikes do not have an unavoidable quantum origin ...
 - The equation

$$dZ_t = \lambda(\tanh eta \epsilon - Z_t) \, dt - \gamma(1 - Z_t^2) \, dB_t$$

also describes a cavity jumping between the 0 and the 1 photon states according to a thermal Markovian law, as observed by a fuzzy but purely classical (no disturbance of the cavity) repeated measurement

... and possibly no physical reality

To Summarize

- The mathematical model for thermal fluctuations observed by repeated non-demolition measurements
 - Accounts for jumps
 - Predicts (unexpected?) spikes
- Jumps are described by a finite state Markov process whose Markov matrix can be read on the averaged equations of motion
- Spikes are described by Poisson point processes, and are aborted jumps
 - Spikes are scale invariant $(dq/q^2 \text{ at small } q)$
- What about other systems ?
 - A simple possibility is to replace the thermal noise by a Hamiltonian evolution

Rabi Oscillations plus Measurement

Basic SDE

$$dZ_t = UX_t dt - \gamma (1 - Z_t^2) dB_t$$

$$dX_t = -UZ_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

A plot of Z_t and X_t , small γ

• Small deformation of Rabi oscillations, purification

32/41

Sec. 3: Quantum Jumps and Spikes

• No difference with the previous system

$$dZ_t = UX_t - \gamma (1 - Z_t^2) dB_t$$

$$dX_t = -UZ_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

• Of the form
$$d\rho_t = -i[H, \rho_t] dt$$
 with $H := \begin{pmatrix} 0 & -iU \\ iU & 0 \end{pmatrix}$

Quantum Zeno Effect

$$dZ_t = UX_t dt - \gamma (1 - Z_t^2) dB_t$$

$$dX_t = -UZ_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

- In the large γ limit, complete freezing of the dynamics
 - Seen in explicit divergences of transition times
- Need to rescale ${\it U}$ with γ to get a limit

- In the large γ limit, complete freezing of the dynamics
- Need to rescale U with γ to get a limit
 - Set $U := u\gamma$, u > 0 fixed as $\gamma \to \infty$

Basic SDE

$$dZ_t = \gamma u X_t dt - \gamma (1 - Z_t^2) dB_t$$

$$dX_t = -\gamma u Z_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

A plot of Z_t and X_t , $\gamma = 0$ U finite

Basic SDE

$$dZ_t = \gamma u X_t dt - \gamma (1 - Z_t^2) dB_t$$

$$dX_t = -\gamma u Z_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

32/41

Sec. 3: Quantum Jumps and Spikes

Basic SDE

$$dZ_t = \gamma u X_t dt - \gamma (1 - Z_t^2) dB_t$$

$$dX_t = -\gamma u Z_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

32/41

Basic SDE

$$dZ_t = \gamma u X_t dt - \gamma (1 - Z_t^2) dB_t$$

$$dX_t = -\gamma u Z_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

A plot of Z_t and X_t , still larger γ , u fixed

Quantum trajectories and quantum jumps

32/41

Sec. 3: Quantum Jumps and Spikes

Basic SDE

$$dZ_t = \gamma u X_t dt - \gamma (1 - Z_t^2) dB_t$$

$$dX_t = -\gamma u Z_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t$$

A plot of Z_t and X_t , large γ , u fixed

Quantum trajectories and quantum jumps

32/41

Sec. 3: Quantum Jumps and Spikes

Jumps

Strategy

- The Markov kernel of the measurement part $dZ_t = -\gamma(1 Z_t^2) dB_t$ can be computed explicitly
- At large γ treat the thermal noise part as a perturbation
- Additional difficulty : X_t cannot be left aside

Theorem

• In the limit $\gamma \to \infty$, the finite dimensional distributions of $Q_t = \frac{1}{2}(1 + Z_t)$ converge weakly (i.e. in law) towards those of a finite state Markov process with states 0 ($Q \simeq 1$) and 1 ($Q \simeq 0$) with Markov generator

$$\begin{pmatrix} -u^2 & u^2 \\ u^2 & -u^2 \end{pmatrix}$$

The Markov Matrix, Quick and Dirty

• Rescale
$$X_t := K_t / \gamma$$

$$dZ_t = uK_t dt - \gamma (1 - Z_t^2) dB_t$$

$$dK_t = -\gamma^2 \left(uZ_t + \frac{1}{2}K_t \right) dt + \gamma K_t Z_t dB_t$$

• Take expectations (remember $Q_t = \frac{1}{2}(1+Z_t)$)

$$d\mathbb{E}(Q_t) = \frac{u}{2}\mathbb{E}(K_t) dt$$

$$d\mathbb{E}(K_t) = -\gamma^2 \left(u(2\mathbb{E}(Q_t) - 1) + \frac{1}{2}\mathbb{E}(K_t)\right) dt$$

For large γ set u(2E(Q_t) − 1) + ¹/₂E(K_t) = 0 to get correct master equation

$$d\mathbb{E}(Q_t) = u^2(1 - 2\mathbb{E}(Q_t)) dt$$

Large γ Behavior for K_t

• Depending whether $Z_t = \pm 1$, K_t is distributed according to the stationary measure of

$$dK_t = -\gamma^2 (\frac{1}{2}K_t \pm u) \, dt \pm \gamma K_t \, dB_t$$

• Using $s = \gamma^2 t$ as time, $W_s := \gamma dB_t$ is a standard Brownian, and

$$dK_s = -(\frac{1}{2}K_t \pm u) \, ds \pm K_s \, dW_s$$

Brownian representation

$$K_{\infty} \stackrel{Law}{=} \mp u \int_{0}^{+\infty} ds \, e^{\pm \overline{B}_s - s}$$

Law has large tail, density:

$$\mu_{\pm}(k) := \mp 4u^2 \ e^{\pm u/k} \ \frac{1}{k^3} \ 1_{\mp k > 0}$$

Quantum trajectories and quantum jumps

35/41

Spikes

Strategy

• The strategy remains the same

Theorem

- One can reconstruct the process in the limit $\gamma \to \infty$ and in law from two time-homogeneous space-time Poisson point processes $\mathbb{P}ois_0$ and $\mathbb{P}ois_1$ on $[0, 1] \times [0, +\infty]$.
 - For instance, the density of $\mathbb{P}\text{ois}_0$ is:

$$d
u_0 := \left(\delta(1-q)dq + rac{dq}{q^2}
ight)u^2dt$$

Remarks

- The space factor is unchanged
- The time factor is dictated by the finite state Markov process jump rates
A Glance at the General Case

The General Case(1)

Starting point

$$d\rho_t = (-i[H,\rho_t] + \sum_a \mathcal{L}_{B_a}(\rho_t) + \sum_b \mathcal{L}_{N_b}(\rho_t))dt + \sum_b \mathcal{Q}_{N_b}(\rho_t)dW_t^{(b)}$$

- \mathcal{L}_{N_b} quadratic and \mathcal{Q}_{N_b} linear in N_b
- Non demolition : N_b s are diagonal in the pointer state basis

Strong measurement regime

• $N_b
ightarrow \gamma N_b$, large γ limit

The General Case(2)

Strong measurement regime

- Zeno freezing
 - The appropriate rescalings in *H* and some pieces of the *B*_as are understood
- Jumps
 - In the large γ limit, convergence of f.d.d. to a Markov process whose states are the pointer states
 - Explicit formula for the Markov transition kernel $M_{lpha,eta}$
- Spikes
 - Spikes are conjectured to occur, involving mixtures between two pointer states
 - Spikes from α to β are described by a Poisson process with measure

$$d
u_{lpha,eta}:=\left(\delta(1-q)dq+rac{dq}{q^2}
ight)M_{lpha,eta}dt$$

Iterated non demolition measurements

- Thorough understanding of asymptotic equivalence with standard Von Neumann measurements
- Standard mathematical tools (martingales, decomposition in extremal measures)
- Puzzling connections with De Finetti's theory and Sanov's large deviation theorem

Dynamics observed by iterated non demolition measurements

- Thorough understanding (jump, spikes) in two-levels systems
- For general systems:
 - Jumps are inherent to the strong continuous measurement regime
 - Well-understood and well-controlled finite state Markov processes
 - Spikes are present and conjectured to be described in terms of universal scale invariant Poisson processes
- Standard weak convergence theorems do not apply
 - Even the right space to formulate appropriate weak convergence is unknown

- Bohr and the other fathers of quantum mechanics would be astonished by today's experiments
 - Fast electronics and low temperature mastery allow to understand in detail
 - Simple quantum systems
 - Fundamental predictions of quantum mechanics
 - Jumps are observed daily in laboratories
 - Are quantitative aspects of spikes accessible to experiments ?
 - The hunt for quantum computing building blocks goes on