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Introduction



1913: Bohr on Quantum Jumps
On the constitution of atoms and molecules

• ... the emission lines correspond to a radiation emitted
during the passing of the system between two different
stationary states ...
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1990’s: Quantum Jumps Observed

• First (clean) observations of quantum jumps
• Fluorescence monitoring and photon counting
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2000’s: Quantum Jumps and Repeated
Measurements

• Birth and death of a photon in a cavity
• S. Gleyzes et al (including S. Haroche), 446 (2007) 297-300,

Quantum jumps of light recording ...

• A model of thermalization observed by a non-demolition
measurement
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Aims and Miscellanies

• Aims:
• Describe some of the tools involved in the manipulation of

simple quantum systems
• In particular the observation of quantum jumps

• Describe the mathematical framework in discrete and in
continuous time

• In particular how jumps appear and are characterized
• Results alluded to in this presentation:

• All obtained in collaboration with Tristan Benoist, Denis
Bernard, and Antoine Tilloy
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Markovian Open Quantum
Systems



Indirect Measurements



Indirect measurements (1)

• For a compound system C = A ∪ B with Hilbert space
HA ⊗HB

• Learn something on A...
• ... by measuring on B .

• In this context, A is called the system and B is called the
probe.

System
Measurement

apparatus

Probe
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Indirect measurements(2)

• Thus measure an observable Λ = IdA ⊗ ΛB that does nothing
on A.

• If |φ 〉C = |ϕ 〉A ⊗ |ψ 〉B (resp. ρC = ρA ⊗ ρB ) is a pure tensor
product just before the measurement...

• ... then it is |ϕ 〉A ⊗ |ψ′ 〉B (resp. ρA ⊗ ρ′B ) just after the
measurement.

• But
• If |Φ 〉C (resp. ρC ) is not a pure tensor product just before the

measurement...
• ...something really happens to A in the measurement process.

• This is due to entanglement.
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Indirect measurements(3)
• Common protocol:

• Start from tensor product state |Φ 〉C = |ϕ 〉A ⊗ |ψ 〉B (resp.
ρC = ρA ⊗ ρB ),

• System-probe interaction goes on for a while,
|Φ 〉C → U|Φ 〉C (resp. ρC → UρCU

−1)
• The state is not a pure tensor product anymore.

• Measure the probe.

System
Measurement

apparatus

Probe

• For an indirect measurement, it is natural to view the
system-probe interaction as part of the measurement process.
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Indirect measurements(4)

• This is the abstract setting of the real experiment.

• Rydberg atoms are sent one after the other to interact with
the photons in the cavity
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Repeated indirect measurements

Generic protocol
• Make several indirect measurements in a row, for a given

system but for different probes.

System
Measurement

Probe Probe Probe Probe
k k−1

apparatus

k−2k+1

Idealizations
• Assume the probes do not interact with each other.
• Assume the system-probe interaction time is finite.
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Repeated indirect measurements
Mathematical setting

• Thus H = Hs ⊗Hp1 ⊗ · · · ⊗ Hpn .
• Time evolution during the interaction with probe k is given

by Uk , acting as U on Hs ⊗Hpk and doing nothing to the
other probes.

• There is a sequence i1, · · · , in of outcomes of the probe
measurements (assuming that Λp =

∑
i∈E λi | i 〉〈 i |, all λi

distinct).

System
Measurement

Probe Probe Probe Probe
k k−1

apparatus

k−2k+1
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Dynamical Equations



Discrete Time Equations(1)
• Iteration of the random dynamical system

ρ→ ρ′ :=

∑
i∈Ir AiρA

†
i

πr
with proba πr :=

∑
i∈Ir

TrHs AiρA
†
i

• ρ is the density matrix of the system
• Ai , i ∈ I are such that

∑
i A
†
i Ai = IdHs

• I = ∪r Ir is a partition

• Any family Ai can be realized as

Ai := 〈 i |U |ψ 〉

for some appropriate probe Hilbert space Hp , some unitary
evolution U on Hs ⊗Hp , some orthonormal basis | i 〉 in Hp

and some fixed state |ψ 〉in Hp .
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Discrete Time Equations (2)
Extreme cases

• Ideal indirect measurement: (of a non-degenerate observable
on Hp projecting on the basis | i 〉)

ρ→ ρ′ :=
AiρA

†
i

pi
with proba πi := TrHs AiρA

†
i

• No reading at all of the measurement outcome:

ρ→ ρ′ :=
∑
i∈I

AiρA
†
i

• Describes also the Markovian limit of interaction with an
environment (partial trace on H = Hs ⊗Hp)∑

i∈I

AiρA
†
i = TrHp UρHU

†

Quantum trajectories and quantum jumps 14/41 Sec. 2: Markovian Open Quantum Systems



Continuous Time Limit Equations:
Barchielli, Belavkin ... Pellegrini

dρt = (−i [H, ρt ]+
∑
a

LBa(ρt)+
∑
b

LNb
(ρt)) dt+

∑
b

QNb
(ρt) dW

(b)
t

• dt : general Lindbladian, H is a self-adjoint operator
(Hamiltonian), the Bas and Nbs are arbitrary operators on
Hs

• LO(ρ) := OρO† − 1
2 (O†Oρ+ ρO†O)

• dW
(b)
t : stochastic innovation term, the W b

t s are centered
continuous Gaussian Markov processes with independent
increments and covariance

• dW
(b)
t dW

(b′)
t = dt(δb,b

′ −√pbpb′) (
∑

b pb = 1)
• QO(ρ) := Oρ+ ρO† − ρTrHs (Oρ+ ρO†) (non-linear term)
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Non Demolition Experiments



Non Demolition Experiments (1)
Definition

• Time evolution during the interaction with probe k is given
by Uk , acting as U on Hs ⊗Hpk and doing nothing to the
other probes.

• A Non Demolition experiment is when the Uk ’s commute.

Consequence
• There is an orthonormal basis |α 〉 (pointer states) in Hs

such that
U =

∑
α

|α 〉〈α | ⊗ Uα.

• In the pointer basis, the operators Ai are diagonal.

(Ai )αβ = δαβc(i |α)
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Non Demolition Experiments (3)
A real experiment

• Each probe (a Rydberg atom) behaves as a two-level system
• The preferred basis is that of photon number n = 0, 1, · · ·
• In an appropriate basis, Un = e iθnσz where σz =

(
1 0
0 −1

)
.

• Due to the value of θ, Un is periodic modulo 8.
• The probe observable Λ is a Pauli matrix along some axis

perpendicular to the z axis.
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The Cavity
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Non Demolition Experiments (2)
Non demolition dynamics

• In the pointer basis, iteration of :

ρ′αβ = ραβ
c(i |α)c(i |β)∑
γ ργγ |c(i |γ)|2

with proba
∑
γ

ργγ |c(i |γ)|2

• For each α, p(i |α) := |c(i |α)|2 is a probability measure on
probe measurement outcomes.

• The measurement is called non-degenerate if the p(·|α) are
distinct for different αs, i.e. if measurements discriminate the
different αs (assumed in what follows)

Consequence
• The (non)diagonal elements of ρ are (super)martingales
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Non Demolition Experiments (3)
Von Neumann equivalence

• At large times (i.e. after many iterates) ρn converges to a
projector on some pointer | Γ 〉〈 Γ |

• Beware that Γ is random (i.e. depends on the experiment)
• Convergence is exponential, rates given by relative entropies

• The probability that ρn ends in | γ 〉〈 γ | is
P(Γ = γ) = 〈 γ | ρ0 | γ 〉.

Reading the outcome
• The asymptotic frequency of outcome i in a given experiment

is p(i |Γ)

Holography
• As the sequence of probe outcomes i1, i2, · · · is exchangeable

(the nondemolition condition) any (infinite, very large)
subsequence in1 , in2 , · · · allows to recover Γ.
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Outlook

• Iterated non demolition measurements are a subtle tool to
implement standard measurements on a fragile quantum
system

• Aims in what follows:
• Use probes coupled with a non demolition interaction to a

system whose intrinsic time evolution does not preserve
pointer states

• Study the strong measurement regime, when time between
probes is small with respect to the time scales of the system
(in this regime, asymptotic holography holds)

• Make contact with some real experiments
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Quantum Jumps and Spikes



Two-levels Systems: dimHs = 2

• The general 2 by 2 density matrix is

ρ =
1
2

(
1 + Z X − iY
X + iY 1− Z

)
X 2 + Y 2 + Z 2 ≤ 1

• The Bloch sphere

• Our illustrations involve real 2 by 2 density matrices

ρ =
1
2

(
1 + Z X
X 1− Z

)
X 2 + Z 2 ≤ 1

• The Bloch disk Z 2 + X 2 ≤ 1 bounded by the Bloch circle
• Set Q =: (1 + Z )/2
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Thermal Noise plus Measurement



The Experiment

• Birth and death of a photon in a cavity
• S. Gleyzes et al (including S. Haroche), 446 (2007) 297-300,

Quantum jumps of light recording ...

• A model of thermalization observed by a non-demolition
measurement
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Physical setting

• The setting is very much the same as before but :
• Due to the value of θ, Un is periodic modulo 2
• The cavity is modeled by a two-level system, containing 0

photon (i.e. an even number of photons) or 1 photon (i.e. an
odd number of photons)

• Thermal noise may induce transition between 0 (Q = 1,
Z = 1) and 1 (Q = 0, Z = −1) photon states
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Mathematical Model
Basic SDE

dZt = λ(tanhβε− Zt) dt − γ(1− Z 2
t ) dBt

dXt = −λ
2
Xt dt −

γ2

2
Xt dt + γXtZt dBt

A plot of Qt , small γ

• Fluctuations around the stationary limit
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Mathematical Model
Thermal Noise

dZt = λ(tanhβε− Zt) dt−γ(1− Z 2
t ) dBt

dXt = −λ
2
Xt dt−

γ2

2
Xt dt + γXtZt dBt

• Markovian approximation
• No memory effects

• Diagonal elementary processes
• In the photon number basis, the elementary processes trigger

only transition from 0 to 1 photon and from 1 to 0 photon.
• Equilibrium at temperature β:

• Energy H :=

(
0 0
0 ε

)
and ρeq ∝ e−βH =

(
1 0
0 e−βε

)
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Mathematical Model
Measurement

dZt = λ(tanhβε− Zt) dt − γ(1− Z 2
t ) dBt

dXt = −λ
2
Xt dt −

γ2

2
Xt dt + γXtZt dBt

• Continuous time approximation
• Each probe measurement has a small effect on the cavity
• Time resolution large compared to lapse between two probes

• Measurement is responsible for non-linearities
• Each probe measurement can have two outcomes

• Measurement statistics is a random walk correlated to the
cavity

• In continuous time, leads to a diffusion
• The probes couple to the photon number in the cavity
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Mathematical Model
Measurement

dZt = λ(tanhβε− Zt) dt − γ(1− Z 2
t ) dBt

dXt = −λ
2
Xt dt −

γ2

2
Xt dt + γXtZt dBt

Convergence of Qt to 0

• Rapid convergence to 0
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Mathematical Model
Measurement

dZt = λ(tanhβε− Zt) dt − γ(1− Z 2
t ) dBt

dXt = −λ
2
Xt dt −

γ2

2
Xt dt + γXtZt dBt

Convergence of Qt to ?

• Hesitations
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Mathematical Model
Measurement

dZt = λ(tanhβε− Zt) dt − γ(1− Z 2
t ) dBt

dXt = −λ
2
Xt dt −

γ2

2
Xt dt + γXtZt dBt

Convergence of Qt to 1

• Rapid convergence to 1
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Mathematical Model
Competition between thermal fluctuations and measurement

dZt = λ(tanhβε− Zt) dt − γ(1− Z 2
t ) dBt

dXt = −λ
2
Xt dt −

γ2

2
Xt dt + γXtZt dBt

A plot of Qt , γ = 0

• Convergence to the stationary limit
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Mathematical Model
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dZt = λ(tanhβε− Zt) dt − γ(1− Z 2
t ) dBt

dXt = −λ
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Mathematical Model
Competition between thermal fluctuations and measurement

dZt = λ(tanhβε− Zt) dt − γ(1− Z 2
t ) dBt

dXt = −λ
2
Xt dt −

γ2

2
Xt dt + γXtZt dBt

A plot of Qt , moderate γ

• Progressive deformation of the shape
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Mathematical Model
Competition between thermal fluctuations and measurement

dZt = λ(tanhβε− Zt) dt − γ(1− Z 2
t ) dBt

dXt = −λ
2
Xt dt −

γ2

2
Xt dt + γXtZt dBt

A plot of Qt , large γ

• Emergence of jumps and spikes
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Goals

• The equation seems to account for jumps (at large γ, i.e. in
the many probes per unit time limit)

• Describe the limiting jump process
• The equations exhibits also unexpected spikes

• Are the spikes mathematically and/or physically real ?
• If so, describe the limiting spike process
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Jumps
Strategy

• The Markov kernel of the measurement part
dZt = −γ(1− Z 2

t ) dBt can be computed explicitly
• At large γ treat the thermal noise part as a perturbation

Theorem
• In the limit γ →∞, the finite dimensional distributions of
Qt = 1

2(1 + Zt) converge weakly (i.e. in law) towards those
of a finite state Markov process with states 0 (Q ' 1) and 1
(Q ' 0) with Markov generator

λ

2

(
−1 + tanh βε

2 1 + tanh βε
2

1− tanh βε
2 −1− tanh βε

2

)
• The Markov matrix is already apparent in the thermal noise

part (i.e. master equation) dE (Zt) = λ(tanhβε− E (Zt)) dt
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Spikes
Strategy

• Let τ(qi , qf ) be the random time it takes to go to qf starting
from qi

• Describe the original process in terms of τ(qi , qf )

• Limiting law of τ(qi , qf ) for γ →∞ can be computed

qi
qf
δ(t)dt +

(
1− qi

qf

)
pλ

qf
e
− pλ

qf
t
dt p :=

1
2

(
1 + tanh

βε

2

)
Theorem

• One can reconstruct the process in the limit γ →∞ and in
law from two time-homogeneous space-time Poisson point
processes Pois0 and Pois1 on [0, 1]× [0,+∞].

• For instance, the density of Pois0 is:

dν0 :=

(
δ(1− q)dq +

dq

q2

)
pλdt
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Reconstructing Spikes (and Jumps)

Initial condition
• Bernoulli random variable with parameter Q0
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Reconstructing Spikes (and Jumps)

Initial condition
• Bernoulli random variable with parameter Q0

From Poisson to Spikes
• Pois0
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Reconstructing Spikes (and Jumps)

Initial condition
• Bernoulli random variable with parameter Q0

From Poisson to Spikes
• Pois1
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Reconstructing Spikes (and Jumps)

Initial condition
• Bernoulli random variable with parameter Q0

From Poisson to Spikes
• Pois1 and Pois1
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Reconstructing Spikes (and Jumps)

Initial condition
• Bernoulli random variable with parameter Q0

From Poisson to Spikes
• Spike process from Pois1 and Pois1
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Reconstructing Spikes (and Jumps)

Initial condition
• Bernoulli random variable with parameter Q0

From Poisson to Spikes
• Spike process
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Reconstructing Spikes (and Jumps)

Initial condition
• Bernoulli random variable with parameter Q0

From Poisson to Spikes
• More points
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Reconstructing Spikes (and Jumps)

Initial condition
• Bernoulli random variable with parameter Q0

From Poisson to Spikes
• More points
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Reconstructing Spikes (and Jumps)

Initial condition
• Bernoulli random variable with parameter Q0

Original process at large γ

• More points
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The Status of Spikes
Mathematical status

• Spikes are predicted by both the discrete and the continuous
time model

Physical status
• Experiments are not yet precise enough to see spikes (but

they should be there)
• Spikes do not have an unavoidable quantum origin ...

• The equation
dZt = λ(tanhβε− Zt) dt − γ(1− Z 2

t ) dBt

also describes a cavity jumping between the 0 and the 1
photon states according to a thermal Markovian law, as
observed by a fuzzy but purely classical (no disturbance of
the cavity) repeated measurement

... and possibly no physical reality
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To Summarize

• The mathematical model for thermal fluctuations observed by
repeated non-demolition measurements

• Accounts for jumps
• Predicts (unexpected?) spikes

• Jumps are described by a finite state Markov process whose
Markov matrix can be read on the averaged equations of
motion

• Spikes are described by Poisson point processes, and are
aborted jumps

• Spikes are scale invariant (dq/q2 at small q)

• What about other systems ?
• A simple possibility is to replace the thermal noise by a

Hamiltonian evolution
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Rabi Oscillations plus Measurement



Mathematical Model
Basic SDE

dZt = UXt dt − γ(1− Z 2
t ) dBt

dXt = −UZt dt −
γ2

2
Xt dt + γXtZt dBt

A plot of Zt and Xt , small γ

• Small deformation of Rabi oscillations, purification
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Mathematical Model

Measurement

dZt = UXt dt − γ(1− Z 2
t ) dBt

dXt = −UZt dt −
γ2

2
Xt dt + γXtZt dBt

• No difference with the previous system
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Mathematical Model

Rabi oscillations

dZt = UXt−γ(1− Z 2
t ) dBt

dXt = −UZt dt−
γ2

2
Xt dt + γXtZt dBt

• Of the form dρt = −i [H, ρt ] dt with H :=

(
0 −iU
iU 0

)
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Mathematical Model

Quantum Zeno Effect

dZt = UXt dt − γ(1− Z 2
t ) dBt

dXt = −UZt dt −
γ2

2
Xt dt + γXtZt dBt

• In the large γ limit, complete freezing of the dynamics
• Seen in explicit divergences of transition times

• Need to rescale U with γ to get a limit
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Mathematical Model

Basic SDE

dZt = γuXt dt − γ(1− Z 2
t ) dBt

dXt = −γuZt dt −
γ2

2
Xt dt + γXtZt dBt

• In the large γ limit, complete freezing of the dynamics
• Need to rescale U with γ to get a limit

• Set U := uγ, u > 0 fixed as γ →∞
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Mathematical Model
Basic SDE

dZt = γuXt dt − γ(1− Z 2
t ) dBt

dXt = −γuZt dt −
γ2

2
Xt dt + γXtZt dBt

A plot of Zt and Xt , γ = 0 U finite

• Rabi oscillations
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Mathematical Model
Basic SDE

dZt = γuXt dt − γ(1− Z 2
t ) dBt

dXt = −γuZt dt −
γ2

2
Xt dt + γXtZt dBt

A plot of Zt and Xt , small γ, u fixed

• Small deformation of Rabi oscillations
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Mathematical Model
Basic SDE

dZt = γuXt dt − γ(1− Z 2
t ) dBt

dXt = −γuZt dt −
γ2

2
Xt dt + γXtZt dBt

A plot of Zt and Xt , larger γ, u fixed

• Rabi oscillations fade away
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Mathematical Model
Basic SDE

dZt = γuXt dt − γ(1− Z 2
t ) dBt

dXt = −γuZt dt −
γ2

2
Xt dt + γXtZt dBt

A plot of Zt and Xt , still larger γ, u fixed

• Rabi oscillations fade away
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Mathematical Model
Basic SDE

dZt = γuXt dt − γ(1− Z 2
t ) dBt

dXt = −γuZt dt −
γ2

2
Xt dt + γXtZt dBt

A plot of Zt and Xt , large γ, u fixed

• Jumps and spikes again
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Jumps
Strategy

• The Markov kernel of the measurement part
dZt = −γ(1− Z 2

t ) dBt can be computed explicitly
• At large γ treat the thermal noise part as a perturbation
• Additional difficulty : Xt cannot be left aside

Theorem
• In the limit γ →∞, the finite dimensional distributions of
Qt = 1

2(1 + Zt) converge weakly (i.e. in law) towards those
of a finite state Markov process with states 0 (Q ' 1) and 1
(Q ' 0) with Markov generator(

−u2 u2

u2 −u2

)
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The Markov Matrix, Quick and Dirty

• Rescale Xt := Kt/γ

dZt = uKt dt − γ(1− Z 2
t ) dBt

dKt = −γ2
(
uZt +

1
2
Kt

)
dt + γKtZt dBt

• Take expectations (remember Qt = 1
2(1 + Zt))

dE (Qt) =
u

2
E (Kt) dt

dE (Kt) = −γ2
(
u(2E (Qt)− 1) +

1
2

E (Kt)

)
dt

• For large γ set u(2E (Qt)− 1) + 1
2E (Kt) = 0 to get correct

master equation
dE (Qt) = u2(1− 2E (Qt)) dt
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Large γ Behavior for Kt

• Depending whether Zt = ±1, Kt is distributed according to
the stationary measure of

dKt = −γ2(
1
2
Kt ± u) dt ± γKt dBt

• Using s = γ2t as time, Ws := γdBt is a standard Brownian,
and

dKs = −(
1
2
Kt ± u) ds ± Ks dWs

• Brownian representation

K∞
Law
= ∓u

∫ +∞

0
ds e±Bs−s

• Law has large tail, density:
µ±(k) := ∓4u2 e±u/k

1
k3 1∓k>0
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Spikes
Strategy

• The strategy remains the same

Theorem
• One can reconstruct the process in the limit γ →∞ and in

law from two time-homogeneous space-time Poisson point
processes Pois0 and Pois1 on [0, 1]× [0,+∞].

• For instance, the density of Pois0 is:

dν0 :=

(
δ(1− q)dq +

dq

q2

)
u2dt

Remarks
• The space factor is unchanged
• The time factor is dictated by the finite state Markov process

jump rates
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The General Case(1)

Starting point

dρt = (−i [H, ρt ]+
∑
a

LBa(ρt)+
∑
b

LNb
(ρt))dt+

∑
b

QNb
(ρt)dW

(b)
t

• LNb
quadratic and QNb

linear in Nb

• Non demolition : Nbs are diagonal in the pointer state basis

Strong measurement regime
• Nb → γNb , large γ limit
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The General Case(2)
Strong measurement regime

• Zeno freezing
• The appropriate rescalings in H and some pieces of the Bas

are understood
• Jumps

• In the large γ limit, convergence of f.d.d. to a Markov process
whose states are the pointer states

• Explicit formula for the Markov transition kernel Mα,β

• Spikes
• Spikes are conjectured to occur, involving mixtures between

two pointer states
• Spikes from α to β are described by a Poisson process with

measure

dνα,β :=

(
δ(1− q)dq +

dq

q2

)
Mα,βdt
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Conclusions

Iterated non demolition measurements
• Thorough understanding of asymptotic equivalence with

standard Von Neumann measurements
• Standard mathematical tools (martingales, decomposition in

extremal measures)
• Puzzling connections with De Finetti’s theory and Sanov’s

large deviation theorem
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Conclusions

Dynamics observed by iterated non demolition measurements
• Thorough understanding (jump, spikes) in two-levels systems
• For general systems:

• Jumps are inherent to the strong continuous measurement
regime

• Well-understood and well-controlled finite state Markov
processes

• Spikes are present and conjectured to be described in terms
of universal scale invariant Poisson processes

• Standard weak convergence theorems do not apply
• Even the right space to formulate appropriate weak

convergence is unknown
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Conclusions

• Bohr and the other fathers of quantum mechanics would be
astonished by today’s experiments

• Fast electronics and low temperature mastery allow to
understand in detail

• Simple quantum systems
• Fundamental predictions of quantum mechanics

• Jumps are observed daily in laboratories
• Are quantitative aspects of spikes accessible to experiments ?

• The hunt for quantum computing building blocks goes on
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