Quantum Trajectories, Quantum Jumps, and Classical Probability

Michel Bauer
Joint work with Denis Bernard and Antoine Tilloy

Le monde quantique, IHES, Bures-sur-Yvette, February 25, 2015
Introduction
1913: Bohr on Quantum Jumps

On the constitution of atoms and molecules

• ... the emission lines correspond to a radiation emitted during the passing of the system between two different stationary states ...
1990’s: Quantum Jumps Observed

- First (clean) observations of quantum jumps
- Fluorescence monitoring and photon counting

![Graph showing fluorescence photon counts over time](image)

FIG. 2. A typical trace of the 493-nm fluorescence from the $6^2 P_{1/2}$ level showing the quantum jumps after the hollow cathode lamp is turned on. The atom is definitely known to be in the shelf level during the low fluorescence periods.
2000’s: Quantum Jumps and Repeated Measurements

- Birth and death of a photon in a cavity
 - S. Gleyzes et al (including S. Haroche), 446 (2007) 297-300, Quantum jumps of light recording ...

- A model of thermalization observed by a non-demolition measurement
2000’s: Quantum Jumps and Repeated Measurements

- Birth and death of a photon in a cavity
 - S. Gleyzes et al (including S. Haroche), 446 (2007) 297–300, Quantum jumps of light recording ...

- A model of thermalization observed by a non-demolition measurement
Aims and Miscellanies

• Aims:
 • Describe some of the tools involved in the manipulation of simple quantum systems
 • In particular the observation of quantum jumps
 • Describe the mathematical framework in discrete and in continuous time
 • In particular how jumps appear and are characterized

• Results alluded to in this presentation:
 • All obtained in collaboration with Tristan Benoist, Denis Bernard, and Antoine Tilloy
Markovian Open Quantum Systems
Indirect Measurements
Indirect measurements (1)

- For a compound system $C = A \cup B$ with Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$
 - Learn something on A...
 - ... by measuring on B.
- In this context, A is called the system and B is called the probe.
Indirect measurements(2)

• Thus measure an observable $\Lambda = \text{Id}_A \otimes \Lambda_B$ that does nothing on A.
 • If $|\phi\rangle_C = |\varphi\rangle_A \otimes |\psi\rangle_B$ (resp. $\rho_C = \rho_A \otimes \rho_B$) is a pure tensor product just before the measurement...
 • ... then it is $|\varphi\rangle_A \otimes |\psi'\rangle_B$ (resp. $\rho_A \otimes \rho'_B$) just after the measurement.

• But
 • If $|\Phi\rangle_C$ (resp. ρ_C) is not a pure tensor product just before the measurement...
 • ...something really happens to A in the measurement process.

• This is due to entanglement.
Indirect measurements (3)

- **Common protocol:**
 - Start from tensor product state $|\Phi\rangle_C = |\varphi\rangle_A \otimes |\psi\rangle_B$ (resp. $\rho_C = \rho_A \otimes \rho_B$).
 - **System-probe** interaction goes on for a while, $|\Phi\rangle_C \rightarrow U|\Phi\rangle_C$ (resp. $\rho_C \rightarrow U\rho_C U^{-1}$)
 - The state is not a pure tensor product anymore.
 - Measure the probe.

- For an indirect measurement, it is natural to view the **system-probe** interaction as part of the measurement process.
• This is the abstract setting of the real experiment.

• Rydberg atoms are sent one after the other to interact with the photons in the cavity.
Repeated indirect measurements

Generic protocol

- Make several indirect measurements in a row, for a given system but for different probes.

Idealizations

- Assume the probes do not interact with each other.
- Assume the system-probe interaction time is finite.
Repeated indirect measurements

Mathematical setting

- Thus $\mathcal{H} = \mathcal{H}_s \otimes \mathcal{H}_{p1} \otimes \cdots \otimes \mathcal{H}_{pn}$.
- Time evolution during the interaction with probe k is given by U_k, acting as U on $\mathcal{H}_s \otimes \mathcal{H}_{pk}$ and doing nothing to the other probes.
- There is a sequence i_1, \cdots, i_n of outcomes of the probe measurements (assuming that $\Lambda_p = \sum_{i \in E} \lambda_i |i\rangle\langle i|$, all λ_i distinct).
Dynamical Equations
Discrete Time Equations (1)

• Iteration of the random dynamical system

\[\rho \rightarrow \rho' := \frac{\sum_{i \in I_r} A_i \rho A_i^\dagger}{\pi_r} \text{ with proba } \pi_r := \sum_{i \in I_r} \text{Tr}_{\mathcal{H}_s} A_i \rho A_i^\dagger \]

- \(\rho \) is the density matrix of the system
- \(A_i, i \in I \) are such that \(\sum_i A_i^\dagger A_i = \text{Id}_{\mathcal{H}_s} \)
- \(I = \bigcup_r I_r \) is a partition

• Any family \(A_i \) can be realized as

\[A_i := \langle i | U | \psi \rangle \]

for some appropriate probe Hilbert space \(\mathcal{H}_p \), some unitary evolution \(U \) on \(\mathcal{H}_s \otimes \mathcal{H}_p \), some orthonormal basis \(| i \rangle \) in \(\mathcal{H}_p \) and some fixed state \(| \psi \rangle \) in \(\mathcal{H}_p \).
Discrete Time Equations (2)

Extreme cases

- Ideal indirect measurement: (of a non-degenerate observable on \mathcal{H}_p projecting on the basis $|i\rangle$)

 $$\rho \rightarrow \rho' := \frac{A_i \rho A_i^\dagger}{p_i} \text{ with proba } \pi_i := \text{Tr}_{\mathcal{H}_s} A_i \rho A_i^\dagger$$

- No reading at all of the measurement outcome:

 $$\rho \rightarrow \rho' := \sum_{i \in I} A_i \rho A_i^\dagger$$

 - Describes also the Markovian limit of interaction with an environment (partial trace on $\mathcal{H} = \mathcal{H}_s \otimes \mathcal{H}_p$)

 $$\sum_{i \in I} A_i \rho A_i^\dagger = \text{Tr}_{\mathcal{H}_p} U \rho U^\dagger$$
Continuous Time Limit Equations: Barchielli, Belavkin ... Pellegrini

\[
d\rho_t = (-i[H, \rho_t] + \sum_a \mathcal{L}_{B_a}(\rho_t) + \sum_b \mathcal{L}_{N_b}(\rho_t)) \, dt + \sum_b \mathcal{Q}_b(\rho_t) \, dW_t^{(b)}
\]

- \(dt\): general Lindbladian, \(H\) is a self-adjoint operator (Hamiltonian), the \(B_a\)s and \(N_b\)s are arbitrary operators on \(\mathcal{H}_s\)
 - \(\mathcal{L}_O(\rho) := O\rho O^\dagger - \frac{1}{2}(O^\dagger O\rho + \rho O^\dagger O)\)
- \(dW_t^{(b)}\): stochastic innovation term, the \(W_t^{(b)}\)s are centered continuous Gaussian Markov processes with independent increments and covariance
 - \(dW_t^{(b)} dW_t^{(b')} = dt(\delta^{b,b'} - \sqrt{p_b p_{b'}})\) \(\quad (\sum_b p_b = 1)\)
 - \(Q_O(\rho) := O\rho + \rho O^\dagger - \rho \text{Tr}_{\mathcal{H}_s}(O\rho + \rho O^\dagger)\) (non-linear term)

Quantum trajectories and quantum jumps
Non Demolition Experiments
Non Demolition Experiments (1)

Definition

- Time evolution during the interaction with probe k is given by U_k, acting as U on $\mathcal{H}_s \otimes \mathcal{H}_{p^k}$ and doing nothing to the other probes.
- A **Non Demolition** experiment is when the U_k’s commute.

Consequence

- There is an orthonormal basis $|\alpha\rangle$ (pointer states) in \mathcal{H}_s such that
 \[
 U = \sum_{\alpha} |\alpha\rangle \langle \alpha | \otimes U_\alpha.
 \]
- In the pointer basis, the operators A_i are diagonal.
 \[
 (A_i)_{\alpha\beta} = \delta_{\alpha\beta} c(i|\alpha)
 \]
Each probe (a Rydberg atom) behaves as a two-level system.

The preferred basis is that of photon number $n = 0, 1, \ldots$

In an appropriate basis, $U_n = e^{i\theta n \sigma_z}$ where $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Due to the value of θ, U_n is periodic modulo 8.

The probe observable Λ is a Pauli matrix along some axis perpendicular to the z axis.
Non demolition dynamics

• In the pointer basis, iteration of:

\[\rho'_\alpha \beta = \rho_{\alpha \beta} \frac{c(i|\alpha)c(i|\beta)}{\sum_\gamma \rho_{\gamma \gamma}|c(i|\gamma)|^2} \] with proba \[\sum_\gamma \rho_{\gamma \gamma}|c(i|\gamma)|^2 \]

• For each \(\alpha \), \(p(i|\alpha) := |c(i|\alpha)|^2 \) is a probability measure on probe measurement outcomes.

 • The measurement is called non-degenerate if the \(p(\cdot|\alpha) \) are distinct for different \(\alpha \)s, i.e. if measurements discriminate the different \(\alpha \)s (assumed in what follows)

Consequence

• The (non)diagonal elements of \(\rho \) are (super)martingales
Non Demolition Experiments (3)

Von Neumann equivalence
- At large times (i.e., after many iterates) ρ_n converges to a projector on some pointer $|\Gamma\rangle\langle\Gamma|$
 - Beware that Γ is random (i.e., depends on the experiment)
 - Convergence is exponential, rates given by relative entropies
- The probability that ρ_n ends in $|\gamma\rangle\langle\gamma|$ is $P(\Gamma = \gamma) = \langle\gamma|\rho_0|\gamma\rangle$.

Reading the outcome
- The **asymptotic frequency** of outcome i in a given experiment is $p(i|\Gamma)$

Holography
- As the sequence of probe outcomes i_1, i_2, \cdots is exchangeable (the nondemolition condition) any (infinite, very large) subsequence i_{n_1}, i_{n_2}, \cdots allows to recover Γ.

Quantum trajectories and quantum jumps

Sec. 2: Markovian Open Quantum Systems
Outlook

- Iterated non demolition measurements are a subtle tool to implement standard measurements on a fragile quantum system.

- Aims in what follows:
 - Use probes coupled with a non demolition interaction to a system whose intrinsic time evolution does not preserve pointer states.
 - Study the strong measurement regime, when time between probes is small with respect to the time scales of the system (in this regime, asymptotic holography holds).
 - Make contact with some real experiments.
Quantum Jumps and Spikes
Two-levels Systems: $\dim \mathcal{H}_s = 2$

- The general 2 by 2 density matrix is
 \[
 \rho = \frac{1}{2} \begin{pmatrix} 1 + Z & X - iY \\ X + iY & 1 - Z \end{pmatrix}
 \]
 \[X^2 + Y^2 + Z^2 \leq 1\]

- The Bloch sphere

- Our illustrations involve real 2 by 2 density matrices
 \[
 \rho = \frac{1}{2} \begin{pmatrix} 1 + Z & X \\ X & 1 - Z \end{pmatrix}
 \]
 \[X^2 + Z^2 \leq 1\]

- The Bloch disk $Z^2 + X^2 \leq 1$ bounded by the Bloch circle

- Set $Q =: (1 + Z)/2$
Thermal Noise plus Measurement
The Experiment

• Birth and death of a photon in a cavity
 • S. Gleyzes et al (including S. Haroche), 446 (2007) 297-300, Quantum jumps of light recording ...

• A model of thermalization observed by a non-demolition measurement
The Experiment

- Birth and death of a photon in a cavity
 - S. Gleyzes et al (including S. Haroche), 446 (2007) 297-300,
 Quantum jumps of light recording ...

- A model of thermalization observed by a non-demolition measurement
The setting is very much the same as before but:

- Due to the value of θ, U_n is periodic modulo 2
- The cavity is modeled by a two-level system, containing 0 photon (i.e. an even number of photons) or 1 photon (i.e. an odd number of photons)
- Thermal noise may induce transition between 0 ($Q = 1$, $Z = 1$) and 1 ($Q = 0$, $Z = -1$) photon states
Mathematical Model

Basic SDE

\[
\begin{align*}
 dZ_t &= \lambda (\tanh \beta \epsilon - Z_t) \, dt - \gamma (1 - Z_t^2) \, dB_t \\
 dX_t &= -\frac{\lambda}{2} X_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t
\end{align*}
\]

A plot of Q_t, small γ

- Fluctuations around the stationary limit
Mathematical Model

Thermal Noise

\[dZ_t = \lambda (\tanh \beta \epsilon - Z_t) \, dt - \gamma (1 - Z_t^2) \, dB_t \]
\[dX_t = -\frac{\lambda}{2} X_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t \]

- Markovian approximation
 - No memory effects
- Diagonal elementary processes
 - In the photon number basis, the elementary processes trigger only transition from 0 to 1 photon and from 1 to 0 photon.
- Equilibrium at temperature β:
 - Energy $H := \begin{pmatrix} 0 & 0 \\ 0 & \epsilon \end{pmatrix}$ and $\rho_{eq} \propto e^{-\beta H} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\beta \epsilon} \end{pmatrix}$
Mathematical Model

Measurement

\begin{align*}
dZ_t &= \lambda(\tanh \beta \epsilon - Z_t) \, dt - \gamma(1 - Z_t^2) \, dB_t \\
dX_t &= -\frac{\lambda}{2} X_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t
\end{align*}

- Continuous time approximation
 - Each probe measurement has a small effect on the cavity
 - Time resolution large compared to lapse between two probes
- Measurement is responsible for non-linearities
- Each probe measurement can have two outcomes
 - Measurement statistics is a random walk correlated to the cavity
 - In continuous time, leads to a diffusion
- The probes couple to the photon number in the cavity
Mathematical Model

Measurement

\[dZ_t = \lambda (\tanh \beta \epsilon - Z_t) \, dt - \gamma (1 - Z_t^2) \, dB_t \]

\[dX_t = -\frac{\lambda}{2} X_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t \]

Convergence of \(Q_t \) **to** 0

- Rapid convergence to 0
Mathematical Model

Measurement

\[dZ_t = \lambda (\tanh \beta \epsilon - Z_t) \, dt - \gamma (1 - Z_t^2) \, dB_t \]

\[dX_t = -\frac{\lambda}{2} X_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t \]

Convergence of \(Q_t \) to ?

- Hesitations
Mathematical Model

Measurement

\[\begin{align*}
 dZ_t &= \lambda (\tanh \beta \epsilon - Z_t) \, dt - \gamma (1 - Z_t^2) \, dB_t \\
 dX_t &= -\frac{\lambda}{2} X_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t
\end{align*}\]

Convergence of \(Q_t\) to 1

- Rapid convergence to 1
Mathematical Model

Competition between thermal fluctuations and measurement

\[dZ_t = \lambda(\tanh \beta \epsilon - Z_t) \, dt - \gamma(1 - Z_t^2) \, dB_t\]

\[dX_t = -\frac{\lambda}{2} X_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t\]

A plot of \(Q_t, \gamma = 0\)

- Convergence to the stationary limit
Mathematical Model

Competition between thermal fluctuations and measurement

\[dZ_t = \lambda (\tanh \beta \epsilon - Z_t) \, dt - \gamma (1 - Z_t^2) \, dB_t \]

\[dX_t = -\frac{\lambda}{2} X_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t \]

A plot of \(Q_t \), small \(\gamma \)

- Fluctuations around the stationary limit
Mathematical Model

Competition between thermal fluctuations and measurement

\[dZ_t = \lambda (\tanh \beta \epsilon - Z_t) \, dt - \gamma (1 - Z_t^2) \, dB_t \]
\[dX_t = -\frac{\lambda}{2} X_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t \]

A plot of \(Q_t \), moderate \(\gamma \)

- Progressive deformation of the shape
Mathematical Model

Competition between thermal fluctuations and measurement

\[dZ_t = \lambda (\tanh \beta \epsilon - Z_t) \, dt - \gamma (1 - Z_t^2) \, dB_t \]

\[dX_t = -\frac{\lambda}{2} X_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t \]

A plot of \(Q_t \), large \(\gamma \)

- Emergence of jumps and spikes
Goals

- The equation seems to account for jumps (at large γ, i.e. in the many probes per unit time limit)
 - Describe the limiting jump process
- The equations exhibits also unexpected spikes
 - Are the spikes mathematically and/or physically real?
 - If so, describe the limiting spike process
Jumps

Strategy

• The Markov kernel of the measurement part
 \[dZ_t = -\gamma(1 - Z_t^2) dB_t \]
 can be computed explicitly

• At large \(\gamma \) treat the thermal noise part as a perturbation

Theorem

• In the limit \(\gamma \to \infty \), the finite dimensional distributions of
 \(Q_t = \frac{1}{2}(1 + Z_t) \)
 converge weakly (i.e. in law) towards those
 of a finite state Markov process with states 0 (\(Q \simeq 1 \)) and 1
 (\(Q \simeq 0 \)) with Markov generator

\[
\begin{pmatrix}
\lambda/2 & 1 + \tanh\frac{\beta\epsilon}{2} \\
1 - \tanh\frac{\beta\epsilon}{2} & -1 - \tanh\frac{\beta\epsilon}{2}
\end{pmatrix}
\]

• The Markov matrix is already apparent in the thermal noise
 part (i.e. master equation)
 \[d\mathbb{E}(Z_t) = \lambda(\tanh \beta \epsilon - \mathbb{E}(Z_t)) dt \]
Strategy

- Let $\tau(q_i, q_f)$ be the random time it takes to go to q_f starting from q_i
- Describe the original process in terms of $\tau(q_i, q_f)$
- Limiting law of $\tau(q_i, q_f)$ for $\gamma \to \infty$ can be computed

$$
\frac{q_i}{q_f} \delta(t) dt + \left(1 - \frac{q_i}{q_f}\right) \frac{p \lambda}{q_f} e^{-\frac{p \lambda}{q_f} t} dt \quad p := \frac{1}{2} \left(1 + \tanh \frac{\beta \epsilon}{2}\right)
$$

Theorem

- One can reconstruct the process in the limit $\gamma \to \infty$ and in law from two time-homogeneous space-time Poisson point processes Pois_0 and Pois_1 on $[0, 1] \times [0, +\infty]$.
 - For instance, the density of Pois_0 is:

$$
d\nu_0 := \left(\delta(1 - q) dq + \frac{dq}{q^2}\right) p \lambda dt
$$
Reconstructing Spikes (and Jumps)

Initial condition

- Bernoulli random variable with parameter Q_0
Reconstructing Spikes (and Jumps)

Initial condition
- Bernoulli random variable with parameter Q_0

From Poisson to Spikes
- Pois_0
Reconstructing Spikes (and Jumps)

Initial condition
- Bernoulli random variable with parameter Q_0

From Poisson to Spikes
- Pois_1
Reconstructing Spikes (and Jumps)

Initial condition
- Bernoulli random variable with parameter Q_0

From Poisson to Spikes
- Pois_1 and Pois_1

Quantum trajectories and quantum jumps
Reconstructing Spikes (and Jumps)

Initial condition
- Bernoulli random variable with parameter Q_0

From Poisson to Spikes
- Spike process from Pois_1 and Pois_1
Reconstructing Spikes (and Jumps)

Initial condition

- Bernoulli random variable with parameter Q_0

From Poisson to Spikes

- Spike process
Reconstructing Spikes (and Jumps)

Initial condition

- Bernoulli random variable with parameter Q_0

From Poisson to Spikes

- More points
Reconstructing Spikes (and Jumps)

Initial condition

- Bernoulli random variable with parameter Q_0

From Poisson to Spikes

- More points
Reconstructing Spikes (and Jumps)

Initial condition
- Bernoulli random variable with parameter Q_0

Original process at large γ
- More points
The Status of Spikes

Mathematical status

- Spikes are predicted by both the discrete and the continuous time model

Physical status

- Experiments are not yet precise enough to see spikes (but they should be there)
- Spikes do not have an unavoidable quantum origin ...
 - The equation
 \[dZ_t = \lambda (\tanh \beta \epsilon - Z_t) \, dt - \gamma (1 - Z_t^2) \, dB_t \]
 also describes a cavity jumping between the 0 and the 1 photon states according to a thermal Markovian law, as observed by a fuzzy but purely classical (no disturbance of the cavity) repeated measurement
 ... and possibly no physical reality
To Summarize

- The mathematical model for thermal fluctuations observed by repeated non-demolition measurements
 - Accounts for jumps
 - Predicts (unexpected?) spikes
- Jumps are described by a finite state Markov process whose Markov matrix can be read on the averaged equations of motion
- Spikes are described by Poisson point processes, and are aborted jumps
 - Spikes are scale invariant \(dq/q^2 \) at small \(q \)

What about other systems?
- A simple possibility is to replace the thermal noise by a Hamiltonian evolution
Rabi Oscillations plus Measurement
Mathematical Model

Basic SDE

\[dZ_t = UX_t \, dt - \gamma(1 - Z_t^2) \, dB_t \]
\[dX_t = -UZ_t \, dt - \frac{\gamma^2}{2}X_t \, dt + \gamma X_t Z_t \, dB_t \]

A plot of \(Z_t \) and \(X_t \), small \(\gamma \)

- Small deformation of Rabi oscillations, purification
Mathematical Model

\[dZ_t = UX_t \, dt - \gamma (1 - Z_t^2) \, dB_t \]
\[dX_t = -UZ_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t \]

- No difference with the previous system
Mathematical Model

Rabi oscillations

\[
\begin{align*}
\frac{dZ_t}{dt} &= UX_t - \gamma(1 - Z_t^2) \, dB_t \\
\frac{dX_t}{dt} &= -UZ_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t
\end{align*}
\]

- Of the form \(d\rho_t = -i[H, \rho_t] \, dt \) with
\[
H := \begin{pmatrix}
0 & -iU \\
iU & 0
\end{pmatrix}
\]
Mathematical Model

Quantum Zeno Effect

\[\begin{align*}
\frac{dZ_t}{dt} &= UX_t dt - \gamma (1 - Z_t^2) dB_t \\
\frac{dX_t}{dt} &= -UZ_t dt - \frac{\gamma^2}{2} X_t dt + \gamma X_t Z_t dB_t
\end{align*} \]

- In the large \(\gamma \) limit, complete freezing of the dynamics
 - Seen in explicit divergences of transition times
- Need to rescale \(U \) with \(\gamma \) to get a limit
Mathematical Model

Basic SDE

\[dZ_t = \gamma u X_t \, dt - \gamma (1 - Z_t^2) \, dB_t \]
\[dX_t = -\gamma u Z_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t \]

- In the large \(\gamma \) limit, complete freezing of the dynamics
- Need to rescale \(U \) with \(\gamma \) to get a limit
 - Set \(U := u\gamma, \, u > 0 \) fixed as \(\gamma \to \infty \)
Mathematical Model

Basic SDE

\[dZ_t = \gamma uX_t \, dt - \gamma (1 - Z_t^2) \, dB_t \]
\[dX_t = -\gamma uZ_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t \]

A plot of \(Z_t \) and \(X_t \), \(\gamma = 0 \) \(U \) finite

- Rabi oscillations
Mathematical Model

Basic SDE

\[
\begin{align*}
 dZ_t &= \gamma uX_t \, dt - \gamma (1 - Z_t^2) \, dB_t \\
 dX_t &= -\gamma uZ_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t
\end{align*}
\]

A plot of \(Z_t \) and \(X_t \), small \(\gamma \), \(u \) fixed

- Small deformation of Rabi oscillations
Mathematical Model

Basic SDE

\[
\begin{align*}
 dZ_t & = \gamma uX_t \, dt - \gamma(1 - Z_t^2) \, dB_t \\
 dX_t & = -\gamma uZ_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t
\end{align*}
\]

A plot of Z_t and X_t, larger γ, u fixed

- Rabi oscillations fade away
Mathematical Model

Basic SDE

\[dZ_t = \gamma u X_t \, dt - \gamma (1 - Z_t^2) \, dB_t \]

\[dX_t = -\gamma u Z_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t \]

A plot of \(Z_t \) and \(X_t \), still larger \(\gamma, u \) fixed

- Rabi oscillations fade away
Mathematical Model

Basic SDE

\[dZ_t = \gamma u X_t \, dt - \gamma (1 - Z_t^2) \, dB_t \]
\[dX_t = -\gamma u Z_t \, dt - \frac{\gamma^2}{2} X_t \, dt + \gamma X_t Z_t \, dB_t \]

A plot of \(Z_t \) and \(X_t \), large \(\gamma \), \(u \) fixed

- Jumps and spikes again
Strategy

• The Markov kernel of the measurement part
 \[dZ_t = -\gamma (1 - Z_t^2) dB_t \] can be computed explicitly
• At large \(\gamma \) treat the thermal noise part as a perturbation
• Additional difficulty: \(X_t \) cannot be left aside

Theorem

• In the limit \(\gamma \to \infty \), the finite dimensional distributions of
 \[Q_t = \frac{1}{2} (1 + Z_t) \] converge weakly (i.e. in law) towards those
 of a finite state Markov process with states 0 (\(Q \simeq 1 \)) and 1
 (\(Q \simeq 0 \)) with Markov generator

\[
\begin{pmatrix}
 -u^2 & u^2 \\
 u^2 & -u^2
\end{pmatrix}
\]
The Markov Matrix, Quick and Dirty

- Rescale $X_t := K_t / \gamma$

 $$
 dZ_t = uK_t \, dt - \gamma (1 - Z_t^2) \, dB_t
 $$

 $$
 dK_t = -\gamma^2 \left(uZ_t + \frac{1}{2} K_t \right) \, dt + \gamma K_t Z_t \, dB_t
 $$

- Take expectations (remember $Q_t = \frac{1}{2} (1 + Z_t)$)

 $$
 d\mathbb{E} (Q_t) = \frac{u}{2} \mathbb{E} (K_t) \, dt
 $$

 $$
 d\mathbb{E} (K_t) = -\gamma^2 \left(u(2\mathbb{E} (Q_t) - 1) + \frac{1}{2} \mathbb{E} (K_t) \right) \, dt
 $$

- For large γ set $u(2\mathbb{E} (Q_t) - 1) + \frac{1}{2} \mathbb{E} (K_t) = 0$ to get correct master equation

 $$
 d\mathbb{E} (Q_t) = u^2 (1 - 2\mathbb{E} (Q_t)) \, dt
 $$
Large γ Behavior for K_t

- Depending whether $Z_t = \pm 1$, K_t is distributed according to the stationary measure of
 $$dK_t = -\gamma^2\left(\frac{1}{2}K_t \pm u\right) dt \pm \gamma K_t dB_t$$

- Using $s = \gamma^2 t$ as time, $W_s := \gamma dB_t$ is a standard Brownian, and
 $$dK_s = -\left(\frac{1}{2}K_t \pm u\right) ds \pm K_s dW_s$$

- Brownian representation
 $$K_\infty \overset{Law}{=} \pm u \int_0^\infty ds e^{\pm B_s - s}$$

- Law has large tail, density:
 $$\mu_{\pm}(k) := \pm 4u^2 e^{\pm u/k} \frac{1}{k^3} 1_{\mp k > 0}$$
Spikes

Strategy

- The strategy remains the same

Theorem

- One can reconstruct the process in the limit $\gamma \to \infty$ and in law from two time-homogeneous space-time Poisson point processes \mathcal{Pois}_0 and \mathcal{Pois}_1 on $[0, 1] \times [0, +\infty]$.
 - For instance, the density of \mathcal{Pois}_0 is:
 \[
d\nu_0 := \left(\delta(1 - q)dq + \frac{dq}{q^2} \right) u^2 dt
 \]

Remarks

- The space factor is unchanged
- The time factor is dictated by the finite state Markov process jump rates
A Glance at the General Case
The General Case (1)

Starting point

\[d\rho_t = (-i[H, \rho_t] + \sum_a \mathcal{L}_{B_a}(\rho_t) + \sum_b \mathcal{L}_{N_b}(\rho_t)) dt + \sum_b Q_{N_b}(\rho_t) dW_t^{(b)} \]

- \(\mathcal{L}_{N_b} \) quadratic and \(Q_{N_b} \) linear in \(N_b \)
- Non demolition: \(N_b \)s are diagonal in the pointer state basis

Strong measurement regime

- \(N_b \to \gamma N_b \), large \(\gamma \) limit
The General Case(2)

Strong measurement regime

- Zeno freezing
 - The appropriate rescalings in H and some pieces of the B_as are understood

- Jumps
 - In the large γ limit, convergence of f.d.d. to a Markov process whose states are the pointer states
 - Explicit formula for the Markov transition kernel $M_{\alpha, \beta}$

- Spikes
 - Spikes are conjectured to occur, involving mixtures between two pointer states
 - Spikes from α to β are described by a Poisson process with measure

$$d\nu_{\alpha, \beta} := \left(\delta(1 - q)dq + \frac{dq}{q^2} \right) M_{\alpha, \beta} dt$$
Conclusions
Conclusions

Iterated non demolition measurements

- Thorough understanding of asymptotic equivalence with standard Von Neumann measurements
- Standard mathematical tools (martingales, decomposition in extremal measures)
- Puzzling connections with De Finetti’s theory and Sanov’s large deviation theorem
Conclusions

Dynamics observed by iterated non demolition measurements

- Thorough understanding (jump, spikes) in two-levels systems
- For general systems:
 - Jumps are inherent to the strong continuous measurement regime
 - Well-understood and well-controlled finite state Markov processes
 - Spikes are present and **conjectured to be described in terms of universal scale invariant Poisson processes**
- **Standard weak convergence theorems do not apply**
 - Even the right space to formulate appropriate weak convergence is unknown
Conclusions

- Bohr and the other fathers of quantum mechanics would be astonished by today’s experiments
 - Fast electronics and low temperature mastery allow to understand in detail
 - Simple quantum systems
 - Fundamental predictions of quantum mechanics
 - Jumps are observed daily in laboratories
 - Are quantitative aspects of spikes accessible to experiments?
 - The hunt for quantum computing building blocks goes on