TECNICO
W LISBOA

Compact objects in modified gravity

centra

Antoine Lehébel

Institut Denis Poisson, 24 March 2022



My past experience
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My research interests

@ Alternative theories of gravity (scalar-tensor, extra dimensions)
@ Black hole and neutron star physics

@ Theory of dark energy




@ Changing our theory of gravity
© Hair or no-hair?
© Stability of modified gravity solutions

@ Geodesics around compact objects: a theorem
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Changing our theory of gravity
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How to modify our theory of gravity?
Starting point: general relativity
Spatiotemporal intervals measured by
ds? = gy (x?)dx*dx”
Dynamical and minimally coupled metric gy, :
S= 5gravity[ga ag] + 5ma'cter[ga P, 8¢]
4
c
Seravity = / dxv/ =g =(R — 2N

Einstein equations

87 G
G/_Ly =+ /\gl“’ = ? Tp,y

\
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Anything else with just a metric?

In 4D, assuming a single metric degree of freedom, second-order
field equations that are symmetric and divergence-less, the field
equations can contain only G,,,, and gj,,..

What can we change then?

o New fields @ Connection (# Levi-Civita)
@ Number of dimensions @ Break Lorentz invariance

o Massive gravity ° ..
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Adding a scalar degree of freedom: why?

Promoting Newton's constant to a field  [Brans & Dicke ’61]

[dxv=grecR — [ d*xv=g [eR-(Ve)?]

167TG G(xH)
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Adding a scalar degree of freedom: why?

Adding a scalar field ¢

e Simple and successful (inflation, quintessence, axion...)

e Many alternative gravity models related (massive gravity,

extra dimensions, Horava gravity...)

ON THE EXTRA MODE AND
INCONSISTENCY OF HORAVA GRAVITY

D. Blas? O. Pujolas! S. Sibiryakov

The aim of the present paper is to clarify this issue. WeSliow thiat Horava gravity does

possess an additional light scalar mode For a general background the equation of motion of

4D Gravity on a Brane in 5D Minkowski Space
Gia Dvali, Gregory Gabadadze, Massimo Porrati

freedom 3 of which couple to a conserved energy-momentum tensor. Thiis; having
the propagator as in (17) is equivalent of having a tensor-scalar gravity from 4D
point of view. This extra scalar polarization degree of freedom yields additional

Kaluza—Klein theory
From Wikipedia, th ee encycopedia

His rasultsto Einstein in 1918, and published them n 1921.°1 Kaluza presented a puraly classical extansion of genaral

relativty to 5D, with a of 10 four
P sometimes
called the "radion” or the “dilaton”. the the 4D Einstain iald equations, the
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Adding a scalar degree of freedom: how?

Horndeski theory

SH = /d4X£H(gMV7guV,i15 ""glu/,l'l...fp; @a @,flv "'7()0,1'1...1"7)

1 6 -
vV —8 5gm/

v n —_
gﬂ (gul/a gﬂl/,ilagul/,il,izv @, SO,I';U sp,il,iz) =0

4

Generically, higher than 277 order field o
equations = Ostrogradski ghost




Changing our theory of gravity

ics around compact objects Extra slides
000000e e

Horndeski theory (aka generalized Galileons)

SH :/ \/—gd4x(£2+£3+£4+£5)

Lo = Ga(p, X)

L3 = —Gs3(p, X)Op

L4 = Ga(i2, X)R + Gax [(09) = (VuVo)?]
Ls = Gs(p, X) G, VIV ¢

— =2 [(0¢)® = 300(VuVup)? + 2(V,. V. 0)°]
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Horndeski theory (aka generalized Galileons)

SH :/ \/—gd4x(£2+£3+£4+£5)

V(). (Ve)’, A C L2 = Gap, X)
DGP term Op(Vp)? C L3 = —G3(p, X)Op
Ricci scalar € L4 = Ga(p, X)R + Gax {(Dgo)2 — (VHVZ,go)ﬂ
Dilaton-like term € L5 = Gs(y, X) G, VFV ¢

254 G
%G — 22X [(09)* - 30(VuVoe)? + 2(V, V)]
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Horndeski theory (aka generalized Galileons)

SH :/ \/—gd4x(£2+£3+£4+£5)

V(). (Ve)’, A C L2 = Gap, X)
DGP term Op(Vp)? C L3 = —G3(p, X)Op
Ricci scalar € L4 = Ga(p, X)R + Gax {(Dgo)2 — (VHVygo)ﬂ
Dilaton-like term € L5 = Gs(y, X) G, VFV ¢

P G
%G — 22X [(09)* - 30(VuVoe)? + 2(V, V)]

with X = —(V¢)?/2

+ Beyond Horndeski/DHOST: Si(gu., ¢] + Sm[8uw, ] with
B = C(p, X)gu + D(p, X)V,p Vo J
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© Hair or no-hair?
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No-hair theorems

Two kinds: uniqueness theorems & no scalar hair theorems J
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No-hair theorems

Two kinds: uniqueness theorems & no scalar hair theorems J

Uniqueness theorems

@ Metric g, alone, no matter field

@ Assumptions: asymptotic flatness, weak energy condition,
stationarity

@ Only Kerr black holes, parametrized by M and J
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No-hair theorems

Two kinds: uniqueness theorems & no scalar hair theorems J

Uniqueness theorems

@ Metric g, alone, no matter field

@ Assumptions: asymptotic flatness, weak energy condition,
stationarity

@ Only Kerr black holes, parametrized by M and J

v

No scalar hair

o Add A*: Kerr-Newman, parametrized by electric charge Q

e Add ¢: nothing!

@ Assumptions: it depends
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No-hair theorem for shift-symmetric Horndeski models

@ Spherical symmetry and staticity of ¢ and g,

<

The solutions are identical to GR, with constant ¢ \
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No-hair theorem for shift-symmetric Horndeski models

@ Spherical symmetry and staticity of ¢ and g,
@ Asymptotic flatness with constant ¢ at spatial infinity

<

The solutions are identical to GR, with constant ¢ \
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No-hair theorem for shift-symmetric Horndeski models

@ Spherical symmetry and staticity of ¢ and g,
@ Asymptotic flatness with constant ¢ at spatial infinity
© Action possesses shift-symmetry ¢ — ¢ + C

<

The solutions are identical to GR, with constant ¢ \
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No-hair theorem for shift-symmetric Horndeski models

@ Spherical symmetry and staticity of ¢ and g,
@ Asymptotic flatness with constant ¢ at spatial infinity
© Action possesses shift-symmetry ¢ — ¢ + C

Q Finite norm of the associated Noether current J2

<

The solutions are identical to GR, with constant ¢ \




Hair or no-hair?
0®000000

No-hair theorem for shift-symmetric Horndeski models

@ Spherical symmetry and staticity of ¢ and g,

@ Asymptotic flatness with constant ¢ at spatial infinity
© Action possesses shift-symmetry ¢ — ¢ + C

@ Finite norm of the associated Noether current J?

© Canonical kinetic term X C G, and analytic G; functions
around V, 0 =0

<

The solutions are identical to GR, with constant ¢ \
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A classification of hairy solutions

[Babichev, Charmousis & AL ’16]

Shift-symmetric
Horndeski theories

Gix contains Gix contains ne-
only positive gative powers of X
powers of X

¢ #0 ¢=0 Jr =0 JT#0
No asymp- Asymptotic
totic flatness flatness

No kinetic term Kinetic term

Everything else
Hui-Nicolis theorem
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1%t example: Cosmological asymptotics

Metric and scalar field ansatz

ds? = gu(r)dt? + g, (r)dr? + r?(d6? + sin® 0dp?)
o(t,r) = qt+(r)

gy og—_-

git —— g —

@ Natural asymptotics if ¢ is a dark energy field:
p(1) _= o+ po(r — m0) + O[(1 — 70)?]

T—T0
e Compulsory hair




ing our theory of gravity Hair or no-hair?
5 0000®000




Hair or no-hair?
0000®000

1%t example: Cosmological asymptotics

Simplest quartic model

1 1 ¥
5 = /d4x\/_—g [E(R —20) = (Vo) = — G VP Vg

@ Exact Schwarzschild-de Sitter solutions:

de Sitter: static vs flat slicing

Ar2 2
_(1 _ %)dtz—i— dr/\ . 412402 = —de—i—e‘/?AT (dp2 +p2dQ2)
r
1

3
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1%t example: Cosmological asymptotics

Simplest quartic model

1 1 ¥
5 = /d4x\/_—g [E(R —20) = (Vo) = — G VP Vg

Exact Schwarzschild-de Sitter solutions

Pass local geometric tests

Self-tuning: Acg = m? independent of A

Invoked to alleviate the large cosmological constant problem

Resists phase transitions

Speed of gravitational waves (can be fixed)

Not a true solution to large CC problem (+ stability)
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2"l example: 4D Einstein-Gauss-Bonnet gravity

Starting point: higher dimensional Lovelock theory

50_/010 _g(D) R(D)_ ag(®)
with g(P) = ;SB,);UR(D)“VPJ 4R£E)R(D)W_|_R(D)2

e Compactification on a D — 4 maximally symmetric manifold
o &=af/(D—4)+ limit D— 4

4D: non-trivial scalar-tensor theory

/ d*xy/ =8 { R+ [6G + 4G, VH6V"6 — 4(V4)206 + 2(V )]}
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round compact objects

2" example: 4DEGB black holes

Exact vacuum solution

ds? = gy dt? + g, dr? + r?dQ?

2
8aM 1— ./
—gttzg;1=1+r—(1— 1+ =5 ) ¢=/dr—g”
2a r r

—— M = 2My,

o Solar system tests: |a| < 1010 m?
[Clifton, Carrilho, Fernandes & Mulryne ’20]
@ No horizon screening of small bodies: o > —10730 m?
[Charmousis, AL, Smyrniotis & Stergioulas ’21]
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2" example: 4DEGB neutron stars

M (M)
Observational constraints 1r
_______ — sly
(] Reproduce heaviest T — MPAL
pulsar and lightest ol ] — Aps
black hole — s
B | Black holes

0 0 < a < 40 km?

R; (km)

l‘lJ 1‘3 20
[Charmousis, AL, Smyrniotis & Stergioulas ’21]

Remarkable property

@ Universal point of convergence (independent of the EOS)

@ ldentical to the extremal black hole
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© Stability of modified gravity solutions
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round compact objects

Instability?

Self-tuned Schwarzschild-de Sitter solutions

1 1
5 = / d*x/—g [E(R ~20) = (99) — 5 Gu Vo Ty
2M At

_?r27 © = qt +(r)

g =g, =1-

Instability claim

Arbitrarily negative Hamiltonian density

The conclusion is in fact more subtle
[Babichev, Charmousis, Esposito-Farése & AL ’18]
[Babichev, Charmousis, Esposito-Farése & AL ’18]
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Hamiltonian and stability

Momentum p and Hamiltonian H

Q
R
N

s

\"“

S

R

N
3

I
Z
AN
Y
o
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Hamiltonian and stability

Momentum p and Hamiltonian H
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Changing our theory of gravity
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Hamiltonian and stability

Momentum p and Hamiltonian H

=
N
S

I

X
=

\
R
R
R
R
R

R

X
33
2
SRR
D

SR
SR
SRR

3
S

7

i
i
7 "/’//’/7”
//

H(p1;92)

@ Bounded H and energy conservation = stability
@ Unbounded H => instability?
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Hamiltonian and stability

Simple example

-1/c2 0
0

L= —%S’“’@ugoaygp with S = 1

t

A

AN auq, .~

[/ H=0378¢>0
< = X
AN\ v=-03
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Hamiltonian and stability

Simple example

-1/c2 0
0

L= —%S’“’@ugoaygp with S = 1

t

A

AN 6"¢ .~

/T H=0195¢50
< = X
v=-04
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@ Common timelike direction

@ Common spacelike hypersurface

@ ©) © @

O @ |0 @ |k @ |0 ®
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Application to scalar-tensor theories

Reminder of investigated solution

1
5 = / d*x/"g [—(R M) ~ (09)? — —5 G Vo Vs
oM A

—git = & :1_7_Tr’ @ = qt +1(r)

A priori, three different causal cones:
@ Matter causal cone (light)
@ Gravitational waves

© Scalar waves

Mixing of space and time — similar to boosts
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Application to scalar-tensor theories

167

Coupl tter to g, = T2 16X
SIS SS9 Sy g’“'+m2+167rX

Ve Ve instead of gWJ

= ‘ ‘ Cgrav = Clight
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Application to scalar-tensor theories

n rn r3
Tb.h. Tcosm

i — T

r1 T2 r3
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Application to scalar-tensor theories

t t t

Stability window

e Stable solutions if A/3 < Agr < A
@ Cgrav = Ciight even close to a black hole

@ Aeg ~ A: no resolution of large CC problem
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@ Geodesics around compact objects: a theorem
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our theory of gravity
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Simple question

If a particle loses energy, does it always fall towards the center?
In any theory of gravity?

[AL & Cardoso ’22]
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Metricity (V, g = 0) and no torsion (V[ny]f =0)

Symmetries of the spacetime
e Stationary & axisymmetric spacetime: Killing vectors ¥, y*
@ Circular spacetime §“R,}V§pw”] = q,b“Ru[V&pw"] =0
o Equatorial symmetry
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Metricity (V, g = 0) and no torsion (V[ﬂvy]f =0)

Symmetries of the spacetime
e Stationary & axisymmetric spacetime: Killing vectors ¥, y*
@ Circular spacetime f“Ru[Vﬁpw"] = q,b“Ru[V&pw"] =0
o Equatorial symmetry

2 = gu(r, 0)dt2 + 281, (r, 0)dtdy + gou(r, 9)d802
+ g (r, 0)dr? + gao(r, 0)d6?
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Geodesics
e Timelike geodesics: g, utu” = —1
o Conserved quantity n°l: E = —g;,, ut&”

o Conserved quantity n°2: L = g, uty”

We will focus on equatorial and circular geodesics

E2 4+ 2g,,EL e
gt = ey —; Btpbl + guel” 1=-V(r,E,L)
Bty — Bpp8itt

Stable circular orbits

V(r,E,L) =0, V/(r,E,L) =0, V"(r,E,L) >0
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Newtonian case

E(r) = —M/(2r), Li(r) = =V/Mr

v,

Generic case

8tt + 8roSt
Ei(r)=—=>—22—
(r) i
Li(r) — gtgp + g&p&in

VB
Bi(r) = —8tt — 2gt<in - ggotpﬂi
_dp —8t, T VvC

a(r) = 4y =

!
8oy

A\

Necessary conditions for existence of orbits:
)
6:‘: > 07 C= gt/“ap - gétg:ogp >0
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e Particle losing energy (6 E < 0) on sequence of circular orbits
@ 0E = E'dr: E’ determines whether orbits shrink or grow J

Newtonian case
E' = M/(2r*) > 0 = Orbits always shrink

Generic case

__ B8 (—&w)V”
2,/CB+ (VC+ 8/,)

/

e B= gia — git8pp > 0 outside of a horizon

o V/C+ 8¢, can only change sign if g7, does
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LB (aV”
2y/CP: (VC + i)

When approaching the center,

o either V" = 0: orbits become unstable

e or g;, = 0; coincides with Q_ = 0: static rings
[Collodel, Kleihaus & Kunz ’18]

For a theory of gravity that respects the weak equivalence
principle, a particle losing energy on a sequence of circular orbits
will either plunge towards the center or settle down at minima
of the generalized Newtonian potential
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Stationary spacetimes with a local maximum of g7

HNSD
6™

Kerr black holes with Rapidly rotating Time-averaged
scalar/Proca hair neutron stars binaries?

Fig. from [Santos, Plot by courtesy of
Benone, Crispino, Panagiotis Iosif
Herdeiro & Radu ’20]
[Collodel, Doneva &
Yazadjiev ’21]
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Conclusions

@ No-hair theorems can be bypassed in consistent settings
@ Stable solutions

@ Theorem predicting generic behavior of geodesics

y

@ Promising future: tests through gravitational waves
(quasi-normal modes, EMRIs...)

@ Dynamical regime (collapse, Cauchy problem)

A

Thank you for your attention!
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Primary hair

New field — Solutions described by one more free parameter

o First example: Einstein-Yang-Mills, new (discrete) parameter,
counting number of nodes [Volkov & Gal’tsov ’89]

@ Similar type of hair for scalarization models:
[Antoniou, AL, Sotiriou & Ventagli ’21]

Secondary hair

New field — Solutions # Kerr-Newman, but no new parameter

4D Einstein-Gauss-Bonnet black holes for instance
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Circularizing effects

e Collisions
o Tidal heating

o Radiative effects




Very specific gravitational wave signal

@ Energy loss is due to GW emission

@ Test body + quadrupolar approximation:

: 32
mE; = gIUI"J = gmzr“Q?E

@ On a static ring, 2 — 0 and test body will freeze

Extra slides
00®00000

0.10

Object around a supermassive
Kerr black hole with scalar hair
close to forming a static ring o

0.04
0.02

0.00

—— KBHsSH
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What about energy injected to the test body (JE > 0)?

Internal energy injection

e Tidal acceleration: rotational energy of the central body
transferred to gravitational energy of the test body

@ Moon moves away from the Earth at 3.8 cm/year

o Condition: Q < Qcentral body (= superradiance)

v

External energy injection

@ GW cosmic background [Blas & Jenkins ’21]

o Triple systems [Bonga, Yang & Hughes ’21]

Previous calculation remains predictive upon knowledge of
detailed energy balance
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GW170817: light and gravity have identical speeds

Gamma rays, 50 to 300 keV GRB 170817A

Gravitational-wave strain GW170817

A further important point is that Eq. (23), a
distinctive feature of two-metric theories, sug-
gests that a search for time delays between simul-
taneously emitted gravitational and electromagnet-
ic bursts could prove a valuable experimental
tool. An experimental limit of < 107* for [g-c, |/
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GW170817: light and gravity have identical speeds

) ‘Cgrav/clight = 1’ < 10715
o Caveat 1: Validity of EFT of dark energy at f ~ 100 Hz?

o Caveat 2: Problem only if ¢ is non-trivial at cosmological level

Easy solution: disformal transformation

167

Coupl tter to g, = T RV
ouple matter to g, gMV+m2+167rX

Outp Oy instead of gy,
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Well-posed or ill-posed?

System described by
e Differential equations(s) determining the evolution

@ Initial data

Well-posed Cauchy problem

The solution
Q exists (at least locally)
@ is unique

© depends continuously on the initial data
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Model with well-posed Cauchy problem

@ Most complicated (and also most interesting) Horndeski

models are ill-posed in a very broad class of gauges
[Papallo & Reall, PRD ’17]

o Finally, well-posed in a certain gauge
[Kovacs & Reall, PRL ’20]

e Important limitation: weak coupling (GR + ¢)
Idea : Transfer goods properties of general relativity
S— /d4x\/—_g [M3\R — (Vo)?]
1 g;% = Buw — D0,90,9
Go(X) = oD%’ Ga(X) = v1-2DX
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