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© A Brief Overview of Al and Information Theory
@ The birth of Al and Deep Learning
@ Legacy of Shannon's work
@ Information, Uncertainty and Learning

@ Critical Problems in Safety Al

© Overview of Recent Contributions to Safety Al
@ Detecting Misclassification Errors
@ Out-of-Distribution Detection

@ Adversarial Robustness

@ Discussion and Research Perspectives
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The birth of Al and Deep Learning
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A Brief History of Al - Dartmouth Conference (1956)

We propose that a 2 month, 10 man study of artificial intelligence
be carmed ouf during the summer of 1956 at Dartmouth College in
Hanaver, New Hampshire.

The study is to proceed on the basis of the conjecture that every
aspect of learming or any other feature of infelligence can in principle
be so precisely described that & machine can be made fo simulate
it. An aftempt will be made fo find how to make machines use
language, form abstractions and concepts, solve kinds of problems
now reserved for humans, and improve themselves.

- Datmouth Al Project Proposal: J. McCarthy et al.; Aug. 31, 1955.
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John MacCarthy Marvin Minsky Ray Solomonoff Alan Newell
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Herbert Simon Arthur Samuel Oliver Selfridge Nathaniel Rochester Trenchard More

The Founding Fathers of Al
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A Probabilistic Model of Learning (1960)

,_ Object Nature
I
1 Y; <=
: === Px(x
'y X, X( )
Loss: X
D Testing = (X,Y)
VY
Ly €=\ ' Training = {(X1, Y1), ..., (Xn, Yn)}
! .

- Igorithm ' :
“.._(hidden variables) .-

o Imitation of the object: try to construct a predictor which
provides the best predictions to the supervisor output

@ Approximation of the object: try to approximate the object
(nature) itself based on a model (uncertainty and calibration)

Learning is data compression: To separate structure from noise,
the regularities present in the data by choosing appropriately f € F.
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Statistical Learning Theory (1960 - 1990)

P (511;} (R, (f) - R(fJ| > E) < 83()"',11.}(?_’“:-'32
feF

-

E[ﬁﬂgi.(f)-ﬂ(f)|}<2\|,fw ' i

@ What are the conditions for consistency of a learning rule
based on the empirical risk minimization principle?

"

Vapnik—Chervonenkis theory (1960) addresses key questions:

@ How fast is the rate of convergence of the learning process?

@ How can one control the generalization ability (convergence
rate) of the learning process?

Vapnik and Chervonenkis' ingenious formulation led to the
characterization of necessary and sufficient conditions (finite
VC-dimension) for the minimizing of a risk R(f) using data.
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Deep Learning (2006,/2007)

Good representations learn to disentangle manifolds:

Prior distribution: pe(z)

e Enc/Dec map between low and

high representations of data, :

@ Encoders perform inference to =apace
interpret data, flatten and to
disentangle the data manifold, | Emodeij) N Dd‘ —

@ Decoders can introduce changes i g

in reconstructing data features,

X-space

Dataset: D

My research focus on developing and bringing new
mathematical tools and methodological principles from
information theory to machine learning and deep learning.

@ How goodness should be defined
is an open problem.
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Legacy of Shannon’s work
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Shannon’s Model of a Communication System

Uk X" Y" U*
— 1 Encoder > Channel > Decoder ——»

Shannon proposed (1948) an asymptotic approach:

@ A k-symbol sequence U is mapped by an
encoder into an n-symbol input sequence X

@ The received channel output sequence Y is
mapped by a decoder into an estimate U

e What is the the maximum communication rate R = k/n
(bits per transmission) such that P{U # U} can be made
arbitrarily small when (k,n) are sufficiently large?

Shannon's ingenious formulation led to the characterization of
necessary and sufficient conditions for reliable communication.
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Information Theory

Uk X" Y" U*
— Encoder Channel Decoder —

\ J
A J

Shannon proposed (1948) an (k, n)-asymptotic approach:
@ Channel coding theorem: The capacity is the maximum of
the mutual information between the channel input and output

C= supI(X;Y) in bit/transmission.
bx

o Lossy source coding theorem: The optimal tradeoff
between the rate R = n/k and the distortion D is

R(D) = inf I(U7 U) in bits/symbol.

pU‘U:]E[d(U,U)]gD

e Separation theorem: Shannon's ingenious formulation led to
R(D) < C,

necessary and sufficient conditions for reliable communication.
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Legacy of Shannon's Work

“Using bits as a universal representation between
sources and channels is essentially optimal”

Nothing is more practical than a good theory:

o Analogue data can be represented by discrete symbols and
compressed before transmission

@ Representation of information is at the heart of modern
communications (codes that can squish messages, saving time
resources and codes that can protect data from noise)

@ Information theory provides valuable insight, highlighting key
properties of good codes, leading to optimal designs.
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Information, Uncertainty and Learning
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Shannon Entropy

Entropy H(X) of a discrete random variable (RV) X ~ p:

@ 1. Measure of uncertainty — “surprise” function s(x),
xe X, and H(X) = E[s(X)]

o 2. Independent of alphabet —~ s(z) = s(p(z))

e 3. Additivity:

s(p(x)a(y)) = s(p(x)) +s(aly)) - s(x)=logp(x)
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Shannon Entropy

Entropy H(X) of a discrete random variable (RV) X ~ p:

@ 1. Measure of uncertainty — “surprise” function s(x),
xe X, and H(X) = E[s(X)]

e 2. Independent of alphabet — s(x) = s(p(x))

e 3. Additivity:

s(p(z)a(y)) = s(p(x)) +s(a(y)) — s(z)=logp(z)
@ Lower probability implies higher surprise - s(x) = —logp(z)

H(X) = - 2;{ p(z)logp(x)

- ~E[logp(X)]

e H(X) is nonnegative, continuous, and strictly concave function
of p, and 0 < H(X) < log|X|.
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Rényi Entropy

@ Rényi entropy for a discrete r.v. X with probability p(z):

1
1 «
s T (o)

Ha(x) =

—log E[p(X)""'],

for a>0; Hy(X) - H(X) as a — 1.
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Rényi Entropy

@ Rényi entropy for a discrete r.v. X with probability p(z):

~log ) p(2)”

reX

Ha(x) =

fa tog B[p(x)° "]

for a>0; Hy(X) - H(X) as a — 1.
e Conditional Rényi entropy for discrete RVs (X,Y) ~ p(z,y):

Ha(XY) = 3" p(y)( —log > plaly)® )

yey reX

. #E[log 5 pafy)? ]

1 reX

@ There are many other information measures.
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Information and Learning

An emerging interface?

@ Shannon's entropy provides a measure of uncertainty about
the amount of information that a learner possesses relative to
a given concept when only the probability distribution is given.

@ But the basic problem of learning consists in that one has to
separate the relevant information from patterns.

Two questions naturally arise:

@ Are information measures fundamental measures of the
random properties of data for learning problems?

@ What are the instances of learning problems for which
information measures can play a key role?

The study of these questions has played an important role and,
undoubtedly, it will play a central role in future learning methods.
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A Long-Lasting Partnership

Learning is data compression:

@ The goal is to learn the laws and regularities present in the data,
that is, to separate structure from noise.

o Data compression is fundamentally related to statistical
generalization as shown by a number of sample complexity
bounds (e.g., VC-dimension, PAC-Bayes, and others). ®

@ The celebrated Minimum Description Length (MDL)
principle, to approach model selection in statistical inference.

@ In unsupervised learning, Variational Autoencoders (VAEs)
are motivated by compression methods and the Information
Bottleneck method for supervised learning as well.

This talk focuses on two related problems:

@ How to measure uncertainty from model predictions?
@ How to detect uncertainty induced from data drift?
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@ Critical Problems in Safety Al
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What Does Model Uncertainty Means?

>Y

Return a distribution over predictions

rather than a single prediction.

e Classification: Output label along with

its confidence.

e Regression: Output mean along with

its variance.

Good uncertainty estimates quantify when we

can trust the model’s predictions.

Image credit: Eric Nalisnick
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What Does Out-of-Distribution Robustness Means?

LID. Pregr(yX) = Pran(¥:X)

(Independent and Identically Distributed)

0.0.D. pTEST(y’X) # pTRAIN(y’X)

Image credit: Eric Nalisnick
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What Does Out-of-Distribution Robustness Means?

l.1.D. Prest(¥X) = Prgan(y:X)

O.0.D. Pregr(yX) # Prgan(y:X)

Examples of dataset shift:

e Covariate shift. Distribution of features p(x) changes and p(ylx) is fixed.
e Open-set recognition. New classes may appear at test time.

e Label shift. Distribution of labels p(y) changes and p(xly) is fixed.
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ImageNet-C: ' sity for Dataset Shift

Clean Severity = 1 Severity = 4

Severity = 2 Severity = 3 Severity =5

Increasing dataset shift

L1.D test set

Image source: Benchmarking Neural Network Robustness to Common Corruptions and Perturbations, Hendrycks & Dietterich, 2019.
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Clean Severity = 1

Severity = 2 Severity = 3 Severity = 4 Severity = 5

Shot Noise _Impulse Noise Defocus Blur Frosted Glass Blur
= . .
3

bl i

LD test set

Brightness Contrast

Image source: Benchmarking Neural Network Robustness to Common
Corruptions and Perturbations, Hendrycks & Dietterich, 2019.
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Neural Network

Clean Severity = 1 Severity = 2 Severity = 3 Severity = 4 Severity = 5

mm— Baseline NN

e Accuracy drops with  o7- %
increasing shift on 52':: ;
Imagenet-C gor

Test i
Shift intensity

e But do the models
know that they are
less accurate?

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift?, Ovadia et al. 2019
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Neural Networks D Know When They Are W

Severity = 1 Severity = 2 Severity = 3

m—Baseline NN

e Accuracy drops with 07- %
increasing shift on o] ;
Imagenet-C gor

Test i 2
Shift intensity

mm— Baseline NN

e Quality of uncertainty ...
degrades with shift o
-> “overconfident o151 ?
mistakes” 0:05 ;

Test
shift intensity
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Models Assign High Confidence Predictions to OOD Inputs

Example images where model assigns >99.5% confidence.

‘ electric guitar

centipede peacock jackfruit bubble

o
<<l
2 H
<
<
king penguin baseball
freight car [ remote control peacock

|| African grey

Image source: “Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images” Nauyen et al. 2014
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Models Assign High Confidence Predictions to OOD Inp

o .
High uncertainty
(low confidence)
08
06
04
02
Low uncertainty
=3 2 -1 0 1 2 3 0o

(high confidence)

Deep neural networks

Image source: “Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness” Liu et al. 2020
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Models Assign High Confidence Predictions to OOD Inp

¢ High uncertainty

(low confidence)
08
06
04
02

Low uncertainty
3 2 a A T o 1 3 3 99 (high confidence)

Ideal behavior Deep neural networks

Trust model when x* is close to prg,n(XY)

Image source: “Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness” Liu et al. 2020
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Applications to Healthcare

e Use model uncertainty to decide when to trust the model or to defer to a human.

e Reject low-quality inputs.

Input
A. HEALTHY B. DISEASED [
\Hemorrhages [
‘, ’ Confidence > Threshold ‘
Diabetic retinopathy detection from fundus images Trust model Defer to
Gulshan et al, 2016 predictions Human
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Applications to Healthcare

e Model accuracy and uncertainty across patient sub-groups

0.20 - 1 1 1 =

Age group
mmm |nfant
mmm Adult Q1
0.15 - s Adult Q2 _
= Adult Q3
s Adult Q4
0.10 - -
0.05 - -
0.00- ,_i‘il Ai‘.I & -

Decision variance Prediction SD Prediction range
Uncertainty measure

Mortality prediction from electronic health records
Dusenberry et al, 2020
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Applications to Self-driving Cars

Dataset shift:

e Time of day / Lighting
e Geographical location (City vs suburban)
e Changing conditions (Weather / Construction)

Daylight Night

Weather Construction
Image credit: Sun et al, Waymo Open Dataset Downtown Suburban
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Applications to Open Set Recognition

1200 1 1 X 1
e Example: Classification of genomic $ Time of training
n algorithm /.
sequences % 10004 1 |
v} - Known classes - ! 1
© (In-distribution) : ,/
5 4 \ 7 L
g 800 Bacillus Escherichia I
O
8 s Amcec : : /'/./.
5 600 s E
& ¥
[ /1
o 400 ! s
£ I
2 ) 1
— 2004 1 =
2 - I
o o ®
= 0ha ‘-‘“"." ! : |
1995 2000 2005 2010 2015 2020
Year

Image source: https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.htm
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© Overview of Recent Contributions to Safety Al
@ Detecting Misclassification Errors
@ Out-of-Distribution Detection
@ Adversarial Robustness
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DocToR: A Simple Method for Detecting

Misclassification Errors

Joint work with Federica Granese, Marco Romanelli,
Daniele Gorla and Catuscia Palamidessi

S,

9.' NEURAL INFORMATION
% . PROCESSING SYSTEMS
<

(https://neurips.cc/virtual/2021/spotlight/28017)
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Let
* X C R be the feature space;

* Y ={1,...,C} be the label space;

* pxy be the underlying (unknown) probability density function over
X XY,

* Dy ={(x1,41),---,(Xn,¥n)} ~ pxy be a random realization of n
i.i.d. samples according to pxy denoting the training set;
* fp, : X = Y be the predictor,

fDn(X) = fn(X;Dn) = argn;}aXPf,'X(y]X; Dn)
ye
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Problem Definition

F———=—=——--—-—-=--- T y
¢ xo ~ Px
Accept 0/ DETECTOR
Reject 1
A
I
L o -2 yeR

Detecting Misclassification Errors Background 38



Ideal (Oracle) Detector

Definition (Error probability per sample)
For a given testing feature xg € X,

* E(xg) 2 1[Y # fp, (x0)] is the error variable corresponding to a
predetermined predictor fp, (based on Py|x);

* P.(x0) = E[E(xq)|x0] =1— PY|X(fDn (x0)|x0) is the probability of
error classification w.r.t. Py x.

Py x(fp, (x0)[%o0)

r——————-——-——-—=---- Pyix |« - y

»l« xo ~ Px
Mot/ < 1iRG0) > 9 (1= o))

f

yeRy

In practice, P.(xg) is not available, but can we approximate it?
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DocTor: D,

Proposition (DocTOR: D,,)

For a given testing feature xg € X,

*1-g(x0) = Xy Poyx (Wlxo) Pr(Y # ylxo) = 1= 32 ¢y P}A,|X(y|x0)
approximates the probability of incorrectly classifying xg;

(1 —/g(x0)) — A(xg) < P.(x0) < (1 —+/g(x0)) + A(xq) where

A(xo) £ 24/2 KL(Pypx ([x0)l| Py (-x0))).

g(xo) = Zygy P}%‘X(?J‘XU)

F———=—=——--—-—-=--- Pox - y

»l« xo ~ Px
Aot/ = 1-36) > 7-360)]

0

vyeRy

Da(x0,7) £ 1[1—3(x0) > ~-g(x0)]

Detecting Misclassification Errors DOCTOR scores



DocToR: Dg

Definition (DOCTOR: Dp)
For a given testing feature x € X,

¥ E(x) £ ]l[}/} # fp, (X0)] is the self-error variable corresponding to
fp, (based on the model P)?|X)

* P.(x0) 2 E[E(x0)|x0] =1 — Y|X( fp,, (x0)|x0) is the probability of
error classification w.r.t. Py P X

Py (fp, (x0)I%0)

F———=—=——--—-=—-=--- Px € - y

i xo ~ Px
A;z:;tol/ < -1 [ﬁ(xf)) > '7"(17ﬁe(x()))}

f

yeRy

Dy(x0,7) 21 [Pu(x0) > 7 (1= Pulx0))

Detecting Misclassification Errors DOCTOR scores



Evaluation Metrics

Definition (FRR versus TRR)

The false rejection rate (FRR) represents the probability that a hit (sample
correctly classified) is rejected, while the true rejection rate (TRR) is the
probability that a miss (sample wrongly classified) is rejected.

Definition (AUROC)

The area under the Receiver Operating Characteristic curve (ROC) depicts
the relationship between TRR and FRR. The perfect detector corresponds
to a score of 100%.

Definition (FRR at 95% TRR)

This is the probability that a hit is rejected when the TRR is at 95%.
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Scenarios: Totally Black Box & Partially Black Box

Definition (Totally Black Box (TBB) Scenario)

In TBB only the output of the last layer of the network is available, hence
gradient-propagation to perform input pre-processing is not allowed.

Definition (Partially Black Box (PBB) Scenario)

In PBB we allow method-specific inputs perturbations and the possibility of
doing temperature scaling.

Detecting Misclassification Errors Evaluation Metrics



Competitors (SOTA Methods) for TBB and PBB

1) ODIN [Liang et al., 2018]
exp(fi(x)/T)

SODIN(x )— max

=(1:01 35 exp(f;(X)/T)

ODIN(%: 6, T, ¢) out, if SODIN(x) <§
X;0,1,¢) =

in, if SODIN(x) > ¢

f(X) the vector of logits;

X represents a magnitude € perturbation of the original x;
T is the temperature scaling parameter;

d € [0,1] is the threshold value;

in indicates the acceptance decision;

ok ok ok ok ok ok

out indicates the rejection decision.

Detecting Misclassification Errors Competing Methods



Competitors (SOTA Methods) for PBB

2) Mahalanobis distance [Lee et al., 2018]

M) = max —(f(%) = fie) 'S (F(X) = e)
out, if M(x) > ¢
in, if M(x)<(¢

MHLNB(%; (, ¢) = {
m

L is the empirical class mean for each class ¢ (training set);

S is the empirical covariance (trainig set);

f(x) the vector of logits;

X represents a magnitude e perturbation of the original x;

¢ € Ry is the threshold value;

in indicates the acceptance decision;

ok ok ok ok ok ok ok

out indicates the rejection decision For a given x € X.
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TBB versus PBB

1) Softmax Response
(SR) [Hendrycks and Gimpel, 2017, Geifman and El-Yaniv, 2017]
ODIN with T'=1 and € = 0.

2) Mahalanobis distance (MHLNB) [Lee et al., 2018]
Mahalanobis distance without input pre-processing and with the softmax
output in place of the logits.
TBB

* Temperature scaling, T'=1

* Input pre-processing, ¢ = 0
PBB

* Dg, Ty, =1 and €, = 0.00035

* Dg, Tg = 1.5 and eg = 0.00035

o OD|N, TODIN = 1.3 and €EODIN — 0

F MHLNB, Tmuune = 1 and empuns = 0.0002

Detecting Misclassification Errors Competing Methods 46



Discrimination performance for TBB
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Figure 1. DOCTOR, SR and MHLNB to split data samples in
TinylmageNet under TBB. Histograms for wrongly classified samples and
correctly classified samples.
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Discrimination performance for PBB
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Figure 2. DOCTOR, ODIN and MHLNB to split data samples in
TinylmageNet under PBB. Histograms for wrongly classified samples and
correctly classified samples.
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PBB: ROCs

TRR

1.000
0.975
0.950
0.925
0.900
0.875
0.850
0.825
0.800

CIFAR10

I
Dg
— obIN
MHLNB
0.2 0.4 0.6 0.8 1.0
FRR
CIFAR100
,»/
— D
Dg
— ODIN
MHLNB
02 04 056 08 10
FRR

1.000
0.975
0.950
0.925
<
& 0.900
=
0.875
0.850
0.825
0.800

0.98

TinylmageNet

—— Da

—— ODIN
MHLNB

03 04 05 06 07 08 09
FRR

SVHN

\

D,
Dg

— oDIN
MHLNB

0.3 0.4 0.5 0.6
FRR

Figure 3. ROC curves. Comparison between DOCTOR, ODIN and
MHLNB. The red dashed line marks the 95% threshold of TRR.
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Overall Results: TBB & PBB

Table 1. Collection of the results in both TBB and PBB. For all methods,
in TBB, weset T'=1 and ¢ = 0; in PBB we set : ¢, = 0.00035 and

To =1, eg = 0.00035 and Ts =15, copin =0 and Topiy = 1.3,

emHLNB = 0.0002 and Tyyning = 1. In TBB for ODIN we report same
results as in SR, since both methods coincide when T'=1 and ¢ = 0.

o o o
AUROC % | FRR % (95 % TRR) | _AUROC % | FRR % (95 % TRR)

DATASET ‘METHOD ‘

DATASET | METHOD
| TBB [ PBB [ TBB [  PBB ‘ |65 [ po6 | 65| PEB
D, 94 | 95.2 | 17.9 13.9
D* i Tors Tise 34 Da 923 | 93 | 38.6 36.6
CIFAR10 ()D;\I (J‘sv; ;)4V2 18‘2 18.4 SVHN Ds 923 | 928 | 897 384
Acc. 95% - 200 | 9% : : Acc. 96% ODIN 92.3 | 92.3 | 38.6 10.7
SR 93.8 - 18.2 - cc. 9% SR 923 - 386 N
MHLNB | 92.2 | 844 | 308 146 NIHLNE 573 | 58 |85 K
D, 87 | 88.2 | 40.6 35.7 B 7 | | 271
Dy 84.2 | 87.4 | 40.6 36.7 AMAZON - - -
CIFART00 DI 5.9 | 87.1 | 405 10 ; FASHION D 897 | - | %63
Acc. 78% - 5. - = — Acc. 85% SR 874 | - [ 501
SR 86.0 | - | 405 - > o0 2
MHLNB 82.6 | 50 | 66.7 94 AMAZON D“ ﬁsls . 73'2
SOFTWARE B - - -
D, 84.9 | 86.1 | 45.8 433 Ace, 3% Sk o3 T Tsos
Tiny Dy 84.9 | 85.3 | 45.8 45.1
IMAGENET ODIN 84.9 | 84.9 | 45.8 45.3 IMDB g“ 8:': - 54.2
0 T 544
Acc. 63% SR 829 | - | 458 " Acc. 90% s 84. 4.4
MHLNB | 784 | 59 | 823 86 SR 87| - 1617
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Misclassification Detection in Presence of OOD Samples

* DOCTOR is not tuned for OOD detection (differently from ODIN).

T We test ODIN and DocToOR when one sample to reject out of five
(), three (&), or two (#) is OOD.

DATASET- DATASET- AUROC % FRR % (95 % TRR)
‘ Out Do | Ds | ODIN [ENERGY | D. | Dy | ODIN | ENERGY
CIFARI0 | 1SUN \954/01\951/01\946/01\ 924 /0 | 14/05 |135/04]17.2/03 ] 322 /0.1
* | Tiny (res) | 95.2 /0.1 949 /0 [94.6/0.1|923 /01| 14/04 | 14/05 |17.8 /04 | 322 /0.1
CIFAR10 | 1SUN | 955 /0.1 ]95.3/0.1 949 /0.1 | 92.9/0 [ 144 /0.6 |13.4/02]16.8/0.5| 27/1
| Tinv (res) | 95.4 /0.1 | 95/01 [94.8/01| 928 /0 | 15/0.1 |14.8/0.7| 17/05 | 288/ 1.9
CIFAR10 } ISUN | 956 /0.1] 956/0 | 954/0 |93.6/0.1]151/0.1]13.6/0.5]16.1/0.2]251/02

TINY (RES) | 95.5 /0.1 95.2 /0.1 [ 95.1 /0.1 | 93.5/0 | 147 /03 | 148 /0.5 | 17.1 /0.4 | 256 / 0.3

Table 2. Results in terms of mean / standard deviation.
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Takeaways from DOCTOR

# DOCTOR provides a flexible framework for miscalssification error
detection that applies to any pre-trained DNN classifier.

F We leverage information-theoretic tools to better discriminate between
trusted and untrusted model predictions.

# QOur method adapts to various scenarios depending on the level of
information access of the DNN, uses only the pre-trained model.
On-going work:

* Formalize statistical learning mechanisms that enable error detection
and adaptation from few resources.

# Characterize their capabilities and limitations.

F Extension to semantic image segmentation, object detection and
regression problems.

Detecting Misclassification Errors Summary and Concluding Remarks 52



Supplementary: Optimal (Oracle) Discriminator

ok

ok

ok

E 2 1[Y # fp, (X)] denotes the error variable corresponding to [,
x € X and y € Y drawn from the unknown distribution pxy
pxy(x,y) = PE(1)pxy|e(x,y[1) + PE(0)pxy|e(x, y|0)

px(x) = Pe(1)px|p(x|1) + Pr(0)px|£(x|0)

Pe(x) £ E[E(x)|x] = 1 — Py|x(fp, (x)[x) is the probability of error
classification w.r.t. Py |x

D(x,v) =

px|e(X[1) > v pxp(x[0)]

P x(1x)Pe(0) > v (1 — Pgx(1]x))Pg(1)]
Pe(x)Pg(0) > v - (1 — Pe(x)) Pg(1)]

Pe(x) >+ (1 — Pe(x))],

I
VV»:\;:hn:»;ﬂ

Pg(l
where +' = PE(O
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IGEOOD: An Information Geometry Approach to

Out-of-Distribution Detection

Joint work with Eduardo D. C. Gomes, Florence Alberge
and Pierre Duhamel

?3 ICLR
AP

(https://openreview.net/pdf?id=mfwd¥3U_9ea)
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e We introduce IGEOOD, an effective method for detecting
Out-of-Distribution (OOD) samples.

e IGEOOD applies to any pre-trained neural network, works under
different degrees of access to the ML model, does not require
OOD samples or assumptions on the OOD data but can also
benefit (if available) from OOD samples.

e By building on the geodesic (Fisher-Rao) distance between the
underlying data distributions, our discriminator combines
confidence scores from the logits outputs and the learned features
of a deep neural network.
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Background

o Let X C RY be the feature space and ) a label space and let pxy be
the underlying unknown probability density function (pdf) over X x ).

@ In order to model the underlying problem, we introduce an artificial
binary random variable Z € {0, 1} indicating with z = 1 that the test
sample x is OOD and z = 0 otherwise.

@ The open-world data can then be modeled as a mixture distribution
px|z defined by

px|z(x|z =0) 2 px(x), pxjz(x|]z =1) = qx(x).

@ The intrinsic difficulty arises from the fact that very little can be
assumed about the unknown distributions px and gy, in particular for
out-of-distribution.

o Alternative: distance based criteria w.r.t an in-distribution probability
reference.

Out-of-Distribution Detection Background



Statistical Model

Pre-trained
classifier

In-distribution
Detection threshold
-

out-of-distribution

Figure: We model the hidden layers’ outputs as class conditional Gaussian
distributions and the DNN's outputs as softmax probability distributions.
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Fisher-Rao Geodesic Distance

We propose an OOD detector based on the geodesic Fisher-Rao distance
between probability density functions:

1 T
arntao.a) 2t [ 60y i

drr(gs, q9)

q0(-|f ()
7,

Figure: Illustration of the shortest path between distributions in a statistical
manifold.
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IGEOOD Score Using the Soft-Predictions

e Igeood score using the softmax probability: Let gg (-|f(x)) be the
softmax probability distribution of the outputs. We can define the
Fisher-Rao distance between softmax distributions as:

dPR—Logits (G, qg) = 2 arccos Z \/QO (yIf(x))ae(y|f(x"))

yey
e From which we derive our IGEOOD score for the logits:
FRo(x Z drr-— Loglts(qe( 1£(x)). go(: ’,uy))
yey

o Where p, are the class conditional centroids given by:

l‘l’y £ min — Z dFR Loglts(qe( |f(X,)) qG( |,LL))

yVly.y
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IGEOOD Score Leveraging Latent Features

e Igeood score leveraging latent features: For each layer, we model
the features as a set of class-conditional Gaussian distributions with
diagonal standard deviation matrix:

1
w =g 2 )

Ny Viiyi=y
o) = diag Z Z (f( )(x, ,ui?-)z
yeyVl vi=

e We derive a confidence score by calculating the Fisher-Rao
distance between the test sample x and the closest
class-conditional diagonal Gaussian distribution:

FRy(x) = min decaus ((x.0) . (1. 0)).

Out-of-Distribution Detection IGEOOD score



Feature Ensemble

@ Feature ensemble: we combine the confidence scores of the logits
and low-level features through a linear combination. If OOD data is
available, we can also calculate FR), (x; pulo O'(Z)/) with OOD
statistics, obtaining IGEOOD+:

FR( ) = aoFRo + Z Qy - FRg( ) + 042 . FRZ(X).
4

@ Therefore, we have derived a unified OOD detection framework that
combines a single distance for both the softmax outputs and the latent
features of a neural network.

Out-of-Distribution Detection IGEOOD score



Experimental Setup

@ The experimental setup follows the setting established by [1, 2, 4].

@ We use two pre-trained deep neural networks architectures for image
classification tasks: a Dense Convolutional Network
(DenseNet-BC-100) and a Residual Neural Network (ResNet-34).

@ in-distribution data: images from CIFAR-10, CIFAR-100 and SVHN
datasets.

@ out-of-distribution data: natural image examples from Tiny-ImageNet,
LSUN, Describable Textures Dataset, Chars74K, Places365, iSUN and
a synthetic dataset generated from Gaussian noise.
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Experimental Results

@ The IGEOOD score increases the separation between in- and
out-of-distribution data.

Mabhalanobis: 63% Mahalanobis: 87% Mahalanobis: 48%
03 W 03 & 5
Z02 g
15 o Q
& A g
L L
E £ 0.1 &
= 0.0
10 20 10 20 30
IGEOOD: 88% IGEOOD: 94% IGEOOD: 91%
= I = -
0.2 0.2 0.2
z @ Out 2 = Out 7 @ Out
30.1 3 0.1 gol
= 3 =
0.0 0.0 0.0
10 20 10 20 10 15 20 25
(a) Block 1. (b) Block 2. (c) Block 3.

Figure: Histograms of the Mahalanobis and IGEOOD scores for the outputs of each
hidden block of a DenseNet model.
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Table: Average and standard deviation OOD detection performance across various
OOD datasets for each model and in-distribution dataset in a BLACK-BOX setting.
IGEOOD is compared to Baseline [1], ODIN [2], and Energy [3] methods.

TNR at TPR-95%

AUROC

Model  In-dist. Baseline / ODIN / Energy / IGEOOD (ours)

C-10 52.5+16/66.8+20/65.3+23/65.6+23
DenseNet  C-100  15.9+6.8/20.5+9.5/20.3+9.6/20.7+9.8
SVHN  68.4+14/68.8+20/70.2+17/72.1+15

01.8+3.2/92.8+4.6/92.1+5.3/92.3+5.1
69.1+15/71.6+20/71.6+20/73.2:£17
92.3+4.0/87.3+14/90.1+5.9/90.9+5.3

C-10 41.7+16/51.9+15/56.3+13/56.7+13
ResNet ~ C-100 15.0+5.5/16.0+6.3/16.3+7.1/16.4+6.8
SVHN  76.2+7.8/77.7+7.9/78.0£7.9/78.3+8.0

89.6+3.1/90.4+3.1/90.4+3.0/90.5+3.0
74.0+1.9/75.2+1.7/75.5+1.9/75.5+1.7
92.2+29/91.4+3.2/91.4+3.2/91.7+3.2

Average and Std. 44.9+24/50.3+24/51.1+24/51.6+24

84.8+9.5/84.8+8.3/85.2+8.4/85.7+8.0

Out-of-Distribution Detection Experimental Results
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WHITE-BOX Results

@ We increase the average TNR-95% by 11.8% and 2.5% with validation
on OOD and adversarial data, respectively.

Table: Average and standard deviation of OOD detection performance for the
WHITE-BOX settings. The abbreviation TNR-95%, C-10 and C-100 stands for
TNR at TPR-95%, CIFAR-10 and CIFAR-100, respectively.

Model

In-dist.

Validation on OOD data

TNR-95%

AUROC

Mahalanobis / IcEOOD+ (ours)

Validation on adversarial data

TNR-95%

AUROC

Mahalanobis / IGEOOD (ours)

C-10
C-100
SVHN

DenseNet

76.6431/92.6+14
67.2+28/90.2+21
93.3+8.0/98.0+2.0

92.1+12/98.4+3.0
90.24+13/97.7+5.0
98.6£1.0/99.6+0.1

75.9430/77.9429
60.4+34/70.9+35
93.7+10/92.2+9.0

91.7+12/94.0+9.0
85.3+19/90.8+13
98.6+2.0/98.4+1.0

C-10
C-100
SVHN

ResNet

82.5+23/91.6+16
70.4430/86.4+23
96.8+6.0/98.9+2.0

96.5+4.0/98.4+3.0
91.9+10/97.1+5.0
99.2+1.0/99.7+0.1

78.6+24/77.3+32
57.4436/65.1+33
96.3+8.0/93.6+14

95.3+6.0/90.0+15
86.9+13/88.6+15
99.1+1.0/98.443.0

Average and Std.

81.1+11/92.9+4.0

94.8+4.0/98.5+1.0

77.0£15/79.5£10

92.8+5.4/93.4+3.9

Out-of-Distribution Detection
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Further Comparison to the Literature

Table: TNR at TPR-95% (%) performance comparison in a WHITE-BOX setting
considering the original results from [1,2,3,4]. Methods with an (*) were tuned
without OOD data.

00D CIFAR-10 CIFAR-100 SVHN

dataset Mahalanobis [4] / Gram Matrix* [5] / DeConf-C* [6] / Res-Flow [7] / IGEOOD / IGEOOD+
w iSUN 95.3/99.0/ - / - /97.7/99.8 87.0/959/ - / - /93.8/99.7 99.9/99.4/ - / - /98.3/99.9
= LSUN 97.2/99.5/99.4/98.2/98.5/99.9 91.4/97.2/98.7/96.3/95.2/99.9  99.9/99.5/ - /100/97.1/99.9
£ TinylmgNet  95.0/98.8/99.1/96.4/95.7/99.8 86.6/95.7/98.6/93.0/94.5/99.5  99.9/99.1/ - /100/98.2/99.9
O SVHN/C-10  90.8/96.1/98.8/94.9/98.9/99.9 82.5/80.3/95.9/84.9/93.3/99.6  96.8/80.4/ - /99.0/91.6/98.3
. iSUN 97.8/99.3/ - / - /97.2/99.9 89.9/948/ - / - /93.4/99.8 99.7/99.4/ - / - /99.8/100
2 LSUN 98.8/99.6/ - /99.0/98.4/100  90.9/96.6/ - /96.2/94.3/100  99.9/99.6/ - /100/99.7/99.9
ﬁ TinylmgNet  97.1/98.7/ - /97.8/96.3/99.6  90.9/94.8/ - /94.6/90.1/99.6  99.9/99.3/ - /100/99.7/99.9

SVHN/C-10 87.8/97.6/ - /96.5/98.8/99.8 91.0/80.8/ - /93.0/91.6/99.7 98.4/858/ - /99.4/97.7/99.7
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Takeaways from IGEOOD

@ IGEOOD provides a flexible framework for OOD detection that applies
to any pre-trained DNN classifier.

@ We leverage information geometry tools to better discriminate between
probability distributions.

@ Our method adapts to various scenarios depending on the level of
information access of the DNN, uses only in-distribution samples but
can also benefit (if available) of OOD samples.

On-going work:

e Formalize hypothetical learning mechanisms that enable OOD
generalization and adaptation.

o Characterize their capabilities and limitations.

@ Extension to time-series and progressive distribution/model drifts.
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Adversarial Robustness via Fisher-Rao Regularization

Joint work with Marine Picot, Francisco Messina, Malik Boudiaf,
Fabrice Labeau, Ismail Ben Ayed

(https://arxiv.org/abs/2106.06685)
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Deep Neural Networks
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Attacking Deep Neural Networks

Training —— Inference

A Data poisoning A Adversarial Examples
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Attacking Deep Neural Networks

Training —— Inference

A Data poisoning A Adversarial Examples

Data poisoning: modification of the boundaries
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Adversarial Examples

+.007 %

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure: Building adversarial examples [lan J Goodfellow et al. Arxiv 2014]
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Adversarial Examples

Figure: "Natural" vs "Adversarial" decision boundaries [A. Madry et al. ICLR 2018]

Adversarial Robustness Background and Motivation 76



Motivation

@ Security

Glasses that fool face recognition [Mahmood Sharif et al. CCS 2016]
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@ Security and Safety

| 2000eeRERRNHBECE6H0e0eHe0eeEO e o

Fooling autonomous car [Nir Morgulis et al. arXiv 2019.]
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Let us consider the multi-class classification problem with:
o X CR"is the input space.

o Y ={1,..., M} is the label (concept) space.

@ gy is the general classification model, parametrized by 6 € ©.

P¢(6) is the error probability of the model parametrized by 6 € ©.

0(0; x,y) is the loss of the model parametrized by 6, computed for the
input (x,y) and its expectation is the risk £(6).

@ ¢ is the maximal distortion allowed in the adversarial problem,
according to a specific LP-norm.

o x’ refers to the adversarial version of any variable x.
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Problem Statement of Adversarial Attacks

Definition (Adversarial attacks)

The adversarial problem ! is defined, according to LP-norm, as:

x*(x) = ar min x' — x
( ) gx’E[O,l]":||x’—pr<a ” ”p

st. f(x') =1t

where
@ t is the target class or any class different from the original label y,

e x' € [0,1]" assures that x*(x) is close enough to the original image.

<

LChristian Szegedy et al. Intriguing properties of neural networks ICLR 2014.
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Fast Gradient Sign Method (FGSM)

Definition (FGSM Algorithm [lan J Goodfellow et al. 2014])

x" = x+asgn(Vx L(0; x,y)),
where
@ (x,y): clean example
o x’: adversarial example
@ sgn : the sign function

o V,/{(0;x,y): the gradient w.r.t. x of the loss function ¢(6; x, y)
evaluated at (x,y)

@ « < e: parameter controlling the magnitude of the perturbation.
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Overview of PGD Attack

Definition (PGD Attack [A. Madry et al. ICLR 2018])
o It is the iterative extension of the FGSM method

@ For a certain number of iterations k, we apply at each iteration i:

XD — '@ 4 5. sen (Vx £(6; x’(i),y)) ,
where § < ¢ is the noise norm at each step.

o x' is either equal to x or x + m where 7 is a random noise of
maximum amplitude e.

@ To ensure that the LP-norm constraint is met, at each iteration, we
have to force: ||x’) — x||, < e.
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rsarial Training

Definition (Adversarial defense)

0* = arg mein Exy [ max (0, x',y)}

x/:||x" —x]| oo <€

Relaxation hypothesis: We can approximate the max part with the
generation of an adversarial example.
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Losses for Adversarial Training

Definition (Madry's method for defense [A. Madry et al. ICLR 2018])

Consider the adversarial cross-entropy loss (ACE):

00; x",y) = —log[gs(y|x")].

Definition (TRADES [Hongyang Zhang et al. ICML 2019])

Trade-off between natural and robust accuracies:

00;x",y) = —log[gs(y|x)] + X - die(qe(y1x)llge(y[x")),

where ) is the hyperparameter controlling the trade-off between natural
and adversarial accuracies.

Robustness cannot be ensured against all adversarial (losses)
attacks. Can we derive an universal defense?
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Fisher-Rao Riemannian Geometry

Definition (Fisher-Rao Distance (FRD))

@ Given a family of probability distributions:
C={qo(:|x):x € X}.
@ Metric tensor (Fisher information):

G(X) = EYN‘?GHX) [VX |Og qg(Y|X)VI |Og qg(Y|X)]

is positive definite for any x and 6 € ©.
@ Infinitesimal squared length element:

ds® = (dx, dx) ¢ = dx" G(x)dx.
@ The FRD between gg(-|x) and gg(:|x') is:

the inf is over all piecewise smooth curves.

@ FRD is the length of the geodesic between
(x,x") using G(x) as the metric tensor.
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FIRE: Fisher-Rao Regularization

Definition (Fisher-Rao Distance (FRD))

We define the FIRE loss function as the trade-off between the natural
cross-entropy and the expected Fisher-Rao distance between natural and
adversarial probability distributions:

trire(0; x,y) = —log go(y|x) + - d&(qe( - |x), qa(-|x")),

where ) is the hyperparameter controlling the trade-off between natural
and adversarial performances with

dr(qe(.1x), go(-|x") = 2arccos Z \/qg(y|x)q9(y|x')

yey

This metric has very interesting properties and is related to well-known
distances and Information divergences.
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Comparison to the Kullback-Leiber Distance

Definition (Binary logistic regression)

Assume two equally likely classes Y = {—1, 1} with conditional inputs
given by x|y ~ N(yu, ), and softmax probability

(v 1
QG\Y|X) = .

1+ exp(—y 67x)

03
gz 03
£ 03 5
S 0.2 g ;
E o2 g02
Lo 3 3
= z 0.1 5 0.1
%.2 0.4 0.6 0.8 :t': 2
Natural Accuracy o 0
02 04 06 08 0.2 0.4 0.6 0.8

(a) Pareto—optimal Natural Accuracy Natural Accuracy
points (b) TRADES (c) FIRE

Figure: Plot of all possible pairs (1 — P.(6),1— P.(#)) for Gaussian model ¢ = 0.1
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Experimental Set-Up

o Datasets: MNIST, CIFAR-10 - with and without additional data
(AD) -, CIFAR-100

@ Model architecture: CNNs, ResNet

e Training procedure without AD: Number of epochs : 100, batch
size : 256, optimizer: SGD with a 0.9 momentum, and 1.10~* weight
decay, /,: 0.01 for MNIST, and to 0.1 for CIFAR-10 and CIFAR-100, /,
decay :divided by 10 at epochs 75 and 90.

e Changes for AD simulations: Number of epochs: 200, /, decay:
cosine.

e Generation of adversarial examples: PGD.

e Additional data: 500k additional images from 80M-TI!, selected

such that the h-norm between those images and the images from
CIFAR-10 are below a threshold.

YImages available at https://github.com /yaircarmon/semisup-adv
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Comparison between KL and Fisher-Rao Regularization

Table: Comparison between KL and Fisher-Rao based regularizer under white-box
I threat model.

Defense || Dataset | € | Structure || Natural | AutoAttack || AA || RunTime
TR || ot | es | QR || s | sate || seEs || ahes
ToRe || cFara0 | s/ess | WRNSEE || Sex | saas || eses || iives
TS | | e | RES || B | B2 G5 | 2
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Comparison to SOTA Defense Mechanisms

Table: Test robustness on different datasets under white-box /5, attack. '*’

T . Yooy . .
indicates models were retrained. '-' indicates the result is unavailable.
Defense ‘ ‘ Dataset ‘ = ‘ Structure ‘ ‘ Natural ‘ AutoAttack ‘ ‘ AA ‘ ‘ Runtime
Without Additional Data
Madry et al. CNN 98.53 88.50 93.51 2h03
Atzmon et al. CNN 99.35 90.85 95.10 -
TRADES * MNIST 03 CNN 99.35 92.91 96.13 2h22
FIRE CNN 99.14 94.06 96.60 2h06
Madry et al. WRN-34-10 87.14 44.04 65.59 10h51
TRADES * WRN-34-10 84.79 51.92 68.35 13h49
Self Adaptive CIFAR-10 8/255 WRN-34-10 83.48 53.34 68.41 13h57
Overfitting * WRN-34-10 86.85 51.74 69.29 42h01
FIRE WRN-34-10 85.20 53.49 69.35 11h00
Overfitting RN-18 53.83 18.95 36.39 -
Overfitting* CIFAR-100 8/255 WRN-34-10 59.01 27.07 43.04 42h08
FIRE WRN-34-10 60.71 27.63 44.17 11h10
With Additional Data Using 80M-TI
Pre-training WRN-28-10 87.10 54.92 71.01 13h51
UAT WRN-106-8 86.46 56.03 71.24 -
MART CIFAR-10 8/255 WRN-28-10 87.50 56.29 71.89 10h22
RST-adv WRN-28-10 89.70 59.53 74.61 22h12
FIRE WRN-28-10 89.77 59.93 74.85 18h30
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Takeaways from FIRE

@ FIRE is a novel method using tools from information geometry that
encourages invariant softmax probabilities for natural and adversarial
examples while maintaining high performances on natural samples.

@ Theoretically, the optimization based on FIRE is well-behaved and
gives all the desired Pareto-optimal points.

@ Our empirical results showed that FIRE consistently enhances the
robustness compared to TRADES.

o Compared to the state-of-the-art methods for adversarial defenses,
FIRE increases the Average Accuracy (AA) while reducing the training
time by 20%.

On-going work:

@ Our framework might be used to devise novel detection methods of
adversarial examples.

o Characterize capabilities and limitations of potential attacks.

@ Auditing mechanisms for ML models, based on partial statistical
knowledge of the underlying distribution.

Adversarial Robustness Summary and Concluding Remarks ]0]



@ Discussion and Research Perspectives
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Information Measures are Building Blocks of ML Systems

A long-lasting partnership:
@ Learning is data compression.
o Concepts of data representations (e.g., encoders/decoders).

@ Several information-based objectives (e.g., cross-entropy loss,
mutual information,...), maximum information gain principle.

Shannon entropy is a measure of randomness (or uncertainty).

Minimum entropy principle is fundamental in statistical
estimation and learning.

Nonetheless, there is a long way to go:

@ It is fundamentally important to study other measures of
information having more appropriate properties from the
viewpoint of its own learning problems.

@ How we find an appropriate and universal way to measure and
to detect model uncertainty?

Pablo Piantanida (CentraleSupélec) IHES Workshop - Stats and Machine Learning 92 /95



Open Research Questions

From empirical evidence to information and knowledge:

@ Researchers often have a tendency to fixate on model
performance metrics, e.g., accuracy, but metrics only tell
part of the story of a model’s predictive decisions.

@ It is important to understand what drives a model to make
predictions (learning nature, not only imitation).

Uncertainty & robustness are critical problems in modern Al:
Models are often wrong, but Al models that know when they
are wrong are more useful.

Better understanding of the information-theoretic link between:
e Data (source of empirical evidence),
e Information (the part that is unpredictable from the data),
e Redundancy (structure in data that provides the knowledge),

e Knowledge (the explanations of the complex world).

Pablo Piantanida (CentraleSupélec) IHES Workshop - Stats and Machine Learning 93 /95



Joint Work with PhD Students and Collaborators

o Federica Granese, Marine Picot, Eduardo D. C. Gomes,
Francisco Messina, Malik Boudiaf, Marco Romanelli, Ismail Ben
Ayed, Catuscia Palamidessi, Pierre Duhamel, Florence Alberge,
Fabrice Labeau.
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Thank you for your attention
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