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The birth of AI and Deep Learning
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A Brief History of AI - Dartmouth Conference (1956)
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A Brief History of AI - Dartmouth Conference (1956)

The Founding Fathers of AI
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A Brief History of AI - Timeline (1943 - Present)
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A Probabilistic Model of Learning (1960)

Yi PY |X(y|x) PX(x)
Xi

f(x), f ∈ F

(hidden variables)

Object Nature

Algorithm 

Yi

Ŷi

Y

Ŷ

Y
X

Testing = (X,Y )

Training = {(X1, Y1), . . . , (Xn, Yn)}

Loss

Imitation of the object: try to construct a predictor which
provides the best predictions to the supervisor output
Approximation of the object: try to approximate the object
(nature) itself based on a model (uncertainty and calibration)

Learning is data compression: To separate structure from noise,
the regularities present in the data by choosing appropriately f ∈ F .
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Statistical Learning Theory (1960 - 1990)

Vapnik–Chervonenkis theory (1960) addresses key questions:

What are the conditions for consistency of a learning rule
based on the empirical risk minimization principle?
How fast is the rate of convergence of the learning process?
How can one control the generalization ability (convergence
rate) of the learning process?

Vapnik and Chervonenkis’ ingenious formulation led to the
characterization of necessary and sufficient conditions (finite
VC-dimension) for the minimizing of a risk R(f) using data.
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Deep Learning (2006/2007)

Good representations learn to disentangle manifolds:

Enc/Dec map between low and
high representations of data,
Encoders perform inference to
interpret data, flatten and to
disentangle the data manifold,
Decoders can introduce changes
in reconstructing data features,
How goodness should be defined
is an open problem.

My research focus on developing and bringing new
mathematical tools and methodological principles from
information theory to machine learning and deep learning.
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Legacy of Shannon’s work
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Shannon’s Model of a Communication System

1.3 Point-to-Point Information Theory 3

(, ) studied communication and compression over a single link with more com-
plex source and link (channel) models. He considered the communication system archi-
tecture depicted in Figure ., where a sender wishes to communicate a k-symbol source
sequenceU k to a receiver over a noisy channel. To perform this task, Shannon proposed a
general block coding scheme, where the source sequence is mapped by an encoder into an
n-symbol input sequence Xn(U k) and the received channel output sequenceYn is mapped
by a decoder into an estimate (reconstruction) sequence Û k(Yn). He simplified the anal-
ysis of this system by proposing simple discrete memoryless models for the source and
the noisy channel, and by using an asymptotic approach to characterize the necessary and
sufficient condition for reliable communication.

U k

Encoder Channel Decoder
Xn Yn Û k

Figure .. Shannon’s model of a point-to-point communication system.

Shannon’s ingenious formulation of the point-to-point communication problem led
to the following four fundamental theorems.

Channel coding theorem. Suppose that the source is a maximally compressed k-bit mes-
sage M as in the graphical network case and that the channel is discrete and memoryless
with input X, output Y , and conditional probability p(y|x) that specifies the probability
of receiving the symbol y when x is transmitted. The decoder wishes to find an estimate
M̂ of the message such that the probability of decoding error P{M̂ ̸= M} does not exceed
a prescribed value Pe. The general problem is to find the tradeoff between the number of
bits k, the block length n, and the probability of error Pe .

This problem is intractable in general. Shannon () realized that the difficulty lies
in analyzing the system for any given finite block length n and reformulated the problem
as one of finding the channel capacity C , which is the maximum communication rate
R = k/n in bits per channel transmissions such that the probability of error can be made
arbitrarily small when the block length n is sufficiently large. He established a simple and
elegant characterization of the channel capacityC in terms of the maximum of the mutual
information I(X ;Y) between the channel input X and output Y :

C = max
p(x)

I(X ;Y ) bits/transmission.

(See Section . for the definition of mutual information and its properties.) Unlike the
graphical network case, however, capacity is achieved only asymptotically error-free and
using sophisticated coding.

Lossless source coding theorem. As a “dual” to channel coding, consider the following
lossless data compression setting. The sender wishes to communicate (store) a source
sequence losslessly to a receiver over a noiseless binary channel (memory) with the min-
imum number of bits. Suppose that the source U is discrete and memoryless, that is, it

Shannon proposed (1948) an asymptotic approach:

A k-symbol sequence U is mapped by an
encoder into an n-symbol input sequence X

The received channel output sequence Y is
mapped by a decoder into an estimate Û

What is the the maximum communication rate R = k/n
(bits per transmission) such that P{U ≠ Û} can be made
arbitrarily small when (k,n) are sufficiently large?

Shannon’s ingenious formulation led to the characterization of
necessary and sufficient conditions for reliable communication.
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Information Theory
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I(X ;Y ) bits/transmission.

(See Section . for the definition of mutual information and its properties.) Unlike the
graphical network case, however, capacity is achieved only asymptotically error-free and
using sophisticated coding.

Lossless source coding theorem. As a “dual” to channel coding, consider the following
lossless data compression setting. The sender wishes to communicate (store) a source
sequence losslessly to a receiver over a noiseless binary channel (memory) with the min-
imum number of bits. Suppose that the source U is discrete and memoryless, that is, it

Shannon proposed (1948) an (k,n)-asymptotic approach:

Channel coding theorem: The capacity is the maximum of
the mutual information between the channel input and output

C = sup
pX

I(X;Y) in bit/transmission.

Lossy source coding theorem: The optimal tradeoff
between the rate R = n/k and the distortion D is

R(D) = inf
pÛ∣U∶E[d(Û,U)]≤D

I(U; Û) in bits/symbol.

Separation theorem: Shannon’s ingenious formulation led to

R(D) < C,
necessary and sufficient conditions for reliable communication.
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Legacy of Shannon’s Work

“Using bits as a universal representation between
sources and channels is essentially optimal”

Nothing is more practical than a good theory:

Analogue data can be represented by discrete symbols and
compressed before transmission

Representation of information is at the heart of modern
communications (codes that can squish messages, saving time
resources and codes that can protect data from noise)

Information theory provides valuable insight, highlighting key
properties of good codes, leading to optimal designs.
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Information, Uncertainty and Learning
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Shannon Entropy

Entropy H(X) of a discrete random variable (RV) X ∼ p:
1. Measure of uncertainty → “surprise” function s(x),
x ∈ X , and H(X) = E[s(X)]
2. Independent of alphabet → s(x) = s(p(x))
3. Additivity:

s(p(x)q(y)) = s(p(x)) + s(q(y)) → s(x) = log p(x)
Lower probability implies higher surprise → s(x) = − log p(x)

H(X) = − ∑
x∈X

p(x) log p(x)

= −E[log p(X)]
H(X) is nonnegative, continuous, and strictly concave function
of p, and 0 ≤ H(X) ≤ log∣X ∣.
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Rényi Entropy

Rényi entropy for a discrete r.v. X with probability p(x):

Hα(X) = 1

1 − α log ∑
x∈X

p(x)α

= 1

1 − α logE[p(X)α−1],

for α > 0; Hα(X)→ H(X) as α → 1.
Conditional Rényi entropy for discrete RVs (X,Y) ∼ p(x, y):

Hα(X∣Y) = ∑
y∈Y

p(y)( 1

1 − α log ∑
x∈X

p(x∣y)α)

= 1

1 − αE[log ∑
x∈X

p(x∣Y )α].

There are many other information measures.
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Information and Learning

An emerging interface?

Shannon’s entropy provides a measure of uncertainty about
the amount of information that a learner possesses relative to
a given concept when only the probability distribution is given.

But the basic problem of learning consists in that one has to
separate the relevant information from patterns.

Two questions naturally arise:

Are information measures fundamental measures of the
random properties of data for learning problems?
What are the instances of learning problems for which
information measures can play a key role?

The study of these questions has played an important role and,
undoubtedly, it will play a central role in future learning methods.
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A Long-Lasting Partnership

Learning is data compression:

The goal is to learn the laws and regularities present in the data,
that is, to separate structure from noise.

Data compression is fundamentally related to statistical
generalization as shown by a number of sample complexity
bounds (e.g., VC-dimension, PAC-Bayes, and others). ,

The celebrated Minimum Description Length (MDL)
principle, to approach model selection in statistical inference.

In unsupervised learning, Variational Autoencoders (VAEs)
are motivated by compression methods and the Information
Bottleneck method for supervised learning as well.

This talk focuses on two related problems:

How to measure uncertainty from model predictions?
How to detect uncertainty induced from data drift?
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What Does Model Uncertainty Means?
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What Does Out-of-Distribution Robustness Means?
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What Does Out-of-Distribution Robustness Means?
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ImageNet-C: Varying Intensity for Dataset Shift
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Neural Networks Do Not Generalize Under Distribution Shift
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Neural Networks Do Not Know When They Are Wrong
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Models Assign High Confidence Predictions to OOD Inputs

ZĲôøĦŒ�ÔŒŒĔČĬ�đĔČđ�îĲĬǁôøĬîø�ŋŎøôĔîřĔĲĬŒ�řĲ�aa%�ĔĬŋŞřŒ

DīÔČø�ŒĲŞŎîø̷�ͱ%øøŋ�[øŞŎÔĦ�[øřŲĲŎģŒ�ÔŎø�)ÔŒĔĦŸ�;ĲĲĦøô̷�AĔČđ��ĲĬǁôøĬîø�zŎøôĔîřĔĲĬŒ�ċĲŎ��ĬŎøîĲČĬĔƀÔíĦø�DīÔČøŒͲ�[ČŞŸøĬ�øř�ÔĦ̵�ʾʼʽˀ

)ŷÔīŋĦø�ĔīÔČøŒ�ŲđøŎø�īĲôøĦ�ÔŒŒĔČĬŒ�ϐ˅ ̵˅ˁϢ�îĲĬǁôøĬîø̵

Pablo Piantanida (CentraleSupélec) IHES Workshop - Stats and Machine Learning 28 / 95
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Models Assign High Confidence Predictions to OOD Inputs
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Applications to Healthcare
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Applications to Self-driving Cars
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Applications to Open Set Recognition
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Doctor: A Simple Method for Detecting
Misclassification Errors

Joint work with Federica Granese, Marco Romanelli,
Daniele Gorla and Catuscia Palamidessi

(https://neurips.cc/virtual/2021/spotlight/28017)
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Main Definitions

Let

I X ⊆ R be the feature space;

I Y = {1, . . . , C} be the label space;

I pXY be the underlying (unknown) probability density function over
X × Y;

I Dn = {(x1, y1), . . . , (xn, yn)} ∼ pXY be a random realization of n
i.i.d. samples according to pXY denoting the training set;

I fDn : X → Y be the predictor,

fDn(x) ≡ fn(x;Dn) =∆ arg max
y∈Y

P
Ŷ |X(y|x;Dn).
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Problem Definition

P
Ŷ |X

γ ∈ R

x0 ∼ PX

DETECTOR
Accept 0 /

Reject 1
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Ideal (Oracle) Detector

Definition (Error probability per sample)

For a given testing feature x0 ∈ X ,

I E(x0) =∆ 1[Y 6= fDn(x0)] is the error variable corresponding to a
predetermined predictor fDn (based on PY |X);

I Pe(x0) =∆ E[E(x0)|x0] = 1− PY |X(fDn(x0)|x0) is the probability of
error classification w.r.t. PY |X .

PY |X

γ ∈ R+

x0 ∼ PX

1 [Pe(x0) > γ · (1− Pe(x0))]
Accept 0 /

Reject 1

PY |X(fDn(x0)|x0)

In practice, Pe(x0) is not available, but can we approximate it?
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Doctor: Dα

Proposition (Doctor: Dα)

For a given testing feature x0 ∈ X ,
I 1− ĝ(x0) =∆

∑
y∈Y PŶ |X(y|x0) Pr(Ŷ 6= y|x0) = 1−∑

y∈Y P
2
Ŷ |X(y|x0)

approximates the probability of incorrectly classifying x0;

I (1−
√
ĝ(x0))−∆(x0) ≤ Pe(x0) ≤ (1−

√
ĝ(x0)) + ∆(x0) where

∆(x0) =∆ 2
√

2 KL(PY |X(·|x0)‖PŶ |X(·|x0))).

P
Ŷ |X

γ ∈ R+

x0 ∼ PX

1 [1− ĝ(x0) > γ · ĝ(x0)]
Accept 0 /

Reject 1

ĝ(x0) =
∑

y∈Y P
2
Ŷ |X(y|x0)

Dα(x0, γ) =∆ 1 [1− ĝ(x0) > γ · ĝ(x0)]
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Doctor: Dβ

Definition (Doctor: Dβ)

For a given testing feature x ∈ X ,

I Ê(x0) =∆ 1[Ŷ 6= fDn(x0)] is the self-error variable corresponding to
fDn (based on the model P

Ŷ |X);

I P̂e(x0) =∆ E[Ê(x0)|x0] = 1− P
Ŷ |X(fDn(x0)|x0) is the probability of

error classification w.r.t. P
Ŷ |X .

P
Ŷ |X

γ ∈ R+

x0 ∼ PX

1
[
P̂e(x0) > γ · (1− P̂e(x0))

]
Accept 0 /

Reject 1

P
Ŷ |X(fDn(x0)|x0)

Dβ(x0, γ) =∆ 1
[
P̂e(x0) > γ · (1− P̂e(x0))

]
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Evaluation Metrics

Definition (FRR versus TRR)

The false rejection rate (FRR) represents the probability that a hit (sample
correctly classified) is rejected, while the true rejection rate (TRR) is the
probability that a miss (sample wrongly classified) is rejected.

Definition (AUROC)

The area under the Receiver Operating Characteristic curve (ROC) depicts
the relationship between TRR and FRR. The perfect detector corresponds
to a score of 100%.

Definition (FRR at 95% TRR)

This is the probability that a hit is rejected when the TRR is at 95%.
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Scenarios: Totally Black Box & Partially Black Box

Definition (Totally Black Box (TBB) Scenario)

In TBB only the output of the last layer of the network is available, hence
gradient-propagation to perform input pre-processing is not allowed.

Definition (Partially Black Box (PBB) Scenario)

In PBB we allow method-specific inputs perturbations and the possibility of
doing temperature scaling.
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Competitors (SOTA Methods) for TBB and PBB

1) ODIN [Liang et al., 2018]

SODIN(x̃) = max
i=[1:C]

exp(fi(x̃)/T )
∑C

j=1 exp(fj(x̃)/T )

ODIN(x̃; δ, T, ε) =

{
out, if SODIN(x̃) ≤ δ
in, if SODIN(x̃) > δ

I f(x̃) the vector of logits;

I x̃ represents a magnitude ε perturbation of the original x;

I T is the temperature scaling parameter;

I δ ∈ [0, 1] is the threshold value;

I in indicates the acceptance decision;

I out indicates the rejection decision.
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Competitors (SOTA Methods) for PBB

2) Mahalanobis distance [Lee et al., 2018]

M(x̃) = max
c∈Y

−(f(x̃)− µ̂c)>Σ̂−1(f(x̃)− µ̂c)

MHLNB(x̃; ζ, ε) =

{
out, if M(x̃) > ζ

in, if M(x̃) ≤ ζ

I µ̂c is the empirical class mean for each class c (training set);

I Σ̂ is the empirical covariance (trainig set);

I f(x̃) the vector of logits;

I x̃ represents a magnitude ε perturbation of the original x;

I ζ ∈ R+ is the threshold value;

I in indicates the acceptance decision;

I out indicates the rejection decision For a given x ∈ X .
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TBB versus PBB

1) Softmax Response
(SR) [Hendrycks and Gimpel, 2017, Geifman and El-Yaniv, 2017]
ODIN with T = 1 and ε = 0.

2) Mahalanobis distance (MHLNB) [Lee et al., 2018]
Mahalanobis distance without input pre-processing and with the softmax
output in place of the logits.

TBB

I Temperature scaling, T = 1

I Input pre-processing, ε = 0

PBB

I Dα, Tα = 1 and εα = 0.00035

I Dβ, Tβ = 1.5 and εβ = 0.00035

I ODIN, TODIN = 1.3 and εODIN = 0

I MHLNB, TMHLNB = 1 and εMHLNB = 0.0002
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Discrimination performance for TBB

Figure 1. DOCTOR, SR and MHLNB to split data samples in
TinyImageNet under TBB. Histograms for wrongly classified samples and
correctly classified samples.
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Discrimination performance for PBB

Figure 2. DOCTOR, ODIN and MHLNB to split data samples in
TinyImageNet under PBB. Histograms for wrongly classified samples and
correctly classified samples.
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PBB: ROCs

CIFAR10

CIFAR100

TinyImageNet

SVHN

Figure 3. ROC curves. Comparison between DOCTOR, ODIN and
MHLNB. The red dashed line marks the 95% threshold of TRR.
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Overall Results: TBB & PBB

Table 1. Collection of the results in both TBB and PBB. For all methods,
in TBB, we set T = 1 and ε = 0; in PBB we set : εα = 0.00035 and
Tα = 1, εβ = 0.00035 and Tβ = 1.5, εODIN = 0 and TODIN = 1.3,
εMHLNB = 0.0002 and TMHLNB = 1. In TBB for ODIN we report same
results as in SR, since both methods coincide when T = 1 and ε = 0.

DATASET METHOD
AUROC % FRR % (95 % TRR)

TBB PBB TBB PBB

CIFAR10
Acc. 95%

Dα 94 95.2 17.9 13.9

Dβ 68.5 94.8 18.6 13.4

ODIN 93.8 94.2 18.2 18.4

SR 93.8 - 18.2 -

MHLNB 92.2 84.4 30.8 44.6

CIFAR100
Acc. 78%

Dα 87 88.2 40.6 35.7

Dβ 84.2 87.4 40.6 36.7

ODIN 86.9 87.1 40.5 40.7

SR 86.9 - 40.5 -

MHLNB 82.6 50 66.7 94

Tiny
ImageNet
Acc. 63%

Dα 84.9 86.1 45.8 43.3

Dβ 84.9 85.3 45.8 45.1

ODIN 84.9 84.9 45.8 45.3

SR 84.9 - 45.8 -

MHLNB 78.4 59 82.3 86

DATASET METHOD
AUROC % FRR % (95 % TRR)

TBB PBB TBB PBB

SVHN
Acc. 96%

Dα 92.3 93 38.6 36.6

Dβ 92.2 92.8 39.7 38.4

ODIN 92.3 92.3 38.6 40.7

SR 92.3 - 38.6 -

MHLNB 87.3 88 85.8 54.7

Amazon
Fashion
Acc. 85%

Dα 89.7 - 27.1 -

Dβ 89.7 - 26.3 -

SR 87.4 - 50.1 -

Amazon
Software
Acc. 73%

Dα 68.8 - 73.2 -

Dβ 68.8 - 73.2 -

SR 67.3 - 86.6 -

IMDb
Acc. 90%

Dα 84.4 - 54.2 -

Dβ 84.4 - 54.4 -

SR 83.7 - 61.7 -
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Misclassification Detection in Presence of OOD Samples

I Doctor is not tuned for OOD detection (differently from ODIN).

I We test ODIN and Doctor when one sample to reject out of five
(♣), three (♦), or two (♠) is OOD.

DATASET-
In

DATASET-
Out

AUROC % FRR % (95 % TRR)

Dα Dβ ODIN ENERGY Dα Dβ ODIN ENERGY

CIFAR10
♣

iSUN 95.4 / 0.1 95.1 / 0.1 94.6 / 0.1 92.4 / 0 14 / 0.5 13.5 / 0.4 17.2 / 0.3 32.2 / 0.1

Tiny (res) 95.2 / 0.1 94.9 / 0 94.6 / 0.1 92.3 / 0.1 14 / 0.4 14 / 0.5 17.8 / 0.4 32.2 / 0.1

CIFAR10
♦

iSUN 95.5 / 0.1 95.3 / 0.1 94.9 / 0.1 92.9 / 0 14.4 / 0.6 13.4 / 0.2 16.8 / 0.5 27 / 1

Tiny (res) 95.4 / 0.1 95 / 0.1 94.8 / 0.1 92.8 / 0 15 / 0.1 14.8 / 0.7 17 / 0.5 28.8 / 1.9

CIFAR10
♠

iSUN 95.6 / 0.1 95.6 / 0 95.4 / 0 93.6 / 0.1 15.1 / 0.1 13.6 / 0.5 16.1 / 0.2 25.1 / 0.2

Tiny (res) 95.5 / 0.1 95.2 / 0.1 95.1 / 0.1 93.5 / 0 14.7 / 0.3 14.8 / 0.5 17.1 / 0.4 25.6 / 0.3

Table 2. Results in terms of mean / standard deviation.
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Takeaways from Doctor

I Doctor provides a flexible framework for miscalssification error
detection that applies to any pre-trained DNN classifier.

I We leverage information-theoretic tools to better discriminate between
trusted and untrusted model predictions.

I Our method adapts to various scenarios depending on the level of
information access of the DNN, uses only the pre-trained model.

On-going work:

I Formalize statistical learning mechanisms that enable error detection
and adaptation from few resources.

I Characterize their capabilities and limitations.

I Extension to semantic image segmentation, object detection and
regression problems.
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Supplementary: Optimal (Oracle) Discriminator

I E =∆ 1[Y 6= fDn(X)] denotes the error variable corresponding to fDn

I x ∈ X and y ∈ Y drawn from the unknown distribution pXY

I pXY (x, y) ≡ PE(1)pXY |E(x, y|1) + PE(0)pXY |E(x, y|0)

I pX(x) ≡ PE(1)pX|E(x|1) + PE(0)pX|E(x|0)

I Pe(x) =∆ E[E(x)|x] = 1− PY |X(fDn(x)|x) is the probability of error
classification w.r.t. PY |X

D(x, γ) = 1[pX|E(x|1) > γ · pX|E(x|0)]

= 1[PE|X(1|x)PE(0) > γ · (1− PE|X(1|x))PE(1)]

= 1[Pe(x)PE(0) > γ · (1− Pe(x))PE(1)]

= 1[Pe(x) > γ′ · (1− Pe(x))],

where γ′ = PE(1)
PE(0) .
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Igeood: An Information Geometry Approach to
Out-of-Distribution Detection

Joint work with Eduardo D. C. Gomes, Florence Alberge
and Pierre Duhamel

(https://openreview.net/pdf?id=mfwdY3U_9ea)

Out-of-Distribution Detection 56



Motivation

We introduce Igeood, an effective method for detecting
Out-of-Distribution (OOD) samples.

Igeood applies to any pre-trained neural network, works under
different degrees of access to the ML model, does not require
OOD samples or assumptions on the OOD data but can also
benefit (if available) from OOD samples.

By building on the geodesic (Fisher-Rao) distance between the
underlying data distributions, our discriminator combines
confidence scores from the logits outputs and the learned features
of a deep neural network.

Out-of-Distribution Detection Background 57



Background

Let X ⊆ Rd be the feature space and Y a label space and let pXY be
the underlying unknown probability density function (pdf) over X × Y.

In order to model the underlying problem, we introduce an artificial
binary random variable Z ∈ {0, 1} indicating with z = 1 that the test
sample x is OOD and z = 0 otherwise.

The open-world data can then be modeled as a mixture distribution
pX |Z defined by

pX |Z (x |z = 0) , pX (x), pX |Z (x |z = 1) , qX (x).

The intrinsic difficulty arises from the fact that very little can be
assumed about the unknown distributions pX and qX , in particular for
out-of-distribution.

Alternative: distance based criteria w.r.t an in-distribution probability
reference.
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Statistical Model

Figure: We model the hidden layers’ outputs as class conditional Gaussian
distributions and the DNN’s outputs as softmax probability distributions.
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Fisher-Rao Geodesic Distance

We propose an OOD detector based on the geodesic Fisher-Rao distance
between probability density functions:

dFR(qθ, q
′
θ) , inf

γ

∫ 1

0

√
dγ>(t)

dt
G (γ(t))

dγ(t)

dt
dt

Figure: Illustration of the shortest path between distributions in a statistical
manifold.

Out-of-Distribution Detection Fisher-Rao Geodesic Distance 60



Igeood Score Using the Soft-Predictions

Igeood score using the softmax probability: Let qθ (·|f (x)) be the
softmax probability distribution of the outputs. We can define the
Fisher-Rao distance between softmax distributions as:

dFR−Logits
(
qθ, q

′
θ

)
, 2 arccos


∑

y∈Y

√
qθ
(
y |f (x)

)
qθ
(
y |f (x ′)

)



From which we derive our Igeood score for the logits:

FR0(x) ,
∑

y∈Y
dFR−Logits

(
qθ(·|f (x)), qθ(·|µy )

)

Where µy are the class conditional centroids given by:

µy , min
µ∈R|Y|

1

Ny

∑

∀ i : yi=y

dFR−Logits
(
qθ(·|f (x i)), qθ(·|µ)

)
.
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Igeood Score Leveraging Latent Features

Igeood score leveraging latent features: For each layer, we model
the features as a set of class-conditional Gaussian distributions with
diagonal standard deviation matrix:

µ
(`)
y =

1

Ny

∑

∀i : yi=y

f (`) (x i )

σ(`) = diag



√

1

N

∑

y∈Y

∑

∀i : yi=y

(
f
(`)
j (x i )− µ(`)y ,j

)2

 .

We derive a confidence score by calculating the Fisher-Rao
distance between the test sample x and the closest
class-conditional diagonal Gaussian distribution:

FR`(x) = min
y∈Y

dFR−Gauss

((
x ,σ(`)

)
,
(
µ
(`)
y ,σ(`)

))
.
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Feature Ensemble

Feature ensemble: we combine the confidence scores of the logits
and low-level features through a linear combination. If OOD data is
available, we can also calculate FR′`

(
x ;µ(`)′,σ(`)′) with OOD

statistics, obtaining Igeood+:

FR(x) , α0FR0(x) +
∑

`

α` · FR`(x) + α′` · FR′`(x).

Therefore, we have derived a unified OOD detection framework that
combines a single distance for both the softmax outputs and the latent
features of a neural network.
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Experimental Setup

The experimental setup follows the setting established by [1, 2, 4].

We use two pre-trained deep neural networks architectures for image
classification tasks: a Dense Convolutional Network
(DenseNet-BC-100) and a Residual Neural Network (ResNet-34).

in-distribution data: images from CIFAR-10, CIFAR-100 and SVHN
datasets.

out-of-distribution data: natural image examples from Tiny-ImageNet,
LSUN, Describable Textures Dataset, Chars74K, Places365, iSUN and
a synthetic dataset generated from Gaussian noise.
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Experimental Results

The Igeood score increases the separation between in- and
out-of-distribution data.

(a) Block 1. (b) Block 2. (c) Block 3.

Figure: Histograms of the Mahalanobis and Igeood scores for the outputs of each
hidden block of a DenseNet model.
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Black-Box Results

Table: Average and standard deviation OOD detection performance across various
OOD datasets for each model and in-distribution dataset in a Black-Box setting.
Igeood is compared to Baseline [1], ODIN [2], and Energy [3] methods.

TNR at TPR-95% AUROC
Model In-dist. Baseline / ODIN / Energy / Igeood (ours)

DenseNet
C-10 52.5±16/66.8±20/65.3±23/65.6±23 91.8±3.2/92.8±4.6/92.1±5.3/92.3±5.1

C-100 15.9±6.8/20.5±9.5/20.3±9.6/20.7±9.8 69.1±15/71.6±20/71.6±20/73.2±17
SVHN 68.4±14/68.8±20/70.2±17/72.1±15 92.3±4.0/87.3±14/90.1±5.9/90.9±5.3

ResNet
C-10 41.7±16/51.9±15/56.3±13/56.7±13 89.6±3.1/90.4±3.1/90.4±3.0/90.5±3.0

C-100 15.0±5.5/16.0±6.3/16.3±7.1/16.4±6.8 74.0±1.9/75.2±1.7/75.5±1.9/75.5±1.7
SVHN 76.2±7.8/77.7±7.9/78.0±7.9/78.3±8.0 92.2±2.9/91.4±3.2/91.4±3.2/91.7±3.2

Average and Std. 44.9±24/50.3±24/51.1±24/51.6±24 84.8±9.5/84.8±8.3/85.2±8.4/85.7±8.0
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White-Box Results

We increase the average TNR-95% by 11.8% and 2.5% with validation
on OOD and adversarial data, respectively.

Table: Average and standard deviation of OOD detection performance for the
White-Box settings. The abbreviation TNR-95%, C-10 and C-100 stands for
TNR at TPR-95%, CIFAR-10 and CIFAR-100, respectively.

Validation on OOD data Validation on adversarial data
TNR-95% AUROC TNR-95% AUROC

Model In-dist. Mahalanobis / Igeood+ (ours) Mahalanobis / Igeood (ours)

DenseNet
C-10 76.6±31/92.6±14 92.1±12/98.4±3.0 75.9±30/77.9±29 91.7±12/94.0±9.0

C-100 67.2±28/90.2±21 90.2±13/97.7±5.0 60.4±34/70.9±35 85.3±19/90.8±13

SVHN 93.3±8.0/98.0±2.0 98.6±1.0/99.6±0.1 93.7±10/92.2±9.0 98.6±2.0/98.4±1.0

ResNet
C-10 82.5±23/91.6±16 96.5±4.0/98.4±3.0 78.6±24/77.3±32 95.3±6.0/90.0±15

C-100 70.4±30/86.4±23 91.9±10/97.1±5.0 57.4±36/65.1±33 86.9±13/88.6±15

SVHN 96.8±6.0/98.9±2.0 99.2±1.0/99.7±0.1 96.3±8.0/93.6±14 99.1±1.0/98.4±3.0

Average and Std. 81.1±11/92.9±4.0 94.8±4.0/98.5±1.0 77.0±15/79.5±10 92.8±5.4/93.4±3.9

Out-of-Distribution Detection Experimental Results 67



Further Comparison to the Literature

Table: TNR at TPR-95% (%) performance comparison in a White-Box setting
considering the original results from [1,2,3,4]. Methods with an (*) were tuned
without OOD data.

OOD
dataset

CIFAR-10 CIFAR-100 SVHN
Mahalanobis [4] / Gram Matrix* [5] / DeConf-C* [6] / Res-Flow [7] / Igeood / Igeood+

D
en

se
N

et iSUN 95.3/99.0/ - / - /97.7/99.8 87.0/95.9/ - / - /93.8/99.7 99.9/99.4/ - / - /98.3/99.9
LSUN 97.2/99.5/99.4/98.2/98.5/99.9 91.4/97.2/98.7/96.3/95.2/99.9 99.9/99.5/ - /100/97.1/99.9
TinyImgNet 95.0/98.8/99.1/96.4/95.7/99.8 86.6/95.7/98.6/93.0/94.5/99.5 99.9/99.1/ - /100/98.2/99.9
SVHN/C-10 90.8/96.1/98.8/94.9/98.9/99.9 82.5/89.3/95.9/84.9/93.3/99.6 96.8/80.4/ - /99.0/91.6/98.3

R
es

N
et

iSUN 97.8/99.3/ - / - /97.2/99.9 89.9/94.8/ - / - /93.4/99.8 99.7/99.4/ - / - /99.8/100
LSUN 98.8/99.6/ - /99.0/98.4/100 90.9/96.6/ - /96.2/94.3/100 99.9/99.6/ - /100/99.7/99.9
TinyImgNet 97.1/98.7/ - /97.8/96.3/99.6 90.9/94.8/ - /94.6/90.1/99.6 99.9/99.3/ - /100/99.7/99.9
SVHN/C-10 87.8/97.6/ - /96.5/98.8/99.8 91.9/80.8/ - /93.0/91.6/99.7 98.4/85.8/ - /99.4/97.7/99.7
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Takeaways from Igeood

Igeood provides a flexible framework for OOD detection that applies
to any pre-trained DNN classifier.

We leverage information geometry tools to better discriminate between
probability distributions.

Our method adapts to various scenarios depending on the level of
information access of the DNN, uses only in-distribution samples but
can also benefit (if available) of OOD samples.

On-going work:

Formalize hypothetical learning mechanisms that enable OOD
generalization and adaptation.

Characterize their capabilities and limitations.

Extension to time-series and progressive distribution/model drifts.
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Adversarial Robustness via Fisher-Rao Regularization

Joint work with Marine Picot, Francisco Messina, Malik Boudiaf,
Fabrice Labeau, Ismail Ben Ayed

(https://arxiv.org/abs/2106.06685)
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Deep Neural Networks

Adversarial Robustness Background and Motivation 72



Deep Neural Networks
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Attacking Deep Neural Networks

Data poisoning: modification of the boundaries
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Attacking Deep Neural Networks

Data poisoning: modification of the boundaries
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Adversarial Examples

Figure: Building adversarial examples [Ian J Goodfellow et al. Arxiv 2014]
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Adversarial Examples

Figure: "Natural" vs "Adversarial" decision boundaries [A. Madry et al. ICLR 2018]
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Motivation

Security

Glasses that fool face recognition [Mahmood Sharif et al. CCS 2016]
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Motivation

Security and Safety

Fooling autonomous car [Nir Morgulis et al. arXiv 2019.]
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Main Defintions

Let us consider the multi-class classification problem with:
X ⊆ Rn is the input space.

Y = {1, . . . ,M} is the label (concept) space.

qθ is the general classification model, parametrized by θ ∈ Θ.

Pe(θ) is the error probability of the model parametrized by θ ∈ Θ.

`(θ; x , y) is the loss of the model parametrized by θ, computed for the
input (x , y) and its expectation is the risk L(θ).

ε is the maximal distortion allowed in the adversarial problem,
according to a specific Lp-norm.

x ′ refers to the adversarial version of any variable x .
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Problem Statement of Adversarial Attacks

Definition (Adversarial attacks)

The adversarial problem 1 is defined, according to Lp-norm, as:

x?(x) ≡ arg min
x ′∈[0,1]n : ‖x ′−x‖p<ε

‖x ′ − x‖p
s.t. fθ(x ′) = t

where
t is the target class or any class different from the original label y ,
x ′ ∈ [0, 1]n assures that x?(x) is close enough to the original image.

1Christian Szegedy et al. Intriguing properties of neural networks ICLR 2014.
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Fast Gradient Sign Method (FGSM)

Definition (FGSM Algorithm [Ian J Goodfellow et al. 2014])

x ′ = x + α sgn (∇x `(θ; x , y)) ,

where
(x , y): clean example

x ′: adversarial example

sgn : the sign function

∇x `(θ; x , y): the gradient w.r.t. x of the loss function `(θ; x , y)
evaluated at (x , y)

α ≤ ε: parameter controlling the magnitude of the perturbation.
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Overview of PGD Attack

Definition (PGD Attack [A. Madry et al. ICLR 2018])
It is the iterative extension of the FGSM method

For a certain number of iterations k , we apply at each iteration i:

x ′(i+1)
= x ′(i) + δ · sgn

(
∇x `(θ; x ′(i), y)

)
,

where δ ≤ ε is the noise norm at each step.

x ′(0) is either equal to x or x + η where η is a random noise of
maximum amplitude ε.

To ensure that the Lp-norm constraint is met, at each iteration, we
have to force: ‖x ′(i) − x‖p ≤ ε.
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Adversarial Training

Definition (Adversarial defense)

θ? ≡ arg min
θ

EXY

[
max

x′:‖x′−x‖∞≤ε
`(θ; x ′, y)

]

Relaxation hypothesis: We can approximate the max part with the
generation of an adversarial example.
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Losses for Adversarial Training

Definition (Madry’s method for defense [A. Madry et al. ICLR 2018])
Consider the adversarial cross-entropy loss (ACE):

`(θ; x ′, y) = − log[qθ(y |x ′)].

Definition (TRADES [Hongyang Zhang et al. ICML 2019])
Trade-off between natural and robust accuracies:

`(θ; x ′, y) = − log[qθ(y |x)] + λ · dKL
(
qθ(y |x)‖qθ(y |x ′)

)
,

where λ is the hyperparameter controlling the trade-off between natural
and adversarial accuracies.

Robustness cannot be ensured against all adversarial (losses)
attacks. Can we derive an universal defense?
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Fisher-Rao Riemannian Geometry

Definition (Fisher-Rao Distance (FRD))

Given a family of probability distributions:
C =

{
qθ(·|x) : x ∈ X

}
.

Metric tensor (Fisher information):

G(x) = EY∼qθ(·|x)
[
∇x log qθ(Y |x)∇ᵀ

x log qθ(Y |x)
]

is positive definite for any x and θ ∈ Θ.
Infinitesimal squared length element:

ds2 = 〈dx, dx〉G(x) = dxᵀG(x)dx.

The FRD between qθ(·|x) and qθ(·|x′) is:

dR,C(qθ, q
′
θ) = inf

γ

∫ 1

0

√
dγᵀ(t)
dt

G(γ(t))
dγ(t)

dt
,

the inf is over all piecewise smooth curves.

FRD is the length of the geodesic between
(x, x′) using G (x) as the metric tensor.

R. Rao and R. Fisher, 1956

d
R
,C
(q

θ ,q ′θ )

qθ(·|x)

qθ(·|x′)

C

d
E
clid (q

θ , q ′θ )
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FIRE: Fisher-Rao Regularization

Definition (Fisher-Rao Distance (FRD))
We define the FIRE loss function as the trade-off between the natural
cross-entropy and the expected Fisher-Rao distance between natural and
adversarial probability distributions:

`FIRE(θ; x , y) = − log qθ(y |x) + λ · d2
R(qθ

(
· |x), qθ(·|x ′)

)
,

where λ is the hyperparameter controlling the trade-off between natural
and adversarial performances with

dR(qθ(.|x), qθ(.|x ′) = 2 arccos


∑

y∈Y

√
qθ(y |x)qθ(y |x ′)


 .

This metric has very interesting properties and is related to well-known
distances and Information divergences.
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Comparison to the Kullback-Leiber Distance

Definition (Binary logistic regression)
Assume two equally likely classes Y = {−1, 1} with conditional inputs
given by x|y ∼ N (yµ,Σ), and softmax probability

qθ(y |x) =
1

1 + exp(−y θᵀx)
.
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Figure: Plot of all possible pairs (1−Pe(θ), 1−P ′
e(θ)) for Gaussian model ε = 0.1
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Experimental Set-Up

Datasets: MNIST, CIFAR-10 - with and without additional data
(AD) - , CIFAR-100
Model architecture: CNNs, ResNet
Training procedure without AD: Number of epochs : 100, batch
size : 256, optimizer: SGD with a 0.9 momentum, and 1.10−4 weight
decay, lr : 0.01 for MNIST, and to 0.1 for CIFAR-10 and CIFAR-100, lr
decay :divided by 10 at epochs 75 and 90.
Changes for AD simulations: Number of epochs: 200, lr decay:
cosine.
Generation of adversarial examples: PGD.
Additional data: 500k additional images from 80M-TI1, selected
such that the l2-norm between those images and the images from
CIFAR-10 are below a threshold.

1Images available at https://github.com/yaircarmon/semisup-adv
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Comparison between KL and Fisher-Rao Regularization

Table: Comparison between KL and Fisher-Rao based regularizer under white-box
l∞ threat model.

Defense Dataset ε Structure Natural AutoAttack AA RunTime

TRADES CNN 99.35 92.91 96.13 2h22
FIRE MNIST 0.3 CNN 99.13 94.06 96.59 2h06

TRADES WRN-34-10 86.01 50.26 68.13 13h49
FIRE CIFAR-10 8/255 WRN-34-10 85.42 52.22 68.82 11h00

TRADES WRN-34-10 59.76 26.09 42.92 13h49
FIRE CIFAR-100 8/255 WRN-34-10 60.71 27.63 44.17 11h10
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Comparison to SOTA Defense Mechanisms

Table: Test robustness on different datasets under white-box l∞ attack. ’*’
indicates models were retrained. ’-’ indicates the result is unavailable.

Defense Dataset ε Structure Natural AutoAttack AA Runtime

Without Additional Data

Madry et al.

MNIST 0.3

CNN 98.53 88.50 93.51 2h03
Atzmon et al. CNN 99.35 90.85 95.10 -
TRADES * CNN 99.35 92.91 96.13 2h22

FIRE CNN 99.14 94.06 96.60 2h06

Madry et al.

CIFAR-10 8/255

WRN-34-10 87.14 44.04 65.59 10h51
TRADES * WRN-34-10 84.79 51.92 68.35 13h49
Self Adaptive WRN-34-10 83.48 53.34 68.41 13h57
Overfitting * WRN-34-10 86.85 51.74 69.29 42h01

FIRE WRN-34-10 85.20 53.49 69.35 11h00

Overfitting RN-18 53.83 18.95 36.39 -
Overfitting* WRN-34-10 59.01 27.07 43.04 42h08

FIRE
CIFAR-100 8/255

WRN-34-10 60.71 27.63 44.17 11h10

With Additional Data Using 80M-TI

Pre-training

CIFAR-10 8/255

WRN-28-10 87.10 54.92 71.01 13h51
UAT WRN-106-8 86.46 56.03 71.24 -
MART WRN-28-10 87.50 56.29 71.89 10h22
RST-adv WRN-28-10 89.70 59.53 74.61 22h12
FIRE WRN-28-10 89.77 59.93 74.85 18h30
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Takeaways from FIRE

FIRE is a novel method using tools from information geometry that
encourages invariant softmax probabilities for natural and adversarial
examples while maintaining high performances on natural samples.
Theoretically, the optimization based on FIRE is well-behaved and
gives all the desired Pareto-optimal points.
Our empirical results showed that FIRE consistently enhances the
robustness compared to TRADES.
Compared to the state-of-the-art methods for adversarial defenses,
FIRE increases the Average Accuracy (AA) while reducing the training
time by 20%.

On-going work:
Our framework might be used to devise novel detection methods of
adversarial examples.
Characterize capabilities and limitations of potential attacks.
Auditing mechanisms for ML models, based on partial statistical
knowledge of the underlying distribution.
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Information Measures are Building Blocks of ML Systems

A long-lasting partnership:
Learning is data compression.
Concepts of data representations (e.g., encoders/decoders).
Several information-based objectives (e.g., cross-entropy loss,
mutual information,...), maximum information gain principle.
Shannon entropy is a measure of randomness (or uncertainty).
Minimum entropy principle is fundamental in statistical
estimation and learning.

Nonetheless, there is a long way to go:
It is fundamentally important to study other measures of
information having more appropriate properties from the
viewpoint of its own learning problems.
How we find an appropriate and universal way to measure and
to detect model uncertainty?
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Open Research Questions

From empirical evidence to information and knowledge:

Researchers often have a tendency to fixate on model
performance metrics, e.g., accuracy, but metrics only tell
part of the story of a model’s predictive decisions.

It is important to understand what drives a model to make
predictions (learning nature, not only imitation).

Uncertainty & robustness are critical problems in modern AI:
Models are often wrong, but AI models that know when they
are wrong are more useful.

Better understanding of the information-theoretic link between:

Data (source of empirical evidence),
Information (the part that is unpredictable from the data),
Redundancy (structure in data that provides the knowledge),
Knowledge (the explanations of the complex world).
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Thank you for your attention
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