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Introduction to SAR imaging

Principle of SAR imaging
Active sensor

Emission of electro-magnetic waves
(GHz)
Recording of the backscattered signals
by the ground

Properties
All time / all weather sensor
Phase of the backscattered signal
encoding geometric information
Satellite (revisit time) or aerial sensors

SAR image synthesis
Range (time) direction: direction of the
wave propagation → chirp emission for
improved resolution
Azimuth direction: direction of the
sensor displacement → synthetic
aperture for improved resolution
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1. Principles of SAR imaging

SAR imaging is an active imaging technique. . .
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1. Principles of SAR imaging

. . . based on the emission of an electromagnetic wave (typ. 10GHz).
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1. Principles of SAR imaging

Depending on the scene geometry, the radar pulse is reflected. . .
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1. Principles of SAR imaging

. . . or scattered. . .
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1. Principles of SAR imaging

. . . and part of the incident energy is sent back to the antenna.
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1. Principles of SAR imaging

The location on the ground of the scatterer is deduced from the time-of-flight.
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1. Principles of SAR imaging

As the satellite moves, the antenna diffraction pattern covers another area. . .
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1. Principles of SAR imaging

. . . thereby forming a 2D image.
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1. Principles of SAR imaging

Aperture synthesis consists of numerically combining the echoes. . .
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1. Principles of SAR imaging

. . . which greatly improves the resolution.
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1. Principles of SAR imaging
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SAR data

Different kind of "images"
single SAR image

amplitude→ object classification, . . .

interferometry: 2 SAR images
phase difference→ elevation, . . .

polarimetry: 3 SAR images
complex correlation→ geophysical properties

SAR, InSAR, PolSAR, PolInSAR

(a) InSAR (b) PolSAR
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SAR imaging applications

(a) InSAR (b) Differential InSAR
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Speckle phenomenon

Speckle fluctuations are a major difference between SAR and optical remote sensing images:

polarimetric SAR image corresponding optical image

Pauli representation (HH-VV, 2HV, HH+VV)
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2. Speckle in SAR images

Fully-developed speckle model [Goodman 1963]

Coherent summation of echoes from each elementary scatterer
of the resolution cell:

 a random walk in the complex plane
Assumption: rough & homogeneous surface
 real and imaginary parts are independent Gaussians
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2. Speckle in SAR images

Fully-developed speckle model [Goodman 1963]

Coherent summation of echoes from each elementary scatterer
of the resolution cell:

 a random walk in the complex plane
Assumption: rough & homogeneous surface
 real and imaginary parts are independent Gaussians

Intensity images: multiplicative noise modeled by a gamma
distribution (I = |z| and R being the physical parameter of the
scene)

p(I|R) =

(
L

R

)L IL−1

Γ(L)
exp

(
−LI
R

)

Log-transformed intensity images: additive noise modeled by a
Fisher-Tippett distribution

p(Ĩ|R̃) =
LL

Γ(L)
exp
[
L
(
Ĩ − R̃− exp(Ĩ − R̃)

)]
with Ĩ = log I and R̃ = logR
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2. Speckle in SAR images

Fully-developed speckle model [Goodman 1963]

Coherent summation of echoes from each elementary scatterer
of the resolution cell:

 a random walk in the complex plane
Assumption: rough & homogeneous surface
 real and imaginary parts are independent Gaussians

Interferometric and/or polarimetric images:

• diffusion vectors k distributed according to a complex circular Gaussian distribution (Σ
containing the physical parameters of interest)

p(k|Σ) =
1

πK |Σ|
exp
(
−k†Σ−1k

)

• sample covariance matrix C = 1
L

L∑
i=1

kik
†
i distributed according to complex Wishart distribution

p(C|Σ, L) =
LLK |C|L−K

ΓK(L)|Σ|L
exp

(
−L Tr(Σ−1C)

)
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Speckle reduction techniques : an overview of 40+ years of research
(L. Denis et al., IGARSS 21)
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A broad overview of deep-learning strategies for despeckling
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Applying a pre-trained network (universal Gaussian denoiser)
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Applying a pre-trained network (universal Gaussian denoiser)

C.A. Deledalle, L. Denis, S. Tabti, & F. Tupin, “MuLoG or how to apply Gaussian denoisers to multi-channel SAR speckle reduction
? ”, IEEE Transactions on Image Processing, 2017.
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Applying a pre-trained network (universal Gaussian denoiser)

C.A. Deledalle, L. Denis, & F. Tupin, “A Generic Variance-Stabilization Approach for Speckle Reduction in SAR Interferometry and
SAR Polarimetry ”, IGARSS, 2018.
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Supervised training of a despeckling network
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Supervised training of a despeckling network

E. Dalsasso, X. Yang, L. Denis, F. Tupin, “SAR Image Despeckling by Deep Neural Networks: from a pre-trained model to an
end-to-end training strategy ”, Remote Sensing 2020.

F. Tupin, Telecom Paris Deep learning strategies for SAR image restoration Statistics / Machine Learning à Paris Saclay 13 / 26



Self-supervised with matched pairs of SAR images
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Self-supervised with matched pairs of SAR images

E. Dalsasso, L. Denis, F. Tupin, “SAR2SAR: a semi-supervised despeckling algorithm for SAR images ”, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2021.
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Self-supervised with matched pairs of SAR images

Restoration results with SAR2SAR: Sentinel-1 SLC IW image ( c©ESA, image not
pre-processed)
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Self-supervised with a single image

Laine et al. “High-Quality Self-Supervised Deep Image Denoising”, NeurIPS 2019.
Molini et al. “Speckle2Void: Deep self-supervised SAR despeckling with blind-spot convolutional neural networks”, IEEE TGRS 2021
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Self-supervised with a single image

Restoration results with Speckle2Void: TerraSAR-X image ( c©DLR, image pre-processed)

(source: results provided by the Authors at https://diegovalsesia.github.io/speckle2void)

Molini et al. “Speckle2Void: Deep self-supervised SAR despeckling with blind-spot convolutional neural networks”, IEEE TGRS 2021
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Self-supervised with a single image: real-/imaginary-part decomposition

pZ(z) = pZ(a+ jb) =
1

πr
exp(−(a2 + b2)/r)

=
1

√
2π
√
r/2

exp(−a2/r)︸ ︷︷ ︸
N (0,r/2)

1
√

2π
√
r/2

exp(−b2/r)︸ ︷︷ ︸
N (0,r/2)

, (1)

L(r̃, b̃) =
∑
k

1

2
log (r̃k) +

b̃2k
r̃k
, (2)
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Self-supervised with a single image: real-/imaginary-part decomposition

Dalsasso et al. “As if by magic: self-supervised training of deep despeckling networks with MERLIN”, to appear in IEEE Trans
Geosc. Remote Sens.
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Self-supervised with a single image: MERLIN (TerraSAR-X image c©DLR)
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Other considerations when designing a deep network for despeckling:

Network architecture
deep convolutional (DnCNN [Zhang 17,
Chierchia 17, ])

U-Net ([Ronneberger 15])

non-local ([Cozzolino 19, 20],
[Denis 19], [Molini 21])

Loss function
`2, `1, ‖∇x−∇xtrue‖22, total variation

perceptual loss

neg-log-likelihood, Kullback-Leibler [Vitale
21]

GAN [Wang 17]

Robustness to speckle correlations
several methods assume a spatially
decorrelated speckle:

– (blind) speckle decorrelation by
inversion of the SAR transfer function

– downsampling
it is essential for these methods
that images be pre-processed

other methods are robust to speckle
correlations (e.g. trained on correlated
speckle) [Cherchia 17, Dalsasso 21]

Handling the high dynamic range
log-scale [Chierchia 17]

image normalization

clipping [Molini 21]

Handling complex-valued information
extraction of real/imaginary parts [Sica 20]

matrix log [Deledalle 17, Mullissa 20-21]
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Conclusion

Speckle reduction in SAR imaging is a well-studied topic

It is still a very active research topic:
– deep neural network approaches
– self-supervised training
– multi-channel despeckling (interferometry, polarimetry)
– multi-temporal processing

RadarSat-2 images c©Canadian Space Agency

there are many resources available (codes)
<!> check input type (

√
I, I or complex amplitude)

spatial correlations of the speckle field is an issue for many algorithms
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Further reading

Recent review papers on the topic:

Detailed presentation of Bayesian and wavelets techniques:

[Argenti et al. 2013] F. Argenti, A. Lapini, T. Bianchi, & L. Alparone
A tutorial on speckle reduction in synthetic aperture radar images,
IEEE Geoscience and remote sensing magazine, 2013

Detailed presentation of patch-based approaches:

[Deledalle et al. 2014] C. Deledalle, L. Denis, G. Poggi, F. Tupin, & L. Verdoliva
Exploiting patch similarity for SAR image processing,
IEEE Signal Processing Magazine, 2014

Deep learning techniques:

[Zhu et al. 2021] X. Zhu, S. Montazeri, M. Ali, Y. Hua, Y. Wang, L. Mou, Y. Shi, F. Xu, & R. Bamler
Deep Learning Meets SAR: Concepts, Models, Pitfalls, and Perspectives,
IEEE Geoscience and Remote Sensing Magazine

[Fracastoro et al. 2020] G. Fracastoro, E. Magli, G. Poggi, G. Scarpa, D. Valsesia, & L. Verdoliva
Deep learning methods for SAR image despeckling: trends and perspectives,
ArXiV preprint

[Rasti et al. 2021] B. Rasti, Y. Chang, E. Dalsasso, L. Denis, & P. Ghamisi
Image Restoration for Remote Sensing: Overview and Toolbox,
to appear in IEEE Geoscience and Remote Sensing Magazine, preprint ArXiV available
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Further reading

References to the methods illustrated in the presentation:

Patch-based methods:

[Deledalle et al. 2009] C. Deledalle, L. Denis & F. Tupin
Iterative weighted maximum likelihood denoising with probabilistic patch-based weights,
IEEE trans. on Image Processing, 2009.
code: https://www.charles-deledalle.fr/pages/ppb.php

[Deledalle et al. 2015] C. Deledalle, L. Denis, F. Tupin, MA. Reigber & M. Jäger,
NL-SAR: A unified nonlocal framework for resolution-preserving (Pol)(In) SAR denoising,
IEEE trans. on Geoscience and Remote Sensing, 2015.
code: https://www.charles-deledalle.fr/pages/nlsar.php

Total variation minimization:

[Bioucas-Dias et al. 2010] J. M. Bioucas-Dias, M. A. Figueiredo,
Multiplicative noise removal using variable splitting and constrained optimization,
IEEE trans. on Image Processing, 2010.

Plug-in ADMM:

[Deledalle et al. 2017] C. Deledalle, L. Denis, S. Tabti & F. Tupin
MuLoG, or how to apply Gaussian denoisers to multi-channel SAR speckle reduction?,
IEEE trans. on Image Processing, 2017.
code: https://www.charles-deledalle.fr/pages/mulog.php
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Further reading

References to the methods illustrated in the presentation (continued):

Deep learning techniques:

[Dalsasso et al. 2020] E. Dalsasso, L. Denis & F. Tupin
SAR Image Despeckling by Deep Neural Networks: from a pre-trained model to an end-to-end training strategy,
Remote Sensing, 2020.
code: https://gitlab.telecom-paris.fr/ring/SAR-CNN

[Dalsasso et al. 2021a] E. Dalsasso, L. Denis & F. Tupin
SAR2SAR: A Semi-Supervised Despeckling Algorithm for SAR Images,
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020.
code: https://gitlab.telecom-paris.fr/ring/sar2sar

[Molini et al. 2021] A. Molini, D. Valsesia, G. Fracastoro, & E. Magli
Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot Convolutional Neural Networks,
IEEE trans. on Geoscience and Remote Sensing, 2021.
code: https://github.com/diegovalsesia/speckle2void

[Dalsasso et al. 2021b] E. Dalsasso, L. Denis & F. Tupin
As if by magic: self-supervised training of deep despeckling networks with MERLIN,
IEEE trans. on Geoscience and Remote Sensing, to appear.
code: https://gitlab.telecom-paris.fr/ring/MERLIN
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