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Network model

Network analysis has become an important research field driven by
applications in social sciences, computer sciences, statistical physics,
biology,. . .

East-river trophic network [Yoon et al.(04)]

Approach

The modeling of real
networks as random graphs.

Model-based statistical
analysis.
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Graph Notations

A (simple, undirected graph) G = (E ,V) consists of

a set of vertices V = {1, . . . n}
a set of edges E ⊂ {{i, j} : i, j ∈ V and i 6= j}

2

3

4
5

1

A =


0 1 0 0 1
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0


The corresponding adjacency matrix is denoted A = (Ai,j) ∈ {0, 1}n×n,
where Ai,j = 1⇔ (i, j) ∈ E

Olga Klopp (ESSEC & CREST) Change point detection 3 / 30



Graph Notations

A (simple, undirected graph) G = (E ,V) consists of

a set of vertices V = {1, . . . n}
a set of edges E ⊂ {{i, j} : i, j ∈ V and i 6= j}

2

3

4
5

1

A =


0 1 0 0 1
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0


The corresponding adjacency matrix is denoted A = (Ai,j) ∈ {0, 1}n×n,
where Ai,j = 1⇔ (i, j) ∈ E

Olga Klopp (ESSEC & CREST) Change point detection 3 / 30



Network Model

Our observations: the adjacency A = (Aij)

Aij independent Bernoulli random variables with probability of
connection

Θij = P(Aij = 1), 1 ≤ j < i ≤ n.

Θ n× n symmetric matrix with the coefficients Θij for
1 ≤ j < i ≤ n and zeros on the diagonal.

Inhomogeneous random graph model
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Dynamic networks

Most of the real-life networks evolve over the time

We observe a sequence of sparse graphs:

A1,A2, . . .

Each At = independent realization from an unknown
inhomogeneous random graph model

The underlying distribution of this sequence of graphs may change at
some unknown time moment

Problem of detection of possible changes in a time sequence of
networks

I intrusion detection
I health care monitoring
I fraud detection

Change Point Detection and Localization
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Modeling dynamic networks

”Signal + Noise” model of the observed data At:

At = Θt + Wt (1 ≤ t ≤ T ),

The connection probability matrix Θt might change at an unknown
time 1 ≤ τ ≤ T − 1:

Θt = Θ01{1≤t≤τ} + (Θ0 + ∆Θτ )1{τ+1≤t≤T} (t = 1, . . . , T ).

I Θ0 the connection probability matrix before the change

I ∆Θτ symmetric jump matrix of a change that occurs at time τ .
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Change point Detection/Estimation in Dynamic Networks

Detection:

I Chen et al (2019)

I Wang et al (2021)
I . . .

Localization:

I Bhattacharjee et al (2018)

I Wang et al (2021)
I . . .

Two-Sample Testing:

I Tang et al (2015)

I Ghoshdastidar et al (2020)

I . . .
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Test problem

We would like to test whether there is no change in Θt :

H0 : ∆Θτ = 0 for all τ

against the alternative hypothesis of a change in Θt at some point τ

H1 : ‖∆Θτ‖ ≥ ρn for some τ.

ρn > 0 is the minimal value of the jump that guarantees the
change-point detection
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Partial answer

Problem of the minimax distinguishability of hypotheses

Ghoshdastidar et al (2020) (two sample test)

I Spectral and Frobenius norm

I Known τ

I Additional log(n) factor

Wang et al (2021) (localization)

I Frobenius norm

I up to a log factor

I upper bound for a two-sample procedure
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Sparsity

Main integral characteristics

number of vertices n

number of edges |E|

Maximal number of edges

n(n− 1)

2

Dense graph |E| ∼ n2

Real world networks are sparse : |E| = o(n2)

I more difficult to handle
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Modeling sparsity

Θt
ij → 0 as n→∞ for some (or all) (i, j)

Usual assumption: rn = max
t
‖Θt‖∞ and rn → 0 as n→∞

Sparsity: κn = max
t
‖Θt‖1,∞ = max

t,j

∑
i Θij :

I κn/n→ 0 as n→∞

I κn ≤ rnn

I more flexible

I can be easily estimated!
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Energy of the change point

Difficulty of assessing the existence of a change-point: energy

E(τ) = q(τ/T)‖∆Θτ‖2→2

q(t) =
√
t(1− t): quantifies the impact of change-point location on

the difficulty of detecting the change

Problem of testing whether the energy is zero or is at least ρn > 0:

H0 : E(τ) = 0 for all τ

against the alternative hypothesis of a change in Θt:

H1 : E(τ) ≥ ρn > 0 for some τ
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Minimax detection rate

Energy : E(τ) = q(τ/T )‖∆Θτ‖2→2

H0 : E(τ) = 0 for all τ against the alternative hypothesis

H1 : E(τ) ≥ ρn > 0 for some τ

Goal

Find the minimal amount of energy that guarantees
the change-point detection
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Minimax detection rate

Energy : E(τ) = q(τ/T )‖∆Θτ‖2→2

H0 : E(τ) = 0 for all τ vs H1 : E(τ) ≥ ρn > 0 for some τ

Detection threshold (up to log factors)(κn
T

)1/2

κn = max
t
‖Θt‖1,∞: sparsity

T time points

Lower and upper bound:
I if the energy of the change point is smaller ⇒ we can not distinguish

between these two hypothesis.
I a test which satisfies the upper detection condition
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Matrix CUSUM statistic

ZT (t) =

√
t(T − t)

T

(
1

t

t∑
s=1

As − 1

T − t

T∑
s=t+1

As

)

Measures of the difference between the average number of
connections before and after the point t

A change of the parameter matrix Θt at time τ ⇒ the value of the
process ZT will be maximal in the neighborhood of τ

If ‖ZT (t)‖ is sufficiently large at some point t ⇒ there is a change
in the connection matrix Θt of the network

In what norm?
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Matrix CUSUM statistic

ZT (t) =

√
t(T − t)

T

(
1

t

t∑
s=1

As − 1

T − t

T∑
s=t+1

As

)

”signal +noise” model

ZT (t) = −µT (t)∆Θτ + ξ(t), t = 1, . . . , T − 1,

I µT (t) =
√

t(T−t)
T

(
(τ/t)1{τ+1≤t≤T} + (T − τ)/(T − t)1{1≤t≤τ}

)
(max at the true change-point t = τ)

I centered noise

ξ(t) =

√
t(T − t)

T

(
1

t

t∑
s=1

W s − 1

T − t

T∑
s=t+1

W s

)
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In what norm?

ZT (t) = −µT (t)∆Θτ + ξ(t), t = 1, . . . , T − 1,

‖∆Θτ‖ should be larger than ‖ξ(t)‖

We need to control ‖ξ(t)‖

Matrix Hoeffding inequality:

E‖ξ(t)‖2→2 ≤ 3
√

2
(√

1− t/T +
√
t/T

)
(κn)1/2

Can not work with Frobenius norm as in sparse regime: assuming
Θt
ij ≈ rn → 0

E‖ξ(t)‖22
n2

≈ rn �
‖∆Θτ‖22
n2

≈ r2n
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Decision rule

Matrix CUSUM statistics:

ZT (t) = −µT (t)∆Θτ + ξ(t), t = 1, . . . , T − 1,

Decision rule:

ψn,T (Y ) = 1{
max
t∈T
‖ZT (t)‖2→2 > Hα,n,T

},
T = T L ∪ T R: dyadic grid of {1, . . . , T − 1} where

T L =
{

2k, k = 0, . . . , blog2(T/2)c}

T R =
{
T − 2k, k = 0, . . . , blog2(T/2)c

}
.

Olga Klopp (ESSEC & CREST) Change point detection 18 / 30



Missing Links

Real-life networks are only partially observed

Exhaustive exploration of all interactions in a network is expensive

Survey data: non-response or drop-out of participants

Online social network data: sub-sample of the network

A balanced modularity maximization link prediction model in social networks [Wu et al.(2017)]
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Missing links

Imputation methods require observations from a homogeneous
distribution

Change-point detection and estimation methods are designed for the
case of complete observations

Can we detect the change point from partial observations of our
networks?

How will missing links affect the detection rate?
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Change-point localization

An estimator of τ , τ̂n, such that |τ̂n − τ | ≤ ε with high probability

ε/T = localization rate

an estimator is consistent if, as T →∞, its localization rate vanishes

Using CUSUM statistics: τ̂n ∈ arg max1≤t≤T−1 ‖ZT (t)‖2→2

Theorem (Enikeeva and K., 2021)

Let γ ∈ (0, 1) and x∗ = τ/T . Then, the estimated change-point x̂ = τ̂ /T
satisfies

|x̂− x∗| ≤
3 c∗
√
ωn log (nT/γ)

E(τ)
√
T

with probability larger than 1− γ.

Wang et al (2021): if E(τ) ≤
√
κn√

33T
, then no consistent change-point

estimator can exist.
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Numerical experiments

We applied three tests:

I test ψτn,T at the given change-point τ

I test ψn,T over the dyadic grid T d

I test ψfulln,T (Y ) based on the maximum over the whole set {1, . . . , T − 1}

Each test is calibrated at the significance level α = 0.05

The sparsity ρn is set to n−1/2

“Energy-to-noise ratio”

ENR :=
E(τ)√
κn/T

.

Olga Klopp (ESSEC & CREST) Change point detection 22 / 30



Adaptation to the unknown sparsity level
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Figure: The test powers with known and estimated sparsity parameters for
n = 100, τ/T = 0.5. Left: SBM with two communities and change in connection
probability between communities and T = 100. Right: SBM with three
communities and change in connection probability between communities and
T = 250.
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Coping with missing links
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Figure: The risk of the change-point estimator for T = 100, n = 100 and
τ = 5, 25, 50 (left to right).

We sample the links at the uniform rate pn

Average absolute error of τ̂ over N = 100 simulations:
RN (τ̂ , τ) = (NT )−1

∑N
i=1 |τ̂i − τ |

dependence of the error on the sampling rate pn and on the norm of
the jump ∆Θτ .
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Transport for London (TfL) Open Data

https://api.tfl.gov.uk

Information about London Bicycle Sharing Network collected since
2012:

I ID of each bicycle

I ID and name of the origin and the destination trip stations

I journey (rental) starting and ending time and date

I ID and the duration of each trip

Two-month period from June 24, 2012 to August 31, 2012

Games of the XXX Olympiad
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Transport for London (TfL) Open Data

Dynamic network: a sequence of T = 69 daily observations

Each observation: a graph with n = 595 vertices corresponding to the
bike rental stations

Two vertices are connected:
I minimal trip duration is not less than 3 minutes

I the number of trips is greater than a predefined threshold
F 0.9975-level empirical quantile of the distribution of the total number

of trips between every couple of stations

Average sparsity κ̄n = 43.2319 (over T = 69 observations)

The corresponding value of ρn = κn/n = 0.0727 � n−0.4
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Transport for London (TfL) Open Data
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Matrix CUSUM test statistic, June 24 - August 31, 2012

Olympic Torch Arrival

End of the Olympics

Figure: The value of the matrix CUSUM statistic calculated during the whole
period of observations. The vertical grid lines correspond to Sundays.
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Transport for London (TfL) Open Data
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Matrix CUSUM statistic, July 23 - August 22, 2012
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Figure: The value of the matrix CUSUM statistic calculated during 31 day from
July 23 to August, 22.

Segmentation methods for multiple change-point localization

Olga Klopp (ESSEC & CREST) Change point detection 28 / 30



Summary

Problem of change point detection in dynamic network:

Minimax separation rate for the energy of the change point
E(τ) = q(τ/T )‖∆Θτ‖2→2 √

κn/T

I Sparsity: κn = max
t
‖Θt‖1,∞

I Change points that are away from the end point may be detected at
lower size of jump in the parameter matrix

Test based on the spectral norm of the Matrix CUSUM statistics:

I minimax optimal

I robust to missing links

I works for networks with changing size

Localisation of the change point(s)
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Thank You !


