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Crowdsourcing
Data Science         è Large Scale Applications

competitions
(aka challenges)



Challenge’s ambition:
algorithm recommendation
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Algorithm recommendation:
a meta-learning problem

Adrian El Baz

Classical ML setup

Meta-learning setup



Challenges aim at recommending algorithms
Algorithm recommendation is a meta-learning problem
Hence challenges perform meta-learning

ML can overfit training data
Could meta-learning overfit data too?

Well, yes, of course!

Challenge organization paradox:
popular competitions may
yield worse recommendations…

Challenge organization paradox



Participants should not overfit

Organizers neither!

Challenge overfitting avoidance



Participant overfitting avoidance

PHASE 1: Development

PHASE 2: Final test 

One (or several) datasets; 
multiple submissions 

Other datasets; 
single submission



PHASE 1: Development

PHASE 2: Final test

[Training phase for the organizers]

Organizer overfitting avoidance

One (or several) 
datasets 

Other datasets



PHASE 1: Development

PHASE 2: Final test

[Training phase for the organizers]

POST CHALLENGE 

[Test phase for the organizers]

Organizer overfitting avoidance

One (or several) 
datasets 

Other datasets

Yet other 
datasets

Regularization?



Top-k algorithm

Select the top-k participants in the development phase [Prior]
[Tom Jerry Titi Grosminet Laurel Hardy]

Select the winner in the final phase in this subset [Meta-training]
[Laurel Jerry Grosminet Tom Titi Hardy]

A Meta-Analysis of Overfitting in Machine Learning. Rebecca Roelofs et al. NeurIPS 2019 

Check winner performance w. post-challenge data [Meta-test]

Questions: 
• Do we get better (meta-)generalization?
• Is there an optimal value of k?



Meta-generalization
with top-k algorithm

OPEN-ML
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Top-k does not always work
OPEN-ML AUTODL

StatLog AutoML

k k



• Ideal “true” ranking: 1        2        3        4        5        6    …    n

• Choose 1 position at random in 1:n-1, and swap i and i+1.

• Repeat N time

Synthetic data generation

Generate D, F and P this way:

D => prior
F => (meta-)training
P => (meta-)test



Synthetic data results

k k
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• Ideal “true” ranking: 1        2        3        4        5        6    …    n

• Development phase:  1       2       4 3        5        6    …  n

Theoretical setting

D(3)=4



Optimal k value



Experimental validation: k*

Theory for small 𝜙 𝜙 in 0, .1, .2, .4, .8, 1.6, 3.2, 6.4, 12.8
k* ≈ round( 1 - 1/ln(𝜙) ) n in 10, 20, 40, 80, 160

k* does not depend on n, it depends on 𝜙

k*=1

k*=2



Discussion
Organizers of challenges perform “meta-learning” to select winning algorithm.

Problem: They may overfit algorithm selection in the final phase.

Solution: Prior on participant ranking (top-k method). 

This is also computationally advantageous.

But: Is using the development phase as a “prior” dangerous?

No if we assume the participants do not overfit the development phase. 

But, if we use it to rank them: they have an incentive to do so!
E.g. cheating with multiple accounts, making many submissions.

In practice: Check teams, limit submission, select participants above baseline.



Conclusion

We presented the top-k method to alleviate overfitting in challenge winner selection.

• Main result: 
• 𝜙 = N/n
• With current assumptions: n >> 1 and 𝜙 << 1
• k* (𝜙, #participant)
• k* ~ 1 – 1/ln𝜙

• In practice:
• k* predicted very small: this may encourage dev phase overfitting or cheating. 
• Just keep participants outperforming the baseline in development phase.

• Further work: 
• 3-best selection (instead of winner).
• Handling ranking with ties.
• Selecting optimal k with meta-CV.
• Other ways of regularizing winner selection.
• Other ways of combining results of various phases.



http://guyon.chalearn.org/projects/humania
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