
Machine Learning Competitions:
a Meta-Learning Perspective

Isabelle Guyon
Adrien Pavao & Zhengying Liu

UPSaclay / INRIA

Applications:
Templates

Data:
Experimental

design

Solutions:
AutoML

Crowdsourcing
Data Science è Large Scale Applications

competitions
(aka challenges)

Challenge’s ambition:
algorithm recommendation

N
um

be
r o

f A
I-r

el
at

ed
 p

ub
lic

at
io

ns

Year

1990 2005 NOW

Challenge eraIntensive reading Exponential
growth

Algorithm recommendation:
a meta-learning problem

Adrian El Baz

Classical ML setup

Meta-learning setup

Challenges aim at recommending algorithms
Algorithm recommendation is a meta-learning problem
Hence challenges perform meta-learning

ML can overfit training data
Could meta-learning overfit data too?

Well, yes, of course!

Challenge organization paradox:
popular competitions may
yield worse recommendations…

Challenge organization paradox

Participants should not overfit

Organizers neither!

Challenge overfitting avoidance

Participant overfitting avoidance

PHASE 1: Development

PHASE 2: Final test

One (or several) datasets;
multiple submissions

Other datasets;
single submission

PHASE 1: Development

PHASE 2: Final test

[Training phase for the organizers]

Organizer overfitting avoidance

One (or several)
datasets

Other datasets

PHASE 1: Development

PHASE 2: Final test

[Training phase for the organizers]

POST CHALLENGE

[Test phase for the organizers]

Organizer overfitting avoidance

One (or several)
datasets

Other datasets

Yet other
datasets

Regularization?

Top-k algorithm

Select the top-k participants in the development phase [Prior]
[Tom Jerry Titi Grosminet Laurel Hardy]

Select the winner in the final phase in this subset [Meta-training]
[Laurel Jerry Grosminet Tom Titi Hardy]

A Meta-Analysis of Overfitting in Machine Learning. Rebecca Roelofs et al. NeurIPS 2019

Check winner performance w. post-challenge data [Meta-test]

Questions:
• Do we get better (meta-)generalization?
• Is there an optimal value of k?

Meta-generalization
with top-k algorithm

OPEN-ML

k

D
ATASETS

ALGORITHMS

DEV SET [PRIOR}

FINAL SET [META-TRAIN]

POST-CHALLENGE [META-TEST]

D
ATASETS

ALGORITHMS

Top-k does not always work
OPEN-ML AUTODL

StatLog AutoML

k k

• Ideal “true” ranking: 1 2 3 4 5 6 … n

• Choose 1 position at random in 1:n-1, and swap i and i+1.

• Repeat N time

Synthetic data generation

Generate D, F and P this way:

D => prior
F => (meta-)training
P => (meta-)test

Synthetic data results

k k

N=20 N=40

N=80 N=180

• Ideal “true” ranking: 1 2 3 4 5 6 … n

• Development phase: 1 2 4 3 5 6 … n

Theoretical setting

D(3)=4

Optimal k value

Experimental validation: k*

Theory for small 𝜙 𝜙 in 0, .1, .2, .4, .8, 1.6, 3.2, 6.4, 12.8
k* ≈ round(1 - 1/ln(𝜙)) n in 10, 20, 40, 80, 160

k* does not depend on n, it depends on 𝜙

k*=1

k*=2

Discussion
Organizers of challenges perform “meta-learning” to select winning algorithm.

Problem: They may overfit algorithm selection in the final phase.

Solution: Prior on participant ranking (top-k method).

This is also computationally advantageous.

But: Is using the development phase as a “prior” dangerous?

No if we assume the participants do not overfit the development phase.

But, if we use it to rank them: they have an incentive to do so!
E.g. cheating with multiple accounts, making many submissions.

In practice: Check teams, limit submission, select participants above baseline.

Conclusion

We presented the top-k method to alleviate overfitting in challenge winner selection.

• Main result:
• 𝜙 = N/n
• With current assumptions: n >> 1 and 𝜙 << 1
• k* (𝜙, #participant)
• k* ~ 1 – 1/ln𝜙

• In practice:
• k* predicted very small: this may encourage dev phase overfitting or cheating.
• Just keep participants outperforming the baseline in development phase.

• Further work:
• 3-best selection (instead of winner).
• Handling ranking with ties.
• Selecting optimal k with meta-CV.
• Other ways of regularizing winner selection.
• Other ways of combining results of various phases.

http://guyon.chalearn.org/projects/humania

Applications:
Templates

Data:
Experimental

design

Solutions:
AutoML

http://guyon.chalearn.org/projects/humania

