Machine Learning Competitions:

a Meta-Learning Perspective
Isabelle Guyon ~

S

T .

Adrien Pavao & Zhengying Liu A |
UPSaclay / INRIA B

N PARIS
universite ﬁk REGION

PARIS-SACLAY

: 4 DASSAULT

AT/ ONW

A s r.'»'] 4Parad
Crowdsourcing AUTODL Bkl
Data Science =» Large Scale Applications

Challenge’s ambition:
algorithm recommendation

(72}

C
9

®
9
Q

-}

aQ

o

2

C_U 0000000

o

<
Y 100000 7

)

@

o

E 5000

3

pd

1990 2005 NOW
Intensive reading SImEmiE] Challenge era
growth

Year

Algorithm recommendation:
a meta-learning problem

Classical ML setup

Train
A dataset

Meta-learning setup

CLIRCT)
Cr)

Meta-train datasets Meta-test datasets

/[)

8

Adrian El Baz

Challenge organization paradox

Challenges aim at recommending algorithms
Algorithm recommendation is a meta-learning problem
Hence challenges perform meta-learning

ML can overfit training data
Could meta-learning overfit data too?

Well, yes, of course!
Challenge organization paradox:

popular competitions may
yield worse recommendations...

Challenge overfitting avoidance

Participants should not overfit

Organizers neither!

Participant overfitting avoidance

PHASE 1: Development[el

D

J

D

J

PHASE 2: Final test {Tram

D

J

D

J

One (or several) datasets;
multiple submissions

Other datasets;
single submission

Organizer overfitting avoidance

N N
PHASE 1: Development[R~ [Traln

< <
PHASE 2: Final test [Trai [Trai

) Y

[Training phase for the organizers]

Organizer overfitting avoidance

))

One (or several)

PHASE 1: Development[el
J/ datasets
[Train

PHASE 2: Final test {Tram

[Training phase for the organizers]

POST CHALLENGE [][] Yot other

datasets

J
\

D

Other datasets

J J

[Test phase for the organizers]

Regularization?

Top-k algorithm

Select the top-k participants in the development phase [Prior]
[Tom Jerry Titi Grosminet Laurel Hardy]

Select the winner in the final phase in this subset [Meta-training]
[Laurel Jerry Grosminet Tom Titi Hardy]

=

Check winner performance w. post-challenge data [Meta-test]

Questions:
* Do we get better (meta-)generalization?
* |s there an optimal value of k?

A Meta-Analysis of Overfitting in Machine Learning. Rebecca Roelofs et al. NeurlPS 2019

Meta-generalization
with top-k algorithm

OPEN-ML

S13svivd

— Meta-training error
—— (Generalization gap
—— Meta-test error

ALGORITHMS

DEV SET [PRIOR}

S13svivd

ALGORITHMS

Top-k does not always work

OPEN-ML ' AUTODL
150 4
3
100 —— Meta-training error —— Meta-training error
—— Generalization gap —— Generalization gap
—— Meta-test error 2 —— Meta-test error
50
1
0 0
0 50 100 150 200 250 300 5 10 15 20
12 StatLog AutoML
10 5
8 4
—— Meta-training error —— Meta-training error
6 ——— Generalization gap 3 —— (Generalization gap
—— Meta-test error —— Meta-test error
4 2
2 1
0 0
0 5 10 15 20 25

Synthetic data generation

Ideal “true” ranking: 1 2 34 5 6 ... n
Choose 1 position at random in 1:n-1, and swap i and i+1.

Repeat N time

Generate D, F and P this way:

D => prior
F => (meta-)training
P => (meta-)test

Synthetic data results

12

1.0

0.8

0.6

04

0.2

0.0

3.0

25

2.0

1.5

1.0

0.5

0.0

—— Meta-training error

—— Generalization gap
—— Meta-test error

10 15 20

N=80

—— Meta-training error
——— Generalization gap

—— Meta-test error

.00

75

.50

.25

.00

175

.50

1.25

N w ~

Avelayge eriul vl Hidl priase wiiinei
-

—— Meta-training error
—— Generalization gap
—— Meta-test error

—— Meta-training error
—— Generalization gap
—— Meta-test error

Theoretical setting

|deal “true” ranking: 1 2 304 5 6 ... n
Development phase: 1 2 4 3 3 6 ... n
D(3)=4
D(j) =1
D™(i) =

o . .
(—argD_r?(lz_r)lSkF (7).

P(k) = Prob in F'(i)=1
(k) = Probalarg .. (¢) = 1]

k™ = arg max P(k)

Optimal k value

n>1and N € n:

Plk=1)=Plk=n)&l=0

p=",
P(k) = Proba[argD_r{rl(i_1;1<lc F~1(i))=1| D '(1) < k] Proba[D~}(1) < k]
\ _ J \ l
' 3 | ! k
P(1) (1= (20)%) + 5 (20)" 1=¢
dP(k)
dk 0

Approximated k*

Experimental validation: k*

Theory for small ¢ ¢in0, .1, .2, .4, .8,16,3.2,64,12.8
k* = round(1 - 1/In(¢)) nin 10, 20, 40, 80, 160
k* does not depend on n, it depends on ¢
24 4 5.0 1 @
274 45 1
40 1
20 1
% 35 - @
18 c
k*=2 2 301 o
16 = 55 .
14 20{ @ B s o
12 k*=1 15 1
10 10 A
0.0 0.1 02 03 04 05 10-1 10° 10°

Discussion

Organizers of challenges perform “meta-learning” to select winning algorithm.
Problem: They may overfit algorithm selection in the final phase.
Solution: Prior on participant ranking (top-k method).
This is also computationally advantageous.
But: Is using the development phase as a “prior” dangerous?
No if we assume the participants do not overfit the development phase.

But, if we use it to rank them: they have an incentive to do so!
E.g. cheating with multiple accounts, making many submissions.

In practice: Check teams, limit submission, select participants above baseline.

Conclusion

We presented the top-k method to alleviate overfitting in challenge winner selection.

Main resulit:
¢ = N/n
With current assumptions: n >> 1 and ¢ << 1
K* (¢, #participant)
k*~1—-1/Ing

In practice:
k* predicted very small: this may encourage dev phase overfitting or cheating.
Just keep participants outperforming the baseline in development phase.

Further work:
3-best selection (instead of winner).
Handling ranking with ties.
Selecting optimal k with meta-CV.
Other ways of regularizing winner selection.
Other ways of combining results of various phases.

HUMANIA

n 4I.|~_ g

http://quyon.chalearn.org/projects/humania

http://guyon.chalearn.org/projects/humania

