

Machine Learning Competitions: a Meta-Learning Perspective

Isabelle Guyon Adrien Pavao & Zhengying Liu UPSaclay / INRIA

CodaLab competitions (aka challenges)

Large Scale Applications

Challenge's ambition: algorithm recommendation

Algorithm recommendation: a meta-learning problem

Classical ML setup

Meta-learning setup

Challenge organization paradox

Challenges aim at recommending algorithms
Algorithm recommendation is a meta-learning problem
Hence challenges perform meta-learning

ML can overfit training data

Could meta-learning overfit data too?

Well, yes, of course!

Challenge organization paradox: popular competitions may yield worse recommendations...

Challenge overfitting avoidance

Participants should not overfit

Organizers neither!

Participant overfitting avoidance

PHASE 1: Development

Train

Test

One (or several) datasets; multiple submissions

PHASE 2: Final test

Other datasets; single submission

Organizer overfitting avoidance

[Training phase for the organizers]

Organizer overfitting avoidance

POST CHALLENGE

[Test phase for the organizers]

Regularization?

Top-k algorithm

Select the top-k participants in the development phase [Prior] [Tom Jerry Titi Grosminet Laurel Hardy]

Select the winner in the final phase in this subset [Meta-training] [Laurel Jerry Grosminet Tom Titi Hardy]

Check winner performance w. post-challenge data [Meta-test]

Questions:

- Do we get better (meta-)generalization?
- Is there an optimal value of k?

Meta-generalization with top-k algorithm

ALGORITHMS

DEV SET [PRIOR]

FINAL SET [META-TRAIN]

POST-CHALLENGE [META-TEST]

DATASETS

ALGORITHMS

Top-k does not always work

Synthetic data generation

- Ideal "true" ranking: 1 2 3 4 5 6 ... n
- Choose 1 position at random in 1:n-1, and swap i and i+1.
- Repeat N time

Generate D, F and P this way:

Synthetic data results

Theoretical setting

Ideal "true" ranking: 1 2 3 4 5 6 ... n

Development phase: 1 2 4 3 5 6 ... n

$$D(j) = i$$
$$D^{-1}(i) = j$$

$$i^* = \arg\min_{D^{-1}(i) \le k} F^{-1}(i)$$

$$P(k) = \texttt{Proba}[\arg\min_{D^{-1}(i) \leq k} F^{-1}(i) = 1]$$

$$k^* = \arg\max_k P(k)$$

Optimal k value

 $n \gg 1$ and $N \ll n$:

$$P(k=1) = P(k=n) \simeq 1 - \phi$$

$$\phi = \frac{N}{n},$$

$$P(k) = \texttt{Proba}[\arg\min_{D^{-1}(i) \leq k} F^{-1}(i) = 1 \mid D^{-1}(1) \leq k] \ \texttt{Proba}[D^{-1}(1) \leq k]$$

$$P(1) (1 - (2\phi)^k) + \frac{3}{2k} (2\phi)^k$$

$$\frac{dP(k)}{dk} = 0$$

$$k^* \simeq 1 - \frac{1}{\ln \phi}$$

 $1 - \phi^k$

Experimental validation: k*

Theory for small ϕ k* \approx round(1 - $1/\ln(\phi)$)

 ϕ in 0, .1, .2, .4, .8, 1.6, 3.2, 6.4, 12.8 n in 10, 20, 40, 80, 160 k* does not depend on n, it depends on ϕ

Discussion

Organizers of challenges perform "meta-learning" to select winning algorithm.

Problem: They may overfit algorithm selection in the final phase.

Solution: Prior on participant ranking (top-k method).

This is also computationally advantageous.

But: Is using the development phase as a "prior" dangerous?

No if we assume the participants do not overfit the development phase.

But, if we use it to rank them: they have an incentive to do so! E.g. cheating with multiple accounts, making many submissions.

In practice: Check teams, limit submission, select participants above baseline.

Conclusion

We presented the top-k method to alleviate overfitting in challenge winner selection.

• Main result:

- $\phi = N/n$
- With current assumptions: n >> 1 and ϕ << 1
- k* (φ, #participant)
- $k^* \sim 1 1/\ln \phi$

In practice:

- k* predicted very small: this may encourage dev phase overfitting or cheating.
- Just keep participants outperforming the baseline in development phase.

Further work:

- 3-best selection (instead of winner).
- Handling ranking with ties.
- Selecting optimal k with meta-CV.
- Other ways of regularizing winner selection.
- Other ways of combining results of various phases.

HUMANIA

http://guyon.chalearn.org/projects/humania

