Bi-level optimization in Machine Learning

Thomas Moreau INRIA Saclay

Machine Learning

A classical Machine Learning Pipeline:

- Get some data X and supervised task y,

Machine Learning

A classical Machine Learning Pipeline:

- Get some data X and supervised task y,
- Select a class of model $f(\cdot ; \theta, \lambda)$ to solve the task,

Machine Learning

A classical Machine Learning Pipeline:

- Get some data X and supervised task y,
- Select a class of model $f(\cdot ; \theta, \lambda)$ to solve the task,
- Split the data between a training set $X_{t r}, y_{t r}$ and a validation set $X_{\text {val }}, y_{\text {val }}($ multiple time for $C V$),

Machine Learning

A classical Machine Learning Pipeline:

- Get some data X and supervised task y,
- Select a class of model $f(\cdot ; \theta, \lambda)$ to solve the task,
- Split the data between a training set $X_{t r}, y_{t r}$ and a validation set $X_{\text {val }}, y_{\text {val }}$ (multiple time for CV),
- Train the model on $X_{t r}, y_{t r}$ to find the best model parameters θ^{*}

$$
\theta^{*}(\lambda)=\underset{\theta}{\operatorname{argmin}} G(\lambda, \theta)=\frac{1}{M} \sum_{i=1}^{M} \ell\left(f\left(X_{t r, i}, \theta, \lambda\right), y_{t r, i}\right)
$$

Machine Learning

A classical Machine Learning Pipeline:

- Get some data X and supervised task y,
- Select a class of model $f(\cdot ; \theta, \lambda)$ to solve the task,
- Split the data between a training set $X_{t r}, y_{t r}$ and a validation set $X_{\text {val }}, y_{\text {val }}$ (multiple time for CV),
- Train the model on $X_{t r}, y_{t r}$ to find the best model parameters θ^{*}

$$
\theta^{*}(\lambda)=\underset{\theta}{\operatorname{argmin}} G(\lambda, \theta)=\frac{1}{M} \sum_{i=1}^{M} \ell\left(f\left(X_{t r, i}, \theta, \lambda\right), y_{t r, i}\right),
$$

- Evaluate the performances on $X_{v a l}, y_{v a l}$ with accuracy:

$$
F(\lambda, \theta)=\frac{1}{N} \sum_{j=1}^{N} \tilde{\ell}\left(f\left(X_{v a l, j} ; \theta^{*}, \lambda\right), y_{v a l, j}\right)
$$

Machine Learning

A classical Machine Learning Pipeline:

- Get some data X and supervised task y,
- Select a class of model $f(\cdot ; \theta, \lambda)$ to solve the task,
- Split the data between a training set $X_{t r}, y_{t r}$ and a validation set $X_{\text {val }}, y_{\text {val }}(m u l t i p l e ~ t i m e ~ f o r ~ C V), ~$
- Train the model on $X_{t r}, y_{t r}$ to find the best model parameters θ^{*}

$$
\theta^{*}(\lambda)=\underset{\theta}{\operatorname{argmin}} G(\lambda, \theta)=\frac{1}{M} \sum_{i=1}^{M} \ell\left(f\left(X_{t r, i}, \theta, \lambda\right), y_{t r, i}\right)
$$

- Evaluate the performances on $X_{v a l}, y_{v a l}$ with accuracy:

$$
F(\lambda, \theta)=\frac{1}{N} \sum_{j=1}^{N} \tilde{\ell}\left(f\left(X_{v a l, j} ; \theta^{*}, \lambda\right), y_{v a l, j}\right)
$$

\Rightarrow The $1000000 €$ question: How to select $\lambda, f, X_{t r}, \ldots$?

Hyper-parameter selection λ : the Grid Search

Idea: try many parameters and keep the best one according to the validation loss.

Hyper-parameter selection λ : the Grid Search

Idea: try many parameters and keep the best one according to the validation loss.

- Select a grid of hyper-parameters $\left\{\lambda_{1}, \ldots, \lambda_{K}\right\}$,
- For each λ_{k}, train the model the best parameters θ_{k}^{*}

$$
\theta_{k}^{*}=\underset{\theta}{\operatorname{argmin}} G\left(\lambda_{k}, \theta\right)=\frac{1}{M} \sum_{i=1}^{M} \ell\left(f\left(X_{t r, i}, \theta, \lambda\right), y_{t r, i}\right),
$$

- Select the best model performances

$$
\lambda^{*}=\underset{\lambda_{k}}{\operatorname{argmin}} F\left(\lambda_{k}, \theta_{k}^{*}\right)=\frac{1}{N} \sum_{j=1}^{N} \tilde{\ell}\left(f\left(X_{v a l, j} ; \theta_{k}^{*}, \lambda_{k}\right), y_{v a l, j}\right) .
$$

Hyper-parameter selection λ : the Grid Search

Idea: try many parameters and keep the best one according to the validation loss.

- Select a grid of hyper-parameters $\left\{\lambda_{1}, \ldots, \lambda_{K}\right\}$,
- For each λ_{k}, train the model the best parameters θ_{k}^{*}

$$
\theta_{k}^{*}=\underset{\theta}{\operatorname{argmin}} G\left(\lambda_{k}, \theta\right)=\frac{1}{M} \sum_{i=1}^{M} \ell\left(f\left(X_{t r, i}, \theta, \lambda\right), y_{t r, i}\right),
$$

- Select the best model performances

$$
\lambda^{*}=\underset{\lambda_{k}}{\operatorname{argmin}} F\left(\lambda_{k}, \theta_{k}^{*}\right)=\frac{1}{N} \sum_{j=1}^{N} \tilde{\ell}\left(f\left(X_{v a l, j} ; \theta_{k}^{*}, \lambda_{k}\right), y_{v a l, j}\right) .
$$

\Rightarrow This is a bi-level optimization problem.

Bi-level optimization

Bi-level problem: Optimization problem with two levels

Goal: Optimize the value function h whose value depends on the result of another optimization problem.
\Rightarrow Challenging to theoretically and practically.

Other bi-level optimization problems: Model selection

Selecting the best model: G is the training loss and θ are the parameters of the model. The goal is to optimize λ to get the best validation loss F,

- Hyperparameter optimization: λ are the regularisation parameters, or the number of trees, ...
[Pedregosa 2016, Lorraine et al. 2020]
- Automatic Data Augmentation: λ are the parameters of data augmentation used to train the model.
[Cubuk et al. 2019; Rommel et al. 2022]
- Neural Architecture Search: λ are the parameter of a Neural Network architecture.
[Liu et al. 2018, Zhang et al. 2021]

Other bi-level optimization problems: Representation Learning

Generative Adversarial Network: G is the discriminator loss, that classify between generated and natural samples. Then $F=-G$ and one aims to solve

$$
\max _{\lambda} G\left(\lambda, \theta^{*}\right) \quad \text { s.t. } \quad \theta^{*}=\min _{\theta} G(\lambda, \theta)
$$

Here θ are the parameter of the discriminator and λ of the generator.

Dictionary Learning: $F=G$ are the reconstruction loss and one looks for the dictionary D that minimizes
[Malezieux et al. 2022]

$$
\min _{D}\left\|X-D \theta^{*}\right\| \quad \text { s.t. } \quad \theta^{*}=\underset{\theta}{\operatorname{argmin}}\|X-D \theta\|+\lambda\|\theta\|_{1}
$$

Here, θ^{*} is a sparse representation of the input sample X.

Other bi-level optimization problems: Implicit Deep Learning

Deep Equilibrium Network: G is a fixed point equation that defines the output of a layer and F is the training loss of the network, [Bai et al. 2019]

$$
\max _{\lambda} F\left(\lambda, \theta^{*}\right) \quad \text { s.t. } \quad G(\lambda, \theta)=\theta-g(\theta, \lambda)=0
$$

These networks micmic infinite depth network as θ^{*} can be seen as applying the transfer function g infinitly many times if it is contractive.

Solving bi-level optimization

Black box methods: Take $\left\{\lambda_{k}\right\}_{k}$ and compute $\min _{k} h\left(\lambda_{k}\right)$

- Grid-Search \quad Random-Search \downarrow Bayesian-Optimization

Solving bi-level optimization

Black box methods: Take $\left\{\lambda_{k}\right\}_{k}$ and compute $\min _{k} h\left(\lambda_{k}\right)$

- Grid-Search \downarrow Random-Search Bayesian-Optimization

First order methods: Compute the gradient of h

$$
\lambda^{t+1}=\lambda^{t}-\rho^{t} \underbrace{\frac{\partial F\left(\lambda, \theta^{*}(\lambda)\right)}{\partial \lambda}}_{\nabla h(\lambda)}
$$

Solving bi-level optimization

Black box methods: Take $\left\{\lambda_{k}\right\}_{k}$ and compute $\min _{k} h\left(\lambda_{k}\right)$
\rightarrow Grid-Search \downarrow Random-Search \downarrow Bayesian-Optimization

First order methods: Compute the gradient of h

$$
\lambda^{t+1}=\lambda^{t}-\rho^{t} \underbrace{\frac{\partial F\left(\lambda, \theta^{*}(\lambda)\right)}{\partial \lambda}}_{\nabla h(\lambda)}
$$

- Can we compute the gradient of h ?
- Do we need to compute $\theta^{*}(\lambda)$?
- How to efficiently approximate $\nabla h(\lambda)$?

Implicit Gradient

Computing the gradient of the value function h

References

- Pedregosa, F. (2016). Hyperparameter optimization with approximate gradient. In International Conference on Machine Learning (ICML), pages 737-746, New-York, NY, USA
- Lorraine, J., Vicol, P., and Duvenaud, D. (2020). Optimizing millions of hyperparameters by implicit differentiation. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 1540-1552. PMLR
- Ramzi, Z., Mannel, F., Bai, S., Starck, J.-L., Ciuciu, P., and Moreau, T. (2022). SHINE: SHaring the INverse Estimate from the forward pass for bi-level optimization and implicit models. In International Conference on Learning Representations (ICLR), online

Value Function's Gradient

First order methods on h needs to compute the gradient of h.
Chain rule:

$$
\nabla_{\lambda} h(\lambda)=\frac{\partial F}{\partial \lambda}\left(\lambda, \theta^{*}(\lambda)\right)+\frac{\partial F}{\partial \theta}\left(\lambda, \theta^{*}(\lambda)\right) \frac{\partial \theta^{*}}{\partial \lambda}(\lambda)
$$

Value Function's Gradient

First order methods on h needs to compute the gradient of h.

Chain rule:

$$
\nabla_{\lambda} h(\lambda)=\frac{\partial F}{\partial \lambda}\left(\lambda, \theta^{*}(\lambda)\right)+\frac{\partial F}{\partial \theta}\left(\lambda, \theta^{*}(\lambda)\right) \frac{\partial \theta^{*}}{\partial \lambda}(\lambda)
$$

Implicit function Theorem: $\theta^{*}(\lambda)$ verifies the KKT $\frac{\partial G}{\partial \theta}\left(\lambda, \theta^{*}(\lambda)\right)=0$,

$$
\begin{aligned}
& \frac{\partial^{2} G}{\partial \theta^{2}}\left(\lambda, \theta^{*}(\lambda)\right) \frac{\partial \theta^{*}}{\partial \lambda}(\lambda)+\frac{\partial^{2} G}{\partial \theta \partial \lambda}\left(\lambda, \theta^{*}(\lambda)\right)=0 \\
& \frac{\partial \theta^{*}}{\partial \lambda}(\lambda)=-{\frac{\partial^{2} G}{\partial \theta^{2}}}^{-1}\left(\lambda, \theta^{*}(\lambda)\right) \frac{\partial^{2} G}{\partial \theta \partial \lambda}\left(\lambda, \theta^{*}(\lambda)\right)
\end{aligned}
$$

Value Function's Gradient

First order methods on h needs to compute the gradient of h.
Chain rule:

$$
\nabla_{\lambda} h(\lambda)=\frac{\partial F}{\partial \lambda}\left(\lambda, \theta^{*}(\lambda)\right)+\frac{\partial F}{\partial \theta}\left(\lambda, \theta^{*}(\lambda)\right) \frac{\partial \theta^{*}}{\partial \lambda}(\lambda)
$$

Implicit function Theorem: $\theta^{*}(\lambda)$ verifies the KKT $\frac{\partial G}{\partial \theta}\left(\lambda, \theta^{*}(\lambda)\right)=0$,

$$
\begin{gathered}
\frac{\partial^{2} G}{\partial \theta^{2}}\left(\lambda, \theta^{*}(\lambda)\right) \frac{\partial \theta^{*}}{\partial \lambda}(\lambda)+\frac{\partial^{2} G}{\partial \theta \partial \lambda}\left(\lambda, \theta^{*}(\lambda)\right)=0 \\
\frac{\partial \theta^{*}}{\partial \lambda}(\lambda)=-\frac{\partial^{2} G^{-1}}{\partial \theta^{2}}\left(\lambda, \theta^{*}(\lambda)\right) \frac{\partial^{2} G}{\partial \theta \partial \lambda}\left(\lambda, \theta^{*}(\lambda)\right) \\
\nabla_{\lambda} h(\lambda)=\frac{\partial F}{\partial \lambda}\left(\lambda, \theta^{*}(\lambda)\right)-\frac{\partial F}{\partial \theta}\left(\lambda, \theta^{*}(\lambda)\right) \frac{\partial^{2} G^{-1}}{\partial \theta^{2}}\left(\lambda, \theta^{*}(\lambda)\right) \frac{\partial^{2} G}{\partial \theta \partial \lambda}\left(\lambda, \theta^{*}(\lambda)\right)
\end{gathered}
$$

$$
\Rightarrow \text { Need to compute } \theta^{*}(\lambda) \text { and an inverse hvp. }
$$

Do we need to compute them precisely?
Idea: Approximate $\theta^{*}\left(\lambda^{t}\right)$ and $v^{*}\left(\lambda^{t}\right)=-\frac{\partial^{2} G}{\partial \theta^{2}}{ }^{-1} \frac{\partial F}{\partial \theta}\left(\lambda^{t}, \theta^{*}\left(\lambda^{t}\right)\right)$

Do we need to compute them precisely?
Idea: Approximate $\theta^{*}\left(\lambda^{t}\right)$ and $v^{*}\left(\lambda^{t}\right)=-{\frac{\partial^{2} G}{\partial \theta^{2}}}^{-1} \frac{\partial F}{\partial \theta}\left(\lambda^{t}, \theta^{*}\left(\lambda^{t}\right)\right)$

- Compute θ^{t} such that $\left\|\theta^{t}-\theta^{*}\left(\lambda^{t}\right)\right\|_{2} \leq \epsilon_{t}$,
- Compute v^{t} such that $\left\|\frac{\partial^{2} G}{\partial \theta^{2}}\left(\lambda^{t}, \theta^{t}\right) v^{t}+\frac{\partial F}{\partial \theta}\left(\lambda^{t}, \theta^{t}\right)\right\|_{2} \leq \epsilon_{t}$, L-BFGS or CG
- Compute the approximate gradient $g_{t}=\frac{\partial F}{\partial \lambda}\left(\lambda^{t}, \theta^{t}\right)+\frac{\partial^{2} G}{\partial \theta \partial \lambda}\left(\lambda^{t}, \theta^{t}\right) v^{t}$
- Update the outer variable $\lambda^{t+1}=\lambda^{t}-\rho^{t} g^{t}$

HOAG - Approximating $\theta^{*}\left(\lambda^{t}\right)$

Do we need to compute them precisely?
Idea: Approximate $\theta^{*}\left(\lambda^{t}\right)$ and $v^{*}\left(\lambda^{t}\right)=-{\frac{\partial^{2} G}{\partial \theta^{2}}}^{-1} \frac{\partial F}{\partial \theta}\left(\lambda^{t}, \theta^{*}\left(\lambda^{t}\right)\right)$

- Compute θ^{t} such that $\left\|\theta^{t}-\theta^{*}\left(\lambda^{t}\right)\right\|_{2} \leq \epsilon_{t}$,
iterative solver e.g. L-BFGS
- Compute v^{t} such that $\left\|\frac{\partial^{2} G}{\partial \theta^{2}}\left(\lambda^{t}, \theta^{t}\right) v^{t}+\frac{\partial F}{\partial \theta}\left(\lambda^{t}, \theta^{t}\right)\right\|_{2} \leq \epsilon_{t}$, L-BFGS or CG
- Compute the approximate gradient $g_{t}=\frac{\partial F}{\partial \lambda}\left(\lambda^{t}, \theta^{t}\right)+\frac{\partial^{2} G}{\partial \theta \partial \lambda}\left(\lambda^{t}, \theta^{t}\right) v^{t}$
- Update the outer variable $\lambda^{t+1}=\lambda^{t}-\rho^{t} g^{t}$

Theorem: If $\sum_{t} \epsilon_{t}<\infty$ and the step are chosen appropriatly, then the algorithm converges to a stationary point i.e.

$$
\left\|\nabla h\left(\lambda^{t}\right)\right\|_{2} \rightarrow 0
$$

Further approximation of the Inverse Hvp

Solving the linear system for $v^{*}\left(\lambda^{t}\right)$,

- Core idea is to not inverse the hessian $\frac{\partial^{2} G}{\partial \theta^{2}}\left(\lambda^{t}, \theta^{t}\right)$,

We are only interested in one direction.

- Only rely on Hessian-vector product (Hvp).

Can be computed efficiently

Proposed Methods:

- L-BFGS
- Jacobian-Free method

$$
\frac{\partial^{2} G}{\partial \theta^{2}}\left(\lambda^{t}, \theta^{t}\right) \approx I d
$$

- Conjugate Gradient
- Neumann iterations

$$
\frac{\partial^{2} G}{\partial \theta^{2}}\left(\lambda^{t}, \theta^{t}\right)^{-1} \approx \sum_{k}\left(I d-\frac{\partial^{2} G}{\partial \theta^{2}}\left(\lambda^{t}, \theta^{t}\right)\right)^{k}
$$

[Pedregosa 2016, Lorraine et al. 2020, Luketina et al. 2016]

SHINE: SHaring the INverse Estimate

Idea: reuse the approximation of the Hessian computed by L-BFGS for the inner problem.

SHINE: SHaring the INverse Estimate

Idea: reuse the approximation of the Hessian computed by L-BFGS for the inner problem.

Quasi Newton 101:

$$
\text { Solving } \operatorname{argmin}_{x} f(x)
$$

Newton Method

$$
x^{t+1}=x^{t}-\frac{\partial^{2} f}{\partial x^{2}}\left(x^{t}\right)^{-1} \frac{\partial f}{\partial x}\left(x^{t}\right)
$$

Quasi-Newton Method

$$
x^{t+1}=x^{t}-B_{t}^{-1} \frac{\partial f}{\partial x}\left(x^{t}\right)
$$

B_{n} : low-rank approx. of the Hessian. Inverse with Sherman-Morrison

SHINE: SHaring the INverse Estimate

Idea: reuse the approximation of the Hessian computed by L-BFGS for the inner problem.

Quasi Newton 101:

$$
\text { Solving } \operatorname{argmin}_{x} f(x)
$$

Newton Method

$$
x^{t+1}=x^{t}-\frac{\partial^{2} f}{\partial x^{2}}\left(x^{t}\right)^{-1} \frac{\partial f}{\partial x}\left(x^{t}\right)
$$

Quasi-Newton Method

$$
x^{t+1}=x^{t}-B_{t}^{-1} \frac{\partial f}{\partial x}\left(x^{t}\right)
$$

B_{n} : low-rank approx. of the Hessian.
Inverse with Sherman-Morrison
\Rightarrow Use B_{n}^{-1} as the inverse of the Hessian for v^{*}

SHINE - Hyper-parameter optimization

Logistic Regression with ℓ_{2}-regularisation on 2 datasets:

\Rightarrow Theoretically grounded, can be further refined, large scale experiments on DEQs.

Algorithm Unrolling

Differentiable inner problem solvers

References

- Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. (2019). Truncated Back-propagation for Bilevel Optimization. In Artificial Intelligence and Statistics (AISTAT), pages 1723-1732, Okinawa, Japan
- Ablin, P., Peyré, G., and Moreau, T. (2020). Super-efficiency of automatic differentiation for functions defined as a minimum. In International Conference on Machine Learning (ICML)
- Malézieux, B., Moreau, T., and Kowalski, M. (2022). Understanding approximate and Unrolled Dictionary Learning for Pattern Recovery. In International Conference on Learning Representations (ICLR), online

Differentiable unrolling of θ^{t}

Idea: Compute $\frac{\partial \theta^{t}}{\partial \lambda}(\lambda) \approx \frac{\partial \theta^{*}}{\partial \lambda}(\lambda)$ using automatic differentiation through an iterative algorithm.

Differentiable unrolling of θ^{t}

Idea: Compute $\frac{\partial \theta^{t}}{\partial \lambda}(\lambda) \approx \frac{\partial \theta^{*}}{\partial \lambda}(\lambda)$ using automatic differentiation through an iterative algorithm.

For the gradient descent algorithm:

$$
\theta^{t+1}=\theta^{t}-\rho \frac{\partial G}{\partial \theta}\left(\lambda, \theta^{t}\right)
$$

The Jacobian reads,

$$
\frac{\partial \theta^{t+1}}{\partial \lambda}(\lambda)=\left(I d-\rho \frac{\partial^{2} G}{\partial \theta^{2}}\left(\lambda, \theta^{t}\right)\right) \frac{\partial \theta^{t}}{\partial \lambda}(\lambda)-\rho \frac{\partial^{2} G}{\partial \theta \partial \lambda}\left(\lambda, \theta^{t}\right)
$$

Differentiable unrolling of θ^{t}

Idea: Compute $\frac{\partial \theta^{t}}{\partial \lambda}(\lambda) \approx \frac{\partial \theta^{*}}{\partial \lambda}(\lambda)$ using automatic differentiation through an iterative algorithm.

For the gradient descent algorithm:

$$
\theta^{t+1}=\theta^{t}-\rho \frac{\partial G}{\partial \theta}\left(\lambda, \theta^{t}\right)
$$

The Jacobian reads,

$$
\frac{\partial \theta^{t+1}}{\partial \lambda}(\lambda)=\left(I d-\rho \frac{\partial^{2} G}{\partial \theta^{2}}\left(\lambda, \theta^{t}\right)\right) \frac{\partial \theta^{t}}{\partial \lambda}(\lambda)-\rho \frac{\partial^{2} G}{\partial \theta \partial \lambda}\left(\lambda, \theta^{t}\right)
$$

\Rightarrow Under smoothness conditions, if θ^{t} converges to θ^{*}, this converges toward $\frac{\partial \theta^{*}}{\partial \lambda}(\lambda)$

Analysis for min-min problems

Context: min-min problems where $F=G$

$$
\Rightarrow \text { Here, } \frac{\partial F}{\partial \theta}\left(\lambda, \theta^{*}\right)=0
$$

Analysis for min-min problems

Context: min-min problems where $F=G$

$$
\Rightarrow \text { Here, } \frac{\partial F}{\partial \theta}\left(\lambda, \theta^{*}\right)=0
$$

We consider the 3 gradient estimates:

- $g_{1}=\frac{\partial G}{\partial \lambda}\left(\lambda, \theta^{t}\right)$
- $g_{2}=\frac{\partial G}{\partial \lambda}\left(\lambda, \theta^{t}\right)+\frac{\partial G}{\partial \theta}\left(\lambda, \theta^{t}\right) \frac{\partial \theta^{t}}{\partial \lambda}$
- $g_{3}=\frac{\partial G}{\partial \lambda}\left(\lambda, \theta^{t}\right)-\frac{\partial G}{\partial \theta}\left(\lambda, \theta^{t}\right) \frac{\partial^{2} G}{\partial \theta^{2}}{ }^{-1}\left(\lambda, \theta^{t}\right) \frac{\partial^{2} G}{\partial \theta \partial \lambda}\left(\lambda, \theta^{t}\right)$

Context: min-min problems where $F=G$

$$
\Rightarrow \text { Here, } \frac{\partial F}{\partial \theta}\left(\lambda, \theta^{*}\right)=0
$$

We consider the 3 gradient estimates:

- $g_{1}=\frac{\partial G}{\partial \lambda}\left(\lambda, \theta^{t}\right)$
- $g_{2}=\frac{\partial G}{\partial \lambda}\left(\lambda, \theta^{t}\right)+\frac{\partial G}{\partial \theta}\left(\lambda, \theta^{t}\right) \frac{\partial \theta^{t}}{\partial \lambda}$
- $g_{3}=\frac{\partial G}{\partial \lambda}\left(\lambda, \theta^{t}\right)-\frac{\partial G}{\partial \theta}\left(\lambda, \theta^{t}\right) \frac{\partial^{2} G}{\partial \theta^{2}}{ }^{-1}\left(\lambda, \theta^{t}\right) \frac{\partial^{2} G}{\partial \theta \partial \lambda}\left(\lambda, \theta^{t}\right)$

Convergence rates: For G strongly convex in θ,

$$
\begin{aligned}
& \left|g_{t}^{1}(x)-g^{*}(x)\right|=O\left(\left|\theta^{t}(\lambda)-\theta^{*}(\lambda)\right|\right) \\
& \left|g_{t}^{2}(x)-g^{*}(x)\right|=o\left(\left|\theta^{t}(\lambda)-\theta^{*}(\lambda)\right|\right) \\
& \left|g_{t}^{3}(x)-g^{*}(x)\right|=O\left(\left|\theta^{t}(\lambda)-\theta^{*}(\lambda)\right|^{2}\right)
\end{aligned}
$$

Analysis for non-smooth min-min problems [Malezieux et al. 2022]

Context: dictionary learning, $F=G$ with an ℓ_{1}-regularization for θ.

Issue: The implicit gradient quality mostly depends on the support identifiaction,

$$
\left(\frac{\partial \theta^{*}}{\partial D_{l}}\right)_{S^{*}}=-\left(D_{:, S^{*}}^{\top} D_{:, S^{*}}\right)^{-1}\left(D_{l} \theta^{* \top}+\left(D_{l}^{\top} \theta^{*}-y_{l}\right) / d_{n}\right)_{S^{*}},
$$

\Rightarrow Is the autodiff approach better than the analytic one?

Analysis for non-smooth min-min problems [Malezieux et al. 2022]

On the support, the function is smooth and we recover the same convergence.

$$
-\left\|J_{l}^{N}-J_{l}^{*}\right\|-\left\|S_{N}-S^{*}\right\|_{0}
$$

Analysis for non-smooth min-min problems [Malezieux et al. 2022]

Outside of the support, errors can accumulate and the gradient can blow up.

Conclusion

- Bi-level optimization is intrinsic in many ML problems.
- Classical optimization method can be used once we know how to compute the gradient.
- The gradient can be computed either using implicit function theorem or algorithm unrolling.
- No clear winner, this depends on the problem at end!

Current work:

- Efficient and stochastic bi-level solvers,
- Application of bi-level solvers to Data-Augmentation problems for EEG. \Rightarrow Stay tuned!

Slides will be on my web page:
爰 tommoral.github.io

O Otomamoral

Thanks to all my bi-level collaborators!

