Bi-level optimization in Machine
Learning

Thomas Moreau INRIA Saclay

v d

O PARIETAL 6 s 7 avent

1/22

Machine Learning

A classical Machine Learning Pipeline:

» Get some data X and supervised task y,

2/22

Machine Learning

A classical Machine Learning Pipeline:

» Get some data X and supervised task y,
> Select a class of model f(- ; 6, \) to solve the task,

2/22

Machine Learning

A classical Machine Learning Pipeline:

» Get some data X and supervised task y,

> Select a class of model f(- ; 6, \) to solve the task,

» Split the data between a training set X, yt, and a validation set
Xvals Yval (multiple time for CV),

2/22

Machine Learning

A classical Machine Learning Pipeline:

» Get some data X and supervised task y,

> Select a class of model f(- ; 6, \) to solve the task,

» Split the data between a training set X, yt, and a validation set
Xvals Yval (multiple time for CV),

» Train the model on X/, y; to find the best model parameters 6*

E

()\)—argmmG)\ 0) Z ((Xtr,ir 0, \) _ytrl) ;

2/22

Machine Learning

A classical Machine Learning Pipeline:

>
>
>

Get some data X and supervised task y,

Select a class of model (- ;0,\) to solve the task,

Split the data between a training set Xi,, ¢ and a validation set
Xvals Yval (multiple time for CV),

Train the model on Xg, y: to find the best model parameters 6*

0*(\) = argmln G(\,0) MZ£< (Xer,is 0, A), Ytr,) ;

Evaluate the performances on X, ./, y,a; with accuracy:

N
F()\,Q) = %Zg(f(xval,j;e*7)‘)7yval,j) .

j=1

2/22

Machine Learning

A classical Machine Learning Pipeline:

>
>
>

Get some data X and supervised task y,

Select a class of model (- ;0,\) to solve the task,

Split the data between a training set Xi,, ¢ and a validation set
Xvals Yval (multiple time for CV),

Train the model on Xg, y: to find the best model parameters 6*

0*(\) = argmln G(\,0) MZ£< (Xer,is 0, A), Ytr,) ;

Evaluate the performances on X, ./, y,a; with accuracy:

N
F()\,Q) = %Zg(f(xval,j;e*7)‘)7yval,j) .

j=1

= The 1 000 000€ question: How to select A, f, X, .7

2/22

Hyper-parameter selection \: the Grid Search

Idea: try many parameters and keep the best one according to the
validation loss.

3/22

Hyper-parameter selection \: the Grid Search

Idea: try many parameters and keep the best one according to the
validation loss.

» Select a grid of hyper-parameters {A1,..., Ak},
» For each A, train the model the best parameters 07

M
= arg(;nln G(Ax,0) = i ;f(f(xtr,n 0,)\)7}’”,:))

» Select the best model performances

=

X" = argmin F (A, 0f) = Z (f(xva,J;ez,Ak),yva,,j> .
k

Hyper-parameter selection \: the Grid Search

Idea: try many parameters and keep the best one according to the
validation loss.

» Select a grid of hyper-parameters {A1,..., Ak},
» For each A, train the model the best parameters 07

M
= arg(;nln G(Ax,0) = i ;f(f(xtr,u 0, A)a.)’tr,l))

» Select the best model performances

=

A" = argmin F(A, 0}) = Z (£ (Kot O3 M) Yol)
k

= This is a bi-level optimization problem.

3/22

Bi-level optimization

Bi-level problem: Optimization problem with two levels

Imnh@):fxxg(@)9_-__‘OMHﬁmdmn

s.t. 6*(\) =argmin G(\.0)
Value function o

Inner function/Problem

Goal: Optimize the value function h whose value depends on the result of
another optimization problem.

= Challenging to theoretically and practically.

4/22

Other bi-level optimization problems: Model selection

Selecting the best model: G is the training loss and 6 are the parameters
of the model. The goal is to optimize \ to get the best validation loss F,

» Hyperparameter optimization: X are the regularisation parameters,
or the number of trees, ...
[Pedregosa 2016, Lorraine et al. 2020]

» Automatic Data Augmentation: X\ are the parameters of data
augmentation used to train the model.
[Cubuk et al. 2019; Rommel et al. 2022]

» Neural Architecture Search: X are the parameter of a Neural Network

architecture.
[Liu et al. 2018, Zhang et al. 2021]

5/22

Other bi-level optimization problems: Representation Learning

Generative Adversarial Network: G is the discriminator loss, that classify
between generated and natural samples. Then F = —G and one aims to
solve [Goodfellow et al. 2014]

max G(\,0%) st. 0= mein G(A,0)
Here 6 are the parameter of the discriminator and A\ of the generator.

Dictionary Learning: F = G are the reconstruction loss and one looks for
the dictionary D that minimizes [Malezieux et al. 2022]

mDin IX — DO*|| s.t. 0° =argmin|| X — D@ + \||0]|1
0

Here, 0* is a sparse representation of the input sample X.

6/22

Other bi-level optimization problems: Implicit Deep Learning

Deep Equilibrium Network: G is a fixed point equation that defines the
output of a layer and F is the training loss of the network, [Bai et al. 2019]

m)?xF()\,Q*) s.t. G\ 0)=0—-g(6,\)=0

These networks micmic infinite depth network as 6* can be seen as applying
the transfer function g infinitly many times if it is contractive.

7/22

Solving bi-level optimization

Black box methods: Take {\;}x and compute minj h(\x)

» Grid-Search » Random-Search » Bayesian-Optimization

8/22

Solving bi-level optimization

Black box methods: Take { A4}, and compute ming h(Ax)

» Grid-Search » Random-Search » Bayesian-Optimization

First order methods: Compute the gradient of h

IF (X, 6%(N))

O\
N—_——

Vh(\)

)\t—‘rl _)\t _ pt

8/22

Solving bi-level optimization

Black box methods: Take { A4}, and compute ming h(Ax)

» Grid-Search » Random-Search » Bayesian-Optimization

First order methods: Compute the gradient of h

¢ OF(X, 6%(X))

O\
N—_——

Vh()\)

)\t—‘rl _)\t_p

» Can we compute the gradient of h?
» Do we need to compute 0*(\)?
» How to efficiently approximate Vh(\)?

8/22

Implicit Gradient

Computing the gradient of the value function h
References

» Pedregosa, F. (2016). Hyperparameter optimization with approximate
gradient. In International Conference on Machine Learning (ICML), pages
737-746, New-York, NY, USA

» Lorraine, J., Vicol, P., and Duvenaud, D. (2020). Optimizing millions of
hyperparameters by implicit differentiation. In International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 1540-1552. PMLR

» Ramazi, Z., Mannel, F., Bai, S., Starck, J.-L., Ciuciu, P., and Moreau, T.
(2022). SHINE: SHaring the INverse Estimate from the forward pass for

bi-level optimization and implicit models. In International Conference on
Learning Representations (ICLR), online

9/22

Value Function’s Gradient

First order methods on h needs to compute the gradient of h.

Chain rule:

VAR = S0 0° (V) + S (3, 0°00) ()

10/22

Value Function’s Gradient

First order methods on h needs to compute the gradient of h.

Chain rule:

oOF . OF 96"
SO, + S (L8O S

Implicit function Theorem: 6*(\) verifies the KKT 86 7 (X, 0%(N) =0,

Vih(\) =

0°G 00* 0°G

S O D) T () + 2220, 8°(0) =0,
00* 82G" . 0°G N
== 7 ()5 (67 (V),

10/22

Value Function’s Gradient

First order methods on h needs to compute the gradient of h.

Chain rule:

oOF . OF . . . 00"
SO, + S (L8O S

Implicit function Theorem: 6*()\) verifies the KKT 2¢ ()\ 0*(\)) =0,

Vah(A) =

0°G 00* 0°G

Sz MO W) 51 (V) + 5555 (A 07(N) =0,
00" 26 . 8PG,
N == MO N)g557 (%07 (V),

Vah(h) = S50 0" (0) = S5O0, %S (L () &5 (A 8° () |

= Need to compute 6*(\) and an inverse hvp.

10/22

HOAG - Approximating 0*(\") [Pedregosa 2016]

Do we need to compute them precisely?

dea: Approximate 6*(At) and v*(At) = —ZS 1 2E (At gr(\E))

11/22

HOAG - Approximating 0*(\") [Pedregosa 2016]

Do we need to compute them precisely?
Idea: Approximate 6*(A\f) and v*(\!) = %—9(} a—’g(/\t,Q*()\t))

» Compute 6' such that ||#* — 6*(\')]2 < e,
iterative solver e.g. L-BFGS

» Compute vt such that ||2 892 SAE05)vE + S (AL, 08)]2 < e,
L-BFGS or CG

» Compute the approximate gradient g; = 95 (A, 6) + g;g’:\(z\t ot)vt

» Update the outer variable A\ft1 = \t — plgt

11/22

HOAG - Approximating 0*(\") [Pedregosa 2016]

Do we need to compute them precisely?

Idea: Approximate 6*(A\f) and v*(\!) = 8;72" toF E(E 05(AD)

» Compute 6* such that [|0* — 0*(A\")[]2 < e,
iterative solver e.g. L-BFGS

» Compute vt such that ||Z 892 G (AL, BtV + ()\t,Qt)Hz < €t,
L-BFGS or CG

» Compute the approximate gradient g; = gf()\t 0") + g;aG/\(/\t, ot vt

» Update the outer variable A\ft1 = \t — plgt

Theorem: If)", €; < 0o and the step are chosen appropriatly, then the
algorithm converges to a stationary point i.e.

VA2 =0

11/22

Further approximation of the Inverse Hvp

Solving the linear system for v*(\f),

e Core idea is to not inverse the hessian %gg()\t %),
We are only interested in one direction.
e Only rely on Hessian-vector product (Hvp).
Can be computed efficiently

Proposed Methods:

» L-BFGS » Conjugate Gradient
» Jacobian-Free method » Neumann iterations
9%G 9?6 _ 952G
R0 ~ P09 = 3 - S (A 0
k

[Pedregosa 2016, Lorraine et al. 2020, Luketina et al. 2016]

12/22

SHINE: SHaring the INverse Estimate [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian computed
by L-BFGS for the inner problem.

13/22

SHINE: SHaring the INverse Estimate [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian computed
by L-BFGS for the inner problem.

Quasi Newton 101:

Solving argmin, f(x)

Newton Method Quasi-Newton Method
of t+1 _ ot 1 0f
Xt+1::Xt__5;§(t)= 13X(t) x=xt - B, ax(x")

B,: low-rank approx. of the Hessian.
Inverse with Sherman-Morrison

13/22

SHINE: SHaring the INverse Estimate [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian computed
by L-BFGS for the inner problem.

Quasi Newton 101:

Solving argmin, f(x)

Newton Method Quasi-Newton Method
OF . L OF (41 19f
Xt+1:Xt_@(t)= 18X(t) X - By ax(x")

B,: low-rank approx. of the Hessian.
Inverse with Sherman-Morrison

= Use B, ! as the inverse of the Hessian for v*

13/22

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Logistic Regression with ¢»>-regularisation on 2 datasets:

Test Loss Suboptimality

SHINE (ours) =——— SHINE refine (ours)

=== HOAG _ . = = ===== Jacobian-Free = === (Grid search
20news real-sim
108 T T T T T

102

10t

----\--}........3
- E

101k 1 1 1 1 1

100

Time (s) Time (s)

= Theoretically grounded, can be further refined,
large scale experiments on DEQs.

14/22

Algorithm Unrolling

Differentiable inner problem solvers
References

» Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. (2019). Truncated
Back-propagation for Bilevel Optimization. In Artificial Intelligence and
Statistics (AISTAT), pages 1723-1732, Okinawa, Japan

» Ablin, P., Peyré, G., and Moreau, T. (2020). Super-efficiency of automatic
differentiation for functions defined as a minimum. In International
Conference on Machine Learning (ICML)

» Malézieux, B., Moreau, T., and Kowalski, M. (2022). Understanding
approximate and Unrolled Dictionary Learning for Pattern Recovery. In
International Conference on Learning Representations (ICLR), online

15/22

Differentiable unrolling of 6*

Idea: Compute %—T()\) ~ %()\) using automatic differentiation
through an iterative algorithm.

16/22

Differentiable unrolling of '

Idea: Compute %(A) ~ %(A) using automatic differentiation

through an iterative algorithm.

For the gradient descent algorithm:
9t+1 — et _ pi()\,et)

The Jacobian reads,

89t+1 0 o0t

—() = (1d—p

2
T 09) 2 () -

0°G

Po0ox

(A 6°)

16/22

Differentiable unrolling of '

Idea: Compute %—B)\t()\) ~ %()\) using automatic differentiation
through an iterative algorithm.

For the gradient descent algorithm:
9t+1 — et _ pi()\,et)

The Jacobian reads,

o0t 0°G

89t+1 2
S 0 09)) 5 () = p5r (3, 0°)

8

—() = (1d—p

= Under smoothness conditions, if #* converges to 6*,
this converges toward 2%-()\)

16/22

Analysis for min-min problems [Ablin et al. 2020]

Context: min-min problems where F = G

= Here, 2£(X,6%) =0

17/22

Analysis for min-min problems [Ablin et al. 2020]

Context: min-min problems where F = G

= Here, 2£(X,6%) =0

We consider the 3 gradient estimates:
> g = 8/\ ()\ Gt)

Analysis

> &= a,\ S(A0°) + %_g()‘ 9t)aet Automatic
2 . -

> g3 = 28(),0%) — B8 (, 05) 25 T (), 6t) 226 (A, 6) Implicit

17/22

Analysis for min-min problems [Ablin et al. 2020]

Context: min-min problems where F = G

= Here, 2£(X,6%) =0

We consider the 3 gradient estimates:
> g1 = %()‘a Gt)

Analysis

> g = %()\7 0t) + %_g()\’ef)%—(’; Automatic
—1 ..

> = 95009 — B0 (A IV EK (A0 Implici

Convergence rates: For G strongly
convex in 0,

800 -8 (I =0 (e o), "
|gt2(X) g (x)=o (wt()‘) - 9*()\)|) 2 P % 100 150
82(x) — g*(x)| = O (|6°(\) — 6" (W) . | '

17/22

Analysis for non-smooth min-min problems [Malezieux et al. 2022]

Context: dictionary learning, F = G with an ¢1-regularization for 6.

Issue: The implicit gradient quality mostly depends on the support
identifiaction,

<80*

oD,

)S = —(D]s: D, s)N (Dy0* " + (D] 0" — y))ldy)s-

= |s the autodiff approach better than the analytic one?

18/22

Analysis for non-smooth min-min problems [Malezieux et al

. 2022]

On the support, the function is smooth and we recover the same
convergence.

- ”‘]lN_Jl* H - ||SN—S* HO

L 20107 1 i

- 10-8 _ L
L o |

L | ! I ! I L | ! I ! I
109 102 104 100 10% 10%

19/22

Analysis for non-smooth min-min problems [Malezieux et al. 2022]

Outside of the support, errors can accumulate and the gradient can blow up.

Max BP depth
— full — 200 — 50 — 20

10 4 20 -

1~ = Tl

0 - T T 1 0 - T L
100 102 104 100 102 104

20/22

Conclusion

» Bi-level optimization is intrinsic in many ML problems.

» Classical optimization method can be used once we know how to
compute the gradient.

» The gradient can be computed either using implicit function theorem or
algorithm unrolling.

» No clear winner, this depends on the problem at end!

Current work:
» Efficient and stochastic bi-level solvers,
» Application of bi-level solvers to Data-Augmentation problems for EEG.
= Stay tuned!

Slides will be on my web page:

€ tommoral.github.io O @tomamoral

21/22

tommoral.github.io
https://twitter.com/tomamoral

Thanks to all my bi-level collaborators!

22/22

	Implicit Gradient
	Algorithm Unrolling

