
Bi-level optimization in Machine
Learning

Thomas Moreau INRIA Saclay

1/22

Machine Learning

A classical Machine Learning Pipeline:

▶ Get some data X and supervised task y ,

▶ Select a class of model f (· ; θ, λ) to solve the task,
▶ Split the data between a training set Xtr , ytr and a validation set

Xval , yval (multiple time for CV),
▶ Train the model on Xtr , ytr to find the best model parameters θ∗

θ∗(λ) = argmin
θ

G (λ, θ) =
1
M

M∑
i=1

ℓ
(
f (Xtr ,i , θ, λ), ytr ,i

)
,

▶ Evaluate the performances on Xval , yval with accuracy:

F (λ, θ) =
1
N

N∑
j=1

ℓ̃
(
f (Xval ,j ; θ

∗, λ), yval ,j

)
.

⇒ The 1 000 000€ question: How to select λ, f , Xtr , ...?

2/22

Machine Learning

A classical Machine Learning Pipeline:

▶ Get some data X and supervised task y ,
▶ Select a class of model f (· ; θ, λ) to solve the task,

▶ Split the data between a training set Xtr , ytr and a validation set
Xval , yval (multiple time for CV),

▶ Train the model on Xtr , ytr to find the best model parameters θ∗

θ∗(λ) = argmin
θ

G (λ, θ) =
1
M

M∑
i=1

ℓ
(
f (Xtr ,i , θ, λ), ytr ,i

)
,

▶ Evaluate the performances on Xval , yval with accuracy:

F (λ, θ) =
1
N

N∑
j=1

ℓ̃
(
f (Xval ,j ; θ

∗, λ), yval ,j

)
.

⇒ The 1 000 000€ question: How to select λ, f , Xtr , ...?

2/22

Machine Learning

A classical Machine Learning Pipeline:

▶ Get some data X and supervised task y ,
▶ Select a class of model f (· ; θ, λ) to solve the task,
▶ Split the data between a training set Xtr , ytr and a validation set

Xval , yval (multiple time for CV),

▶ Train the model on Xtr , ytr to find the best model parameters θ∗

θ∗(λ) = argmin
θ

G (λ, θ) =
1
M

M∑
i=1

ℓ
(
f (Xtr ,i , θ, λ), ytr ,i

)
,

▶ Evaluate the performances on Xval , yval with accuracy:

F (λ, θ) =
1
N

N∑
j=1

ℓ̃
(
f (Xval ,j ; θ

∗, λ), yval ,j

)
.

⇒ The 1 000 000€ question: How to select λ, f , Xtr , ...?

2/22

Machine Learning

A classical Machine Learning Pipeline:

▶ Get some data X and supervised task y ,
▶ Select a class of model f (· ; θ, λ) to solve the task,
▶ Split the data between a training set Xtr , ytr and a validation set

Xval , yval (multiple time for CV),
▶ Train the model on Xtr , ytr to find the best model parameters θ∗

θ∗(λ) = argmin
θ

G (λ, θ) =
1
M

M∑
i=1

ℓ
(
f (Xtr ,i , θ, λ), ytr ,i

)
,

▶ Evaluate the performances on Xval , yval with accuracy:

F (λ, θ) =
1
N

N∑
j=1

ℓ̃
(
f (Xval ,j ; θ

∗, λ), yval ,j

)
.

⇒ The 1 000 000€ question: How to select λ, f , Xtr , ...?

2/22

Machine Learning

A classical Machine Learning Pipeline:

▶ Get some data X and supervised task y ,
▶ Select a class of model f (· ; θ, λ) to solve the task,
▶ Split the data between a training set Xtr , ytr and a validation set

Xval , yval (multiple time for CV),
▶ Train the model on Xtr , ytr to find the best model parameters θ∗

θ∗(λ) = argmin
θ

G (λ, θ) =
1
M

M∑
i=1

ℓ
(
f (Xtr ,i , θ, λ), ytr ,i

)
,

▶ Evaluate the performances on Xval , yval with accuracy:

F (λ, θ) =
1
N

N∑
j=1

ℓ̃
(
f (Xval ,j ; θ

∗, λ), yval ,j

)
.

⇒ The 1 000 000€ question: How to select λ, f , Xtr , ...?

2/22

Machine Learning

A classical Machine Learning Pipeline:

▶ Get some data X and supervised task y ,
▶ Select a class of model f (· ; θ, λ) to solve the task,
▶ Split the data between a training set Xtr , ytr and a validation set

Xval , yval (multiple time for CV),
▶ Train the model on Xtr , ytr to find the best model parameters θ∗

θ∗(λ) = argmin
θ

G (λ, θ) =
1
M

M∑
i=1

ℓ
(
f (Xtr ,i , θ, λ), ytr ,i

)
,

▶ Evaluate the performances on Xval , yval with accuracy:

F (λ, θ) =
1
N

N∑
j=1

ℓ̃
(
f (Xval ,j ; θ

∗, λ), yval ,j

)
.

⇒ The 1 000 000€ question: How to select λ, f , Xtr , ...?
2/22

Hyper-parameter selection λ: the Grid Search

Idea: try many parameters and keep the best one according to the
validation loss.

▶ Select a grid of hyper-parameters {λ1, . . . , λK},
▶ For each λk , train the model the best parameters θ∗k

θ∗k = argmin
θ

G (λk , θ) =
1
M

M∑
i=1

ℓ
(
f (Xtr ,i , θ, λ), ytr ,i

)
,

▶ Select the best model performances

λ∗ = argmin
λk

F (λk , θ
∗
k) =

1
N

N∑
j=1

ℓ̃
(
f (Xval ,j ; θ

∗
k , λk), yval ,j

)
.

⇒ This is a bi-level optimization problem.

3/22

Hyper-parameter selection λ: the Grid Search

Idea: try many parameters and keep the best one according to the
validation loss.

▶ Select a grid of hyper-parameters {λ1, . . . , λK},
▶ For each λk , train the model the best parameters θ∗k

θ∗k = argmin
θ

G (λk , θ) =
1
M

M∑
i=1

ℓ
(
f (Xtr ,i , θ, λ), ytr ,i

)
,

▶ Select the best model performances

λ∗ = argmin
λk

F (λk , θ
∗
k) =

1
N

N∑
j=1

ℓ̃
(
f (Xval ,j ; θ

∗
k , λk), yval ,j

)
.

⇒ This is a bi-level optimization problem.

3/22

Hyper-parameter selection λ: the Grid Search

Idea: try many parameters and keep the best one according to the
validation loss.

▶ Select a grid of hyper-parameters {λ1, . . . , λK},
▶ For each λk , train the model the best parameters θ∗k

θ∗k = argmin
θ

G (λk , θ) =
1
M

M∑
i=1

ℓ
(
f (Xtr ,i , θ, λ), ytr ,i

)
,

▶ Select the best model performances

λ∗ = argmin
λk

F (λk , θ
∗
k) =

1
N

N∑
j=1

ℓ̃
(
f (Xval ,j ; θ

∗
k , λk), yval ,j

)
.

⇒ This is a bi-level optimization problem.

3/22

Bi-level optimization

Bi-level problem: Optimization problem with two levels

min
x

h(λ) = F (λ, θ∗(x))

s.t. θ∗(λ) = argmin
θ

G (λ, θ)

Value function

Outer function

Inner function/Problem

Goal: Optimize the value function h whose value depends on the result of
another optimization problem.

⇒ Challenging to theoretically and practically.

4/22

Other bi-level optimization problems: Model selection

Selecting the best model: G is the training loss and θ are the parameters
of the model. The goal is to optimize λ to get the best validation loss F ,

▶ Hyperparameter optimization: λ are the regularisation parameters,
or the number of trees, . . .

[Pedregosa 2016, Lorraine et al. 2020]

▶ Automatic Data Augmentation: λ are the parameters of data
augmentation used to train the model.

[Cubuk et al. 2019; Rommel et al. 2022]

▶ Neural Architecture Search: λ are the parameter of a Neural Network
architecture.

[Liu et al. 2018, Zhang et al. 2021]

5/22

Other bi-level optimization problems: Representation Learning

Generative Adversarial Network: G is the discriminator loss, that classify
between generated and natural samples. Then F = −G and one aims to
solve [Goodfellow et al. 2014]

max
λ

G (λ, θ∗) s.t. θ∗ = min
θ

G (λ, θ)

Here θ are the parameter of the discriminator and λ of the generator.

Dictionary Learning: F = G are the reconstruction loss and one looks for
the dictionary D that minimizes [Malezieux et al. 2022]

min
D

∥X − Dθ∗∥ s.t. θ∗ = argmin
θ

∥X − Dθ∥+ λ∥θ∥1

Here, θ∗ is a sparse representation of the input sample X .

6/22

Other bi-level optimization problems: Implicit Deep Learning

Deep Equilibrium Network: G is a fixed point equation that defines the
output of a layer and F is the training loss of the network, [Bai et al. 2019]

max
λ

F (λ, θ∗) s.t. G (λ, θ) = θ − g(θ, λ) = 0

These networks micmic infinite depth network as θ∗ can be seen as applying
the transfer function g infinitly many times if it is contractive.

7/22

Solving bi-level optimization

Black box methods: Take {λk}k and compute mink h(λk)

▶ Grid-Search ▶ Random-Search ▶ Bayesian-Optimization

First order methods: Compute the gradient of h

λt+1 = λt − ρt ∂F (λ, θ∗(λ))
∂λ︸ ︷︷ ︸

∇h(λ)

▶ Can we compute the gradient of h?
▶ Do we need to compute θ∗(λ)?
▶ How to efficiently approximate ∇h(λ)?

8/22

Solving bi-level optimization

Black box methods: Take {λk}k and compute mink h(λk)

▶ Grid-Search ▶ Random-Search ▶ Bayesian-Optimization

First order methods: Compute the gradient of h

λt+1 = λt − ρt ∂F (λ, θ∗(λ))
∂λ︸ ︷︷ ︸

∇h(λ)

▶ Can we compute the gradient of h?
▶ Do we need to compute θ∗(λ)?
▶ How to efficiently approximate ∇h(λ)?

8/22

Solving bi-level optimization

Black box methods: Take {λk}k and compute mink h(λk)

▶ Grid-Search ▶ Random-Search ▶ Bayesian-Optimization

First order methods: Compute the gradient of h

λt+1 = λt − ρt ∂F (λ, θ∗(λ))
∂λ︸ ︷︷ ︸

∇h(λ)

▶ Can we compute the gradient of h?
▶ Do we need to compute θ∗(λ)?
▶ How to efficiently approximate ∇h(λ)?

8/22

Implicit Gradient

Computing the gradient of the value function h
References

▶ Pedregosa, F. (2016). Hyperparameter optimization with approximate
gradient. In International Conference on Machine Learning (ICML), pages
737–746, New-York, NY, USA

▶ Lorraine, J., Vicol, P., and Duvenaud, D. (2020). Optimizing millions of
hyperparameters by implicit differentiation. In International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 1540–1552. PMLR

▶ Ramzi, Z., Mannel, F., Bai, S., Starck, J.-L., Ciuciu, P., and Moreau, T.
(2022). SHINE: SHaring the INverse Estimate from the forward pass for
bi-level optimization and implicit models. In International Conference on
Learning Representations (ICLR), online

9/22

Value Function’s Gradient

First order methods on h needs to compute the gradient of h.

Chain rule:

∇λh(λ) =
∂F
∂λ

(λ, θ∗(λ)) +
∂F
∂θ

(λ, θ∗(λ))
∂θ∗

∂λ
(λ)

Implicit function Theorem: θ∗(λ) verifies the KKT ∂G
∂θ (λ, θ

∗(λ)) = 0,

∂2G
∂θ2 (λ, θ

∗(λ))
∂θ∗

∂λ
(λ) +

∂2G
∂θ∂λ

(λ, θ∗(λ)) = 0,

∂θ∗

∂λ
(λ) =− ∂2G

∂θ2

−1

(λ, θ∗(λ))
∂2G
∂θ∂λ

(λ, θ∗(λ)),

∇λh(λ) = ∂F
∂λ (λ, θ

∗(λ))− ∂F
∂θ (λ, θ

∗(λ))∂
2G
∂θ2

−1
(λ, θ∗(λ)) ∂2G

∂θ∂λ(λ, θ
∗(λ))

⇒ Need to compute θ∗(λ) and an inverse hvp.

10/22

Value Function’s Gradient

First order methods on h needs to compute the gradient of h.

Chain rule:

∇λh(λ) =
∂F
∂λ

(λ, θ∗(λ)) +
∂F
∂θ

(λ, θ∗(λ))
∂θ∗

∂λ
(λ)

Implicit function Theorem: θ∗(λ) verifies the KKT ∂G
∂θ (λ, θ

∗(λ)) = 0,

∂2G
∂θ2 (λ, θ

∗(λ))
∂θ∗

∂λ
(λ) +

∂2G
∂θ∂λ

(λ, θ∗(λ)) = 0,

∂θ∗

∂λ
(λ) =− ∂2G

∂θ2

−1

(λ, θ∗(λ))
∂2G
∂θ∂λ

(λ, θ∗(λ)),

∇λh(λ) = ∂F
∂λ (λ, θ

∗(λ))− ∂F
∂θ (λ, θ

∗(λ))∂
2G
∂θ2

−1
(λ, θ∗(λ)) ∂2G

∂θ∂λ(λ, θ
∗(λ))

⇒ Need to compute θ∗(λ) and an inverse hvp.

10/22

Value Function’s Gradient

First order methods on h needs to compute the gradient of h.

Chain rule:

∇λh(λ) =
∂F
∂λ

(λ, θ∗(λ)) +
∂F
∂θ

(λ, θ∗(λ))
∂θ∗

∂λ
(λ)

Implicit function Theorem: θ∗(λ) verifies the KKT ∂G
∂θ (λ, θ

∗(λ)) = 0,

∂2G
∂θ2 (λ, θ

∗(λ))
∂θ∗

∂λ
(λ) +

∂2G
∂θ∂λ

(λ, θ∗(λ)) = 0,

∂θ∗

∂λ
(λ) =− ∂2G

∂θ2

−1

(λ, θ∗(λ))
∂2G
∂θ∂λ

(λ, θ∗(λ)),

∇λh(λ) = ∂F
∂λ (λ, θ

∗(λ))− ∂F
∂θ (λ, θ

∗(λ))∂
2G
∂θ2

−1
(λ, θ∗(λ)) ∂2G

∂θ∂λ(λ, θ
∗(λ))

⇒ Need to compute θ∗(λ) and an inverse hvp.

10/22

HOAG - Approximating θ∗(λt) [Pedregosa 2016]

Do we need to compute them precisely?

Idea: Approximate θ∗(λt) and v∗(λt) = −∂2G
∂θ2

−1 ∂F
∂θ (λ

t , θ∗(λt))

▶ Compute θt such that ∥θt − θ∗(λt)∥2 ≤ ϵt ,
iterative solver e.g. L-BFGS

▶ Compute v t such that ∥∂2G
∂θ2 (λ

t , θt)v t + ∂F
∂θ (λ

t , θt)∥2 ≤ ϵt ,
L-BFGS or CG

▶ Compute the approximate gradient gt =
∂F
∂λ (λ

t , θt) + ∂2G
∂θ∂λ(λ

t , θt)v t

▶ Update the outer variable λt+1 = λt − ρtg t

Theorem: If
∑

t ϵt < ∞ and the step are chosen appropriatly, then the
algorithm converges to a stationary point i.e.

∥∇h(λt)∥2 → 0 .

11/22

HOAG - Approximating θ∗(λt) [Pedregosa 2016]

Do we need to compute them precisely?

Idea: Approximate θ∗(λt) and v∗(λt) = −∂2G
∂θ2

−1 ∂F
∂θ (λ

t , θ∗(λt))

▶ Compute θt such that ∥θt − θ∗(λt)∥2 ≤ ϵt ,
iterative solver e.g. L-BFGS

▶ Compute v t such that ∥∂2G
∂θ2 (λ

t , θt)v t + ∂F
∂θ (λ

t , θt)∥2 ≤ ϵt ,
L-BFGS or CG

▶ Compute the approximate gradient gt =
∂F
∂λ (λ

t , θt) + ∂2G
∂θ∂λ(λ

t , θt)v t

▶ Update the outer variable λt+1 = λt − ρtg t

Theorem: If
∑

t ϵt < ∞ and the step are chosen appropriatly, then the
algorithm converges to a stationary point i.e.

∥∇h(λt)∥2 → 0 .

11/22

HOAG - Approximating θ∗(λt) [Pedregosa 2016]

Do we need to compute them precisely?

Idea: Approximate θ∗(λt) and v∗(λt) = −∂2G
∂θ2

−1 ∂F
∂θ (λ

t , θ∗(λt))

▶ Compute θt such that ∥θt − θ∗(λt)∥2 ≤ ϵt ,
iterative solver e.g. L-BFGS

▶ Compute v t such that ∥∂2G
∂θ2 (λ

t , θt)v t + ∂F
∂θ (λ

t , θt)∥2 ≤ ϵt ,
L-BFGS or CG

▶ Compute the approximate gradient gt =
∂F
∂λ (λ

t , θt) + ∂2G
∂θ∂λ(λ

t , θt)v t

▶ Update the outer variable λt+1 = λt − ρtg t

Theorem: If
∑

t ϵt < ∞ and the step are chosen appropriatly, then the
algorithm converges to a stationary point i.e.

∥∇h(λt)∥2 → 0 .

11/22

Further approximation of the Inverse Hvp

Solving the linear system for v∗(λt),

• Core idea is to not inverse the hessian ∂2G
∂θ2 (λ

t , θt),
We are only interested in one direction.

• Only rely on Hessian-vector product (Hvp).
Can be computed efficiently

Proposed Methods:

▶ L-BFGS

▶ Jacobian-Free method

∂2G
∂θ2 (λ

t , θt) ≈ Id

▶ Conjugate Gradient

▶ Neumann iterations

∂2G
∂θ2 (λ

t , θt)−1 ≈
∑
k

(Id − ∂2G
∂θ2 (λ

t , θt))k

[Pedregosa 2016, Lorraine et al. 2020, Luketina et al. 2016]

12/22

SHINE: SHaring the INverse Estimate [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian computed
by L-BFGS for the inner problem.

Quasi Newton 101:

Solving argminx f (x)

Newton Method

x t+1 = x t − ∂2f
∂x2 (x

t)−1 ∂f
∂x

(x t)

Quasi-Newton Method

x t+1 = x t − B−1
t

∂f
∂x

(x t)

Bn: low-rank approx. of the Hessian.
Inverse with Sherman-Morrison

⇒ Use B−1
n as the inverse of the Hessian for v ∗

13/22

SHINE: SHaring the INverse Estimate [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian computed
by L-BFGS for the inner problem.

Quasi Newton 101:

Solving argminx f (x)

Newton Method

x t+1 = x t − ∂2f
∂x2 (x

t)−1 ∂f
∂x

(x t)

Quasi-Newton Method

x t+1 = x t − B−1
t

∂f
∂x

(x t)

Bn: low-rank approx. of the Hessian.
Inverse with Sherman-Morrison

⇒ Use B−1
n as the inverse of the Hessian for v ∗

13/22

SHINE: SHaring the INverse Estimate [Ramzi et al. 2022]

Idea: reuse the approximation of the Hessian computed
by L-BFGS for the inner problem.

Quasi Newton 101:

Solving argminx f (x)

Newton Method

x t+1 = x t − ∂2f
∂x2 (x

t)−1 ∂f
∂x

(x t)

Quasi-Newton Method

x t+1 = x t − B−1
t

∂f
∂x

(x t)

Bn: low-rank approx. of the Hessian.
Inverse with Sherman-Morrison

⇒ Use B−1
n as the inverse of the Hessian for v ∗

13/22

SHINE - Hyper-parameter optimization [Ramzi et al. 2022]

Logistic Regression with ℓ2-regularisation on 2 datasets:

0 10 20 30 40 50 60

Time (s)

10−1

100

101

102

103

T
es

t
L

os
s

S
u

b
op

ti
m

al
it

y

20news

0 5 10 15 20 25 30

Time (s)

10−1

100

101

102

103

real-sim

SHINE (ours)

HOAG

SHINE refine (ours)

Jacobian-Free Grid search

⇒ Theoretically grounded, can be further refined,
large scale experiments on DEQs.

14/22

Algorithm Unrolling

Differentiable inner problem solvers

References

▶ Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. (2019). Truncated
Back-propagation for Bilevel Optimization. In Artificial Intelligence and
Statistics (AISTAT), pages 1723–1732, Okinawa, Japan

▶ Ablin, P., Peyré, G., and Moreau, T. (2020). Super-efficiency of automatic
differentiation for functions defined as a minimum. In International
Conference on Machine Learning (ICML)

▶ Malézieux, B., Moreau, T., and Kowalski, M. (2022). Understanding
approximate and Unrolled Dictionary Learning for Pattern Recovery. In
International Conference on Learning Representations (ICLR), online

15/22

Differentiable unrolling of θt

Idea: Compute ∂θt

∂λ (λ) ≈
∂θ∗
∂λ (λ) using automatic differentiation

through an iterative algorithm.

For the gradient descent algorithm:

θt+1 = θt − ρ
∂G
∂θ

(λ, θt)

The Jacobian reads,

∂θt+1

∂λ
(λ) =

(
Id − ρ

∂2G
∂θ2 (λ, θ

t)
)∂θt

∂λ
(λ)− ρ

∂2G
∂θ∂λ

(λ, θt)

⇒ Under smoothness conditions, if θt converges to θ∗,
this converges toward ∂θ∗

∂λ
(λ)

16/22

Differentiable unrolling of θt

Idea: Compute ∂θt

∂λ (λ) ≈
∂θ∗
∂λ (λ) using automatic differentiation

through an iterative algorithm.

For the gradient descent algorithm:

θt+1 = θt − ρ
∂G
∂θ

(λ, θt)

The Jacobian reads,

∂θt+1

∂λ
(λ) =

(
Id − ρ

∂2G
∂θ2 (λ, θ

t)
)∂θt

∂λ
(λ)− ρ

∂2G
∂θ∂λ

(λ, θt)

⇒ Under smoothness conditions, if θt converges to θ∗,
this converges toward ∂θ∗

∂λ
(λ)

16/22

Differentiable unrolling of θt

Idea: Compute ∂θt

∂λ (λ) ≈
∂θ∗
∂λ (λ) using automatic differentiation

through an iterative algorithm.

For the gradient descent algorithm:

θt+1 = θt − ρ
∂G
∂θ

(λ, θt)

The Jacobian reads,

∂θt+1

∂λ
(λ) =

(
Id − ρ

∂2G
∂θ2 (λ, θ

t)
)∂θt

∂λ
(λ)− ρ

∂2G
∂θ∂λ

(λ, θt)

⇒ Under smoothness conditions, if θt converges to θ∗,
this converges toward ∂θ∗

∂λ
(λ)

16/22

Analysis for min-min problems [Ablin et al. 2020]

Context: min-min problems where F = G

⇒ Here, ∂F
∂θ
(λ, θ∗) = 0

We consider the 3 gradient estimates:
▶ g1 = ∂G

∂λ (λ, θ
t) Analysis

▶ g2 = ∂G
∂λ (λ, θ

t) + ∂G
∂θ (λ, θ

t)∂θ
t

∂λ Automatic

▶ g3 = ∂G
∂λ (λ, θ

t)− ∂G
∂θ (λ, θ

t)∂
2G
∂θ2

−1
(λ, θt) ∂2G

∂θ∂λ(λ, θ
t) Implicit

Convergence rates: For G strongly
convex in θ,

|g1
t (x)− g∗(x)| = O

(
|θt(λ)− θ∗(λ)|

)
,

|g2
t (x)− g∗(x)| = o

(
|θt(λ)− θ∗(λ)|

)
,

|g3
t (x)− g∗(x)| = O

(
|θt(λ)− θ∗(λ)|2

)
.

0 50 100 150
t

10−11

10−7

10−3

|g1
t − g∗|
|g2
t − g∗|
|g3
t − g∗|
|zt − z∗|

17/22

Analysis for min-min problems [Ablin et al. 2020]

Context: min-min problems where F = G

⇒ Here, ∂F
∂θ
(λ, θ∗) = 0

We consider the 3 gradient estimates:
▶ g1 = ∂G

∂λ (λ, θ
t) Analysis

▶ g2 = ∂G
∂λ (λ, θ

t) + ∂G
∂θ (λ, θ

t)∂θ
t

∂λ Automatic

▶ g3 = ∂G
∂λ (λ, θ

t)− ∂G
∂θ (λ, θ

t)∂
2G
∂θ2

−1
(λ, θt) ∂2G

∂θ∂λ(λ, θ
t) Implicit

Convergence rates: For G strongly
convex in θ,

|g1
t (x)− g∗(x)| = O

(
|θt(λ)− θ∗(λ)|

)
,

|g2
t (x)− g∗(x)| = o

(
|θt(λ)− θ∗(λ)|

)
,

|g3
t (x)− g∗(x)| = O

(
|θt(λ)− θ∗(λ)|2

)
.

0 50 100 150
t

10−11

10−7

10−3

|g1
t − g∗|
|g2
t − g∗|
|g3
t − g∗|
|zt − z∗|

17/22

Analysis for min-min problems [Ablin et al. 2020]

Context: min-min problems where F = G

⇒ Here, ∂F
∂θ
(λ, θ∗) = 0

We consider the 3 gradient estimates:
▶ g1 = ∂G

∂λ (λ, θ
t) Analysis

▶ g2 = ∂G
∂λ (λ, θ

t) + ∂G
∂θ (λ, θ

t)∂θ
t

∂λ Automatic

▶ g3 = ∂G
∂λ (λ, θ

t)− ∂G
∂θ (λ, θ

t)∂
2G
∂θ2

−1
(λ, θt) ∂2G

∂θ∂λ(λ, θ
t) Implicit

Convergence rates: For G strongly
convex in θ,

|g1
t (x)− g∗(x)| = O

(
|θt(λ)− θ∗(λ)|

)
,

|g2
t (x)− g∗(x)| = o

(
|θt(λ)− θ∗(λ)|

)
,

|g3
t (x)− g∗(x)| = O

(
|θt(λ)− θ∗(λ)|2

)
.

0 50 100 150
t

10−11

10−7

10−3

|g1
t − g∗|
|g2
t − g∗|
|g3
t − g∗|
|zt − z∗|

17/22

Analysis for non-smooth min-min problems [Malezieux et al. 2022]

Context: dictionary learning, F = G with an ℓ1-regularization for θ.

Issue: The implicit gradient quality mostly depends on the support
identifiaction,(∂θ∗

∂Dl

)
S∗

= −(D⊤
:,S∗D:,S∗)−1(Dlθ

∗⊤ + (D⊤
l θ∗ − yl)Idn)S∗ ,

⇒ Is the autodiff approach better than the analytic one?

18/22

Analysis for non-smooth min-min problems [Malezieux et al. 2022]

On the support, the function is smooth and we recover the same
convergence.

100 102 104

Iterations N

10-3

100

0

20

100 102 104

Iterations N

0

10

‖J
N l
−
J
∗ l
‖

100 102 104

Iterations N

10-8

10-2

0

10

20

100 102 104

Iterations N

0

20

Max BP depth
full 200 50 20

‖JNl − J ∗l ‖ ‖SN −S ∗ ‖0

19/22

Analysis for non-smooth min-min problems [Malezieux et al. 2022]

Outside of the support, errors can accumulate and the gradient can blow up.

100 102 104

Iterations N

10-3

100

0

20

100 102 104

Iterations N

0

10

‖J
N l
−
J
∗ l
‖

100 102 104

Iterations N

10-8

10-2

0

10

20

100 102 104

Iterations N

0

20

Max BP depth
full 200 50 20

‖JNl − J ∗l ‖ ‖SN −S ∗ ‖0

20/22

Conclusion

▶ Bi-level optimization is intrinsic in many ML problems.
▶ Classical optimization method can be used once we know how to

compute the gradient.
▶ The gradient can be computed either using implicit function theorem or

algorithm unrolling.
▶ No clear winner, this depends on the problem at end!

Current work:
▶ Efficient and stochastic bi-level solvers,
▶ Application of bi-level solvers to Data-Augmentation problems for EEG.

⇒ Stay tuned!

Slides will be on my web page:

tommoral.github.io @tomamoral

21/22

tommoral.github.io
https://twitter.com/tomamoral

Thanks to all my bi-level collaborators!

22/22

	Implicit Gradient
	Algorithm Unrolling

