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Reissner-Nordström-(Anti-)de Sitter (RN(A)dS)
charged black hole solutions to Einstein-Maxwell System

Spacetime (M, g): a 4-dimensional Lorentzian manifold.

Timelike: g(X,X) > 0,
Null: g(X,X) = 0,
Spacelike: g(X,X) < 0.

Spherically symmetric solutions to Einstein-Maxwell system:
RN(A)dS charged black hole spacetime,

M = R4\{0} = Rt×]0,+∞[r×S2
θ,ϕ ,

g = f(r)dt2 − 1

f(r)
dr2 − r2dω2 ,

f(r) = 1− 2M

r
+
Q2

r2
− Λr2 .
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Black hole spacetime
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Black Holes Dynamical �Inter-horizon� Interiors
A Model of the dynamical interior of Reissner-Nordström-type black hole

Black hole interior: M = Rt × Rx × S2
ω

g = −f(r)
(
dt2 − dx2

)
− r2dω2

r = r(t) de�ned by:
dr

dt
= f(r)

Renaming old t as x.

(1) f ∈ C∞ ([r−, r+]),

(2) f < 0 on (r−, r+),

(3) f(r±) = 0 6= f ′(r±).
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Horizons as boundaries

We de�ne u = t− x , v = t+ x , and we add toM:

H L
r−

:= {r = r−} × Rv × S2
ω ,

H R
r−

:= {r = r−} × Ru × S2
ω ,

H L
r
+

:= {r = r+} × Ru × S2
ω ,

H R
r
+

:= {r = r+} × Rv × S2
ω .
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The General model
Penrose-Carter diagram

M

H L
r− H R

r−

H L
r+

H R
r+

bc bci+

Sr+

i+

Sr−

Σ0

Σt

x
=

cs
tv

=
cst u

=
cs
t

uv

t
x

t =
cs
t

b

b

The interior between the Cauchy and the event horizons.
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Scattering

General Idea:

Past Pro�le
Scattering Operator←−−−−−−−−−−−→ Future Pro�le
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Stationary Approach
of scattering

1st Approach: Via the transmission and re�ection coe�cients.

Dynamic in time
Fourier−−−−→ Stationary: �xed frequency

Scattering Matrix S
Sφin = φout
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Dynamic Approach
of scattering

2nd Approach: Via the wave operators.

∀φ ∈ H, ∃φ̃ ∈ H, and vice�versa, such that:∥∥∥U0(t, 0)φ̃− U(t, 0)φ
∥∥∥
H
−−−−→
t→±∞

0.

~w�
W± = s− lim

t→±∞
U(0, t)U0(t, 0) ; Ω± = s− lim

t→±∞
U0(0, t)U(t, 0) .

Scattering Operator S = Ω+W−.
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Geometric (Conformal)
of scattering

3rd Approach: Via the trace operators.
Rescale and compactify (if necessary), then take �traces�.

Trace operators

T±(Φ̂0) = Φ̂|I±

Scattering operator

S = T+(T−)−1

i+

i−

i0i0

I +

I −

bc

bcbc

bc

T+

T−

Φ̂0

Φ̂+

Σ0

Φ̂+

Φ̂−Φ̂−

Φ̂
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Historical Context of Scattering Inside BHs
and the motivation by the Cosmic Censorship Conjecture

R. Penrose and M. Simpson (1973): numerically, blue shift inside
RN at the Cauchy horizon.

S. Chandrasekhar and J.B. Hartle (1982): blow-up for perturba-
tions of linearized gravity in RN.
D. Häfner, J.P. Nicolas, and M.M. (2020): scattering for charged
and massive Dirac �elds inside RN(A)dS.
M.M. (2021): conformal approach for Dirac inside RN(A)dS using
the waves re-interpretation method.
C. Kehle and Y. Shlapentokh-Rothman (2019): scattering for Lin-
ear waves in RN directly between the two horizons.
M.M. and R. Nasser (2021): scattering breakdown for linear waves
between the horizons and an intermediate hypersurface inside
RN(A)dS.
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Dirac Equation

Charged and massive Dirac equations:{(
∇AA′ − iqAAA′

)
φA = m√

2
χA
′
,(

∇AA′ − iqAAA′
)
χA
′

= − m√
2
φA ,

Ψ = t
(
φ0, φ1, χ

0′ , χ1′
)

:M→ C4

Always possesses a conserved current de�ning an L2-norm.
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Hamiltonian Formulation

The Schrödinger form of Dirac's equation: ∂tΨ(t) = iH(t)Ψ(t)

in H = L2(Σ = R× S2 ; C4) , ‖Ψ‖2H =

∫
Σ

|Ψ|2dxdω

Comparison dynamics at each horizon: H±0 “ = ” lim
t→±∞

H(t).
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Scattering Theory for Dirac Fields

Theorem (D.Häfner , J.-P. Nicolas , M.M.)

W± and Ω± are well-de�ned on H as:

W± = s− lim
t→±∞

U(0, t)eitH
±
0 ,

Ω± = s− lim
t→±∞

e−itH
±
0 U(t, 0) ,

are unitary on H.

W±Ω± = Ω±W± = IdH .

Scattering operator S = Ω+W− is unitary on H.

Theorem (M.M.)

The trace and scattering operators are isometries: S = T+(T−)−1,

T∓ : Ht ' L2(Σt ;C4) −→ L2(H L
r±

;C2)⊕ L2(H R
r±

;C2)
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The Wave Equation

The geometric wave equation:

�gφ = 0.

In (t, x, θ, ϕ) coordinates:

�g = ∇a∇a =
1

f
(∂2
x − ∂2

t )− 2

r
∂t −

1

r2
∆S2

15 / 32



Energy-momentum tensor

The energy-momentum tensor

Tab := ∇aφ∇bφ−
1

2
gab∇cφ∇cφ .

It satis�es:

Divergence-free:

�gφ = 0 =⇒ ∇aTab = 0.

Dominant Energy Cond. : for X and Y causal

TabX
aY b ≥ 0

.
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Energy

For X a vector �eld , S a hypersurface:
The geometric �energy� �ux:
let Ja = TabXb,

EX [φ](S) :=

∫
S

iJdVolg.

If X is timelike and S is spacelike, E is de�nite positive (by
D.O.E.). Gives norm on φ.

If X is Killing, E is conserved (by Stokes' theorem).
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EX [φ](S) :=

∫
S

iJdVolg.

If X is timelike and S is spacelike, E is de�nite positive (by
D.O.E.). Gives norm on φ.

If X is Killing, E is conserved (by Stokes' theorem).

However, inside the black hole there is no timelike Killing vector �eld!
Therefore, no energy norm is conserved.
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Energies

Choose X to be T := ∂t.

E [φ](t) :=ET [φ](Σt) =

∫
Σt

T00r
2dx ∧ dω2

=
1

2

∫
Rx×{t}×S2

ω

(
(∂tφ)2 + (∂xφ)2 − f

r2
|∇S2φ|2

)
r2dxd2ω

T extends smoothly and becomes normal to the horizons:

ET [φ](H R
r−

) =

∫
Ru×{r−}×S2

(∂uφ)2r2
−dud2ω,

ET [φ](H L
r−

) =

∫
Rv×{r−}×S2

(∂vφ)2r2
−dvd2ω.
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Finite Energy Spaces

C∞c (t) := C∞c (Σt)× C∞c (Σt) with the energy norm ‖(ψ0, ψ1)‖E(t)

‖(φ(t), ∂tφ(t))‖2E(t) := E [φ](t)

H(t) the �nite energy space: completion of C∞c (t).

H+ on the Cauchy horizon Hr− with norm

‖(ξ, ζ)‖H+ =

(∫
Ru×S2

(∂uξ)
2r2
−dud2ω +

∫
Rv×S2

(∂vζ)2r2
−dvd2ω

) 1
2

.

H− analogously on the event horizon Hr+ .
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Direct scattering between the two horizons

Theorem (C. Kehle, Y. Shlapentokh-Rothman)

In the interior of a Reissner�Nordström black hole ( Λ = 0), the
scattering map S : H− → H+ is a Hilbert space isomorphism.

S(Φ−) = φ|Hr−

Theorem (C. Kehle, Y. Shlapentokh-Rothman)

C1-blowup at the Cauchy horizon.
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Breakdown result
Due to C. Kehle and Y. Shlapentokh-Rothman

Theorem (C. Kehle, Y. Shlapentokh-Rothman)

Breakdown of scattering for generic Klein-Gordon and cosmological
settings (Λ 6= 0):
∃(φn)n with ET [φn](Hr+) = 1 ∀n, but lim

n→∞
ET [φn](Hr−) =∞.

21 / 32



Breakdown of Scattering between the horizons and Σt

Theorem (R. Nasser , M.M.)

The trace mappings T± : H(0)→ H±, de�ned by:

T∓(Φ0,Ψ0) = (φ|H L
r±
, φ|H R

r±
), (Φ0,Ψ0) ∈ C∞c (0)

are linear bounded maps but they do not have bounded inverses.

22 / 32



Decaying sequence

There exist �decaying� sequences (φ±n )n of solutions:

φ±n |Σ0
∈ C∞c (Σ0) and E [φ±n ](0) = 1 ∀n,

and

lim
n→∞

lim
t→±∞

E [φ±n ](t) = 0.

Note that

lim
t→±∞

E [φ±n ](t) = ‖T±(φn(0), ∂tφn(0))‖H± .

23 / 32



Cause of failure
Conditional (non-uniform) Scattering

As we shall see, the breakdown of scattering is a direct consequence of
the behavior of solutions at high angular momenta (`) and small

spatial frequencies (ω).

However,∫
Σt

|∇S2φ|2dxd2ω ≤ D
∫

Σt

|∂xφ|2dxd2ω, ∀t ≥ 0, (Cond.)

yields a �scattering theory�!

One way to impose (Cond.): |ω| ≥ ω0 > 0 and ` ≤ `0.
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Reduction to 1+1-dimensions and rescaling

Simplify �φ = 0 by rescaling u := rφ.

Decompose on spherical harmonics u =
∑
` u`(t, x)Y`(θ, ϕ):

∂2
t u` − ∂2

xu` + V`(t)u` = 0 , (?`)

V` = − f
r2

(
`(`+ 1) + rf ′

)
Note that V` > 0 only for ` ≥ `0 > 0.

Auxiliary �energy�:

E`[u](t) =

∫
Rx

(∂tu`)
2 + (∂xu`)

2 + V`u
2
`dx.

Note that E`[u] h E`[φ] for all ` ≥ `0.
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Decompose on spherical harmonics u =
∑
` u`(t, x)Y`(θ, ϕ):

∂2
t u` − ∂2

xu` + V`(t)u` = 0 , (?`)

V` = − f
r2

(
`(`+ 1) + rf ′

)
Note that V` > 0 only for ` ≥ `0 > 0.

Auxiliary �energy�:
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A general potential

A general form of Equation (?`):

∂2
t u− ∂2

xu+ V (t)u = 0 , (t, x) ∈ R+
t × Rx (?)

with{
0 < V ∈ C∞(R+)

V ′ < 0 and V h e−λt, ∀t > tlarge ≥ 0 with λ > 0.
(GC)

Note that V` satis�es (GC) for ` ≥ `0 on both t = ±∞.
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Proposition

Consider (?) with V satisfying (GC) and

E[u](t) =

∫
Rx

(∂tu)2 + (∂xu)2 + V u2dx.

∃(un)n of solutions to (?) such that E[un](0) = 1 and
un(0, x) ∈ C∞c (Rx) for all n, and

lim
n→∞

lim
t→+∞

E[un](t) = 0.

Black hole case follows as a corollary.
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but �rst a toy-model...

Consider the case V (t) = e−λt, ∀t ∈ R+.

Take Fourier transform of (?) in x:

û′′ω(t) + (ω2 + e−λt)ûω(t) = 0.

Explicit solution using Bessel functions.

Carefully chosen (ûω(0), û′ω(0)):

Eω[ûω](t) = |û′ω(t)|2 + (ω2 + V (t))|ûω(t)|2 ω→0−−−−→
t→+∞

0.

28 / 32



but �rst a toy-model...

Consider the case V (t) = e−λt, ∀t ∈ R+.

Take Fourier transform of (?) in x:
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Toy-model: decaying sequence

For ω = 0:

(û0(0), û′0(0)) =

(
2J0

(
2

λ

)
, 2J1

(
2

λ

))
û0(t) = J0

(
2

λ
e−

1
2λt

)
and indeed

E0[û0](t) −−−−→
t→+∞

0

Decaying sequence: ϕ ∈ C∞c (Rx) with ‖ϕ‖L2 = 1,

(un(0, x), ∂tun(0, x)) =
2ϕ( xn )√

n

(
J0

(
2

λ

)
, J1

(
2

λ

))
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Idea of the proof of the proposition

û′′(t) + (w2 + V (t))û(t) = 0.

Let t0(n) ≥ tlarge and ω ∈ [− 1
n ,

1
n ] :

û(t0(n)) 6= 0 ; û′n(t0(n)) = 0.

Then:

lim
t→+∞

Eω[ûn](t)

Eω[ûn](t0(n))
.

1

n
.

Let ϕ ∈ C∞c (Rx) such that ‖ϕ‖L2 = 1,{
un(t0(n), x) = 1

nϕ( xn2 )

∂tun(t0(n), x) = 0.

Then (un)n is the decaying sequence we are looking for.
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Analytic scattering: wave operators

Scattering breakdown for (?):

Full dynamics: H(t) =
(
H1(R)× L2(R), ‖ · ‖E(t)

)
∂tŨ(t) = iH(t)Ũ(t) ⇐⇒ (?)

Comparison dynamics: H+ = Ḣ1(R)× L2(R)

∂tŨ(t) = iH+Ũ(t) ⇐⇒ ∂2
t u− ∂2

xu = 0

Theorem

The inverse wave operator Ω, de�ned by

ΩU = lim
t→+∞

e−itH+U(t, 0)U for U ∈ C∞c (R)× C∞c (R),

extends to a bounded linear map from H(0) to H+,

but Ω does not admit a bounded inverse.

Analgous theorem for black hole interior.
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∂tŨ(t) = iH(t)Ũ(t) ⇐⇒ (?)
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Perspective and open questions

Expectations:

Such a breakdown to be generic.

The same phenomena inside rotating black holes.

The same to happen for Maxwell �elds.

Applications beyond black holes.

Questions:

Implication of intermediate scattering breakdown only?

Physical mechanism?

Blue-shift? Or a new phenomenon?

Is ω = 0 some kind of a �resonance�?

De�ne resonances in such settings?
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