Scattering of Test Fields in the Interior of Black Holes

Mokdad (Rémi) Mokdad Institut de Mathématiques de Bourgogne Univeristé de Bourgogne

Collaborators: D. Häfner (IF – UGA), J.-P. Nicolas (LMBA – UBO), R. Nasser (ETH – Zürich)

> Séminaires Mathématiques-Physique IMB – UB – Dijon Jan. 12, 2022

Reissner-Nordström-(Anti-)de Sitter (RN(A)dS)

charged black hole solutions to Einstein-Maxwell System

- Spacetime (\mathcal{M}, g) : a 4-dimensional Lorentzian manifold.
 - Timelike: g(X, X) > 0,
 - Null: g(X, X) = 0,
 - Spacelike: g(X, X) < 0.

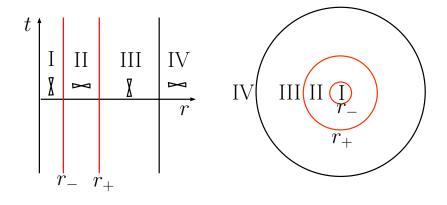
Reissner-Nordström-(Anti-)de Sitter (RN(A)dS) charged black hole solutions to Einstein-Maxwell System

- Spacetime (\mathcal{M}, g) : a 4-dimensional Lorentzian manifold.
- Spherically symmetric solutions to Einstein-Maxwell system: RN(A)dS **charged** black hole spacetime,

$$\mathcal{M} = \mathbb{R}^4 \setminus \{0\} = \mathbb{R}_t \times]0, +\infty[_r \times S^2_{\theta,\varphi} ,$$

$$\begin{split} g &= f(r) \mathrm{d}t^2 - \frac{1}{f(r)} \mathrm{d}r^2 - r^2 \mathrm{d}\omega^2 \;, \\ f(r) &= 1 - \frac{2M}{r} + \frac{Q^2}{r^2} - \Lambda r^2 \;. \end{split}$$

Black hole spacetime



Black hole interior: $\mathcal{M} = \mathbb{R}_t \times \mathbb{R}_x \times S^2_\omega$

$$g = -f(r)\left(\mathrm{d}t^2 - \mathrm{d}x^2\right) - r^2\mathrm{d}\omega^2$$

r = r(t) defined by:

$$\frac{\mathrm{d}r}{\mathrm{d}t} = f(r)$$

Renaming old t as x.

Black hole interior: $\mathcal{M} = \mathbb{R}_t \times \mathbb{R}_x \times S^2_\omega$

$$g = -f(r)\left(\mathrm{d}t^2 - \mathrm{d}x^2\right) - r^2\mathrm{d}\omega^2$$

r = r(t) defined by:

$$\frac{\mathrm{d}r}{\mathrm{d}t} = f(r)$$

Renaming old t as x.

(1) $f \in \mathcal{C}^{\infty}([r_-, r_+]),$

Black hole interior: $\mathcal{M} = \mathbb{R}_t \times \mathbb{R}_x \times S^2_\omega$

$$g = -f(r)\left(\mathrm{d}t^2 - \mathrm{d}x^2\right) - r^2\mathrm{d}\omega^2$$

r = r(t) defined by:

$$\frac{\mathrm{d}r}{\mathrm{d}t} = f(r)$$

Renaming old t as x.

(1)
$$f \in \mathcal{C}^{\infty}([r_{-}, r_{+}]),$$

(2) $f < 0$ on $(r_{-}, r_{+}),$

Black hole interior: $\mathcal{M} = \mathbb{R}_t \times \mathbb{R}_x \times S^2_\omega$

$$g = -f(r)\left(\mathrm{d}t^2 - \mathrm{d}x^2\right) - r^2\mathrm{d}\omega^2$$

r = r(t) defined by:

$$\frac{\mathrm{d}r}{\mathrm{d}t} = f(r)$$

Renaming old t as x.

(1)
$$f \in C^{\infty}([r_-, r_+]),$$

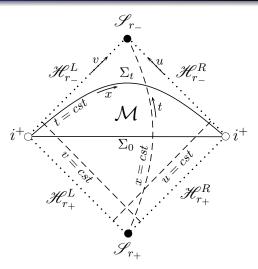
(2) $f < 0$ on $(r_-, r_+),$
(3) $f(r_{\pm}) = 0 \neq f'(r_{\pm}).$

We define u = t - x, v = t + x, and we add to \mathcal{M} :

$$\begin{split} \mathscr{H}_{r_{-}}^{L} &:= & \{r=r_{-}\} \times \mathbb{R}_{v} \times \mathrm{S}_{\omega}^{2} \,, \\ \mathscr{H}_{r_{-}}^{R} &:= & \{r=r_{-}\} \times \mathbb{R}_{u} \times \mathrm{S}_{\omega}^{2} \,, \\ \mathscr{H}_{r_{+}}^{L} &:= & \{r=r_{+}\} \times \mathbb{R}_{u} \times \mathrm{S}_{\omega}^{2} \,, \\ \mathscr{H}_{r_{+}}^{R} &:= & \{r=r_{+}\} \times \mathbb{R}_{v} \times \mathrm{S}_{\omega}^{2} \,. \end{split}$$

The General model

Penrose-Carter diagram

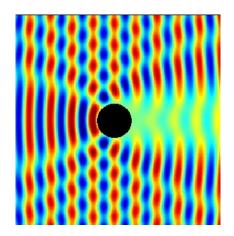


The interior between the Cauchy and the event horizons.

Scattering

General Idea:

 $Past Profile \xleftarrow{\text{Scattering Operator}} Future Profile$



1^{st} Approach: Via the transmission and reflection coefficients.

Dynamic in time $\xrightarrow{\text{Fourier}}$ Stationary: fixed frequency Scattering Matrix S

$$S\phi_{in} = \phi_{out}$$

Dynamic Approach of scattering

 2^{nd} Approach: Via the wave operators.

 $\forall \phi \in \mathcal{H}, \exists \tilde{\phi} \in \mathcal{H}, \text{ and vice-versa, such that:}$

$$\left\| U_0(t,0)\tilde{\phi} - U(t,0)\phi \right\|_{\mathcal{H}} \xrightarrow[t \to \pm\infty]{} 0.$$

Dynamic Approach of scattering

 2^{nd} Approach: Via the wave operators.

Dynamic Approach of scattering

~

 2^{nd} Approach: Via the wave operators.

$$\begin{aligned} \forall \phi \in \mathcal{H}, \ \exists \phi \in \mathcal{H}, \ \text{and vice-versa, such that:} \\ & \left\| U_0(t,0)\tilde{\phi} - U(t,0)\phi \right\|_{\mathcal{H}} \xrightarrow[t \to \pm \infty]{} 0. \end{aligned}$$
$$(1) \\ W^{\pm} = s - \lim_{t \to \pm \infty} U(0,t)U_0(t,0) \quad ; \quad \Omega^{\pm} = s - \lim_{t \to \pm \infty} U_0(0,t)U(t,0) \end{aligned}$$

Scattering Operator $S = \Omega^+ W^-$.

Geometric (Conformal)

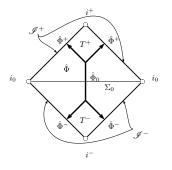
 3^{rd} Approach: Via the trace operators. Rescale and compactify (if necessary), then take "traces".

Trace operators

$$T^{\pm}(\hat{\Phi}_0) = \hat{\Phi}|_{\mathscr{I}^{\pm}}$$

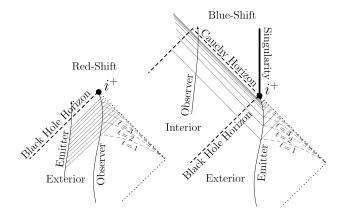
Scattering operator

$$S = T^+ (T^-)^{-1}$$



and the motivation by the Cosmic Censorship Conjecture

• R. Penrose and M. Simpson (1973): numerically, blue shift inside RN at the Cauchy horizon.



- R. Penrose and M. Simpson (1973): numerically, blue shift inside RN at the Cauchy horizon.
- S. Chandrasekhar and J.B. Hartle (1982): blow-up for perturbations of linearized gravity in RN.

- R. Penrose and M. Simpson (1973): numerically, blue shift inside RN at the Cauchy horizon.
- S. Chandrasekhar and J.B. Hartle (1982): blow-up for perturbations of linearized gravity in RN.
- D. Häfner, J.P. Nicolas, and M.M. (2020): scattering for charged and massive Dirac fields inside RN(A)dS.

- R. Penrose and M. Simpson (1973): numerically, blue shift inside RN at the Cauchy horizon.
- S. Chandrasekhar and J.B. Hartle (1982): blow-up for perturbations of linearized gravity in RN.
- D. Häfner, J.P. Nicolas, and M.M. (2020): scattering for charged and massive Dirac fields inside RN(A)dS.
- M.M. (2021): conformal approach for Dirac inside RN(A)dS using the waves re-interpretation method.

- R. Penrose and M. Simpson (1973): numerically, blue shift inside RN at the Cauchy horizon.
- S. Chandrasekhar and J.B. Hartle (1982): blow-up for perturbations of linearized gravity in RN.
- D. Häfner, J.P. Nicolas, and M.M. (2020): scattering for charged and massive Dirac fields inside RN(A)dS.
- M.M. (2021): conformal approach for Dirac inside RN(A)dS using the waves re-interpretation method.
- C. Kehle and Y. Shlapentokh-Rothman (2019): scattering for Linear waves in RN *directly* between the two horizons.

- R. Penrose and M. Simpson (1973): numerically, blue shift inside RN at the Cauchy horizon.
- S. Chandrasekhar and J.B. Hartle (1982): blow-up for perturbations of linearized gravity in RN.
- D. Häfner, J.P. Nicolas, and M.M. (2020): scattering for charged and massive Dirac fields inside RN(A)dS.
- M.M. (2021): conformal approach for Dirac inside RN(A)dS using the waves re-interpretation method.
- C. Kehle and Y. Shlapentokh-Rothman (2019): scattering for Linear waves in RN *directly* between the two horizons.
- M.M. and R. Nasser (2021): scattering breakdown for linear waves between the horizons and an intermediate hypersurface inside RN(A)dS.

Charged and massive Dirac equations:

$$\begin{cases} \left(\nabla^{AA'} - iqA^{AA'}\right)\phi_A &= \frac{m}{\sqrt{2}}\chi^{A'},\\ \left(\nabla_{AA'} - iqA_{AA'}\right)\chi^{A'} &= -\frac{m}{\sqrt{2}}\phi_A, \end{cases}$$

$$\Psi = {}^{\mathrm{t}}\left(\phi_0, \phi_1, \chi^{0'}, \chi^{1'}\right) : \mathcal{M} \to \mathbb{C}^4$$

Charged and massive Dirac equations:

$$\begin{cases} \left(\nabla^{AA'} - iqA^{AA'}\right)\phi_A &= \frac{m}{\sqrt{2}}\chi^{A'},\\ \left(\nabla_{AA'} - iqA_{AA'}\right)\chi^{A'} &= -\frac{m}{\sqrt{2}}\phi_A, \end{cases}$$

$$\Psi = {}^{\mathrm{t}}\left(\phi_0, \phi_1, \chi^{0'}, \chi^{1'}\right) : \mathcal{M} \to \mathbb{C}^4$$

Always possesses a conserved current defining an L^2 -norm.

• The Schrödinger form of Dirac's equation: $\partial_t \Psi(t) = i H(t) \Psi(t)$

in
$$\mathcal{H} = L^2(\Sigma = \mathbb{R} \times S^2; \mathbb{C}^4), \|\Psi\|_{\mathcal{H}}^2 = \int_{\Sigma} |\Psi|^2 dx d\omega$$

• The Schrödinger form of Dirac's equation: $\partial_t \Psi(t) = i H(t) \Psi(t)$

in
$$\mathcal{H} = L^2(\Sigma = \mathbb{R} \times S^2; \mathbb{C}^4), \|\Psi\|_{\mathcal{H}}^2 = \int_{\Sigma} |\Psi|^2 dx d\omega$$

• Comparison dynamics at each horizon: H_0^{\pm} "=" $\lim_{t \to \pm \infty} H(t)$.

Scattering Theory for Dirac Fields

Theorem (D.Häfner , J.-P. Nicolas , M.M.)

 W^{\pm} and Ω^{\pm} are well-defined on ${\cal H}$ as:

$$W^{\pm} = s - \lim_{t \to \pm \infty} \mathcal{U}(0, t) e^{itH_0^{\pm}},$$

$$\Omega^{\pm} = s - \lim_{t \to \pm \infty} e^{-itH_0^{\pm}} \mathcal{U}(t, 0),$$

are unitary on \mathcal{H} .

$$W^{\pm}\Omega^{\pm} = \Omega^{\pm}W^{\pm} = \mathrm{Id}_{\mathcal{H}} \,.$$

Scattering operator $S = \Omega^+ W^-$ is unitary on \mathcal{H} .

Scattering Theory for Dirac Fields

Theorem (D.Häfner , J.-P. Nicolas , M.M.)

 W^{\pm} and Ω^{\pm} are well-defined on ${\cal H}$ as:

$$W^{\pm} = s - \lim_{t \to \pm \infty} \mathcal{U}(0, t) e^{itH_0^{\pm}},$$

$$\Omega^{\pm} = s - \lim_{t \to \pm \infty} e^{-itH_0^{\pm}} \mathcal{U}(t, 0),$$

are unitary on \mathcal{H} .

$$W^{\pm}\Omega^{\pm} = \Omega^{\pm}W^{\pm} = \mathrm{Id}_{\mathcal{H}} \,.$$

Scattering operator $S = \Omega^+ W^-$ is unitary on \mathcal{H} .

Theorem (M.M.)

The trace and scattering operators are isometries: $S = T^+(T^-)^{-1}$,

$$T^{\mp} : \mathcal{H}_t \simeq L^2(\Sigma_t; \mathbb{C}^4) \longrightarrow L^2(\mathscr{H}^L_{r_{\pm}}; \mathbb{C}^2) \oplus L^2(\mathscr{H}^R_{r_{\pm}}; \mathbb{C}^2)$$

The geometric wave equation:

$$\Box_g \phi = 0.$$

In (t, x, θ, φ) coordinates:

$$\Box_g = \nabla^a \nabla_a = \frac{1}{f} (\partial_x^2 - \partial_t^2) - \frac{2}{r} \partial_t - \frac{1}{r^2} \Delta_{\mathcal{S}^2}$$

Energy-momentum tensor

The energy-momentum tensor

$$\mathbf{T}_{ab} :=
abla_a \phi
abla_b \phi - rac{1}{2} g_{ab}
abla^c \phi
abla_c \phi \; .$$

Energy-momentum tensor

The energy-momentum tensor

$$\mathbf{T}_{ab} :=
abla_a \phi
abla_b \phi - rac{1}{2} g_{ab}
abla^c \phi
abla_c \phi \ .$$

It satisfies:

• Divergence-free:

$$\Box_g \phi = 0 \implies \nabla^a \mathbf{T}_{ab} = 0.$$

Energy-momentum tensor

The energy-momentum tensor

$$\mathbf{T}_{ab} :=
abla_a \phi
abla_b \phi - rac{1}{2} g_{ab}
abla^c \phi
abla_c \phi \ .$$

It satisfies:

.

• Divergence-free:

$$\Box_g \phi = 0 \implies \nabla^a \mathbf{T}_{ab} = 0.$$

• Dominant Energy Cond. : for X and Y causal

 $\mathbf{T}_{ab}X^aY^b \ge 0$

For X a vector field , S a hypersurface: The geometric "energy" flux: let $J^a = \mathbf{T}^{ab} X_b$, $\mathcal{E}_X[\phi](S) := \int_S i_J \mathrm{dVol}_{\mathbf{g}}.$ For X a vector field , S a hypersurface: The geometric "energy" flux: let $J^a = \mathbf{T}^{ab} X_b$, $\mathcal{E}_X[\phi](S) := \int_S i_J \mathrm{dVol}_{\mathbf{g}}.$

• If X is timelike and S is spacelike, \mathcal{E} is definite positive (by D.O.E.). Gives norm on ϕ .

For X a vector field , S a hypersurface: The geometric "energy" flux: let $J^a = \mathbf{T}^{ab} X_b$, $\mathcal{E}_X[\phi](S) := \int_S i_J \mathrm{dVol}_{\mathbf{g}}.$

• If X is timelike and S is spacelike,
$$\mathcal{E}$$
 is definite positive (by D.O.E.). Gives norm on ϕ .

• If X is Killing, \mathcal{E} is conserved (by Stokes' theorem).

For X a vector field, S a hypersurface: The geometric "energy" flux: let $J^a = \mathbf{T}^{ab} X_b$, $\mathcal{E}_X[\phi](S) := \int_S i_J \mathrm{dVol}_{\mathbf{g}}.$

- If X is timelike and S is spacelike, \mathcal{E} is definite positive (by D.O.E.). Gives norm on ϕ .
- If X is Killing, \mathcal{E} is conserved (by Stokes' theorem).

However, inside the black hole there is no timelike Killing vector field! Therefore, no energy norm is conserved.

Energies

Choose X to be $T := \partial_t$.

$$\mathcal{E}[\phi](t) := \mathcal{E}_T[\phi](\Sigma_t) = \int_{\Sigma_t} \mathbf{T}_{00} r^2 \mathrm{d}x \wedge \mathrm{d}\omega^2$$
$$= \frac{1}{2} \int_{\mathbb{R}_x \times \{t\} \times \mathcal{S}^2_\omega} \left((\partial_t \phi)^2 + (\partial_x \phi)^2 - \frac{f}{r^2} |\nabla_{\mathcal{S}^2} \phi|^2 \right) r^2 \mathrm{d}x \mathrm{d}^2 \omega$$

Energies

Choose X to be $T := \partial_t$.

$$\mathcal{E}[\phi](t) := \frac{1}{2} \int_{\mathbb{R}_x \times \{t\} \times \mathcal{S}^2_\omega} \left((\partial_t \phi)^2 + (\partial_x \phi)^2 - \frac{f}{r^2} |\nabla_{\mathcal{S}^2} \phi|^2 \right) r^2 \mathrm{d}x \mathrm{d}^2 \omega$$

 ${\cal T}$ extends smoothly and becomes normal to the horizons:

$$\mathcal{E}_{T}[\phi](\mathscr{H}_{r_{-}}^{R}) = \int_{\mathbb{R}_{u} \times \{r_{-}\} \times S^{2}} (\partial_{u}\phi)^{2}r_{-}^{2} \mathrm{d}u \mathrm{d}^{2}\omega,$$
$$\mathcal{E}_{T}[\phi](\mathscr{H}_{r_{-}}^{L}) = \int_{\mathbb{R}_{v} \times \{r_{-}\} \times S^{2}} (\partial_{v}\phi)^{2}r_{-}^{2} \mathrm{d}v \mathrm{d}^{2}\omega.$$

Finite Energy Spaces

$$\begin{split} \mathcal{C}_c^{\infty}(t) &:= \mathcal{C}_c^{\infty}(\Sigma_t) \times \mathcal{C}_c^{\infty}(\Sigma_t) \text{ with the energy norm } \|(\psi_0, \psi_1)\|_{\mathcal{E}(t)} \\ \|(\phi(t), \partial_t \phi(t))\|_{\mathcal{E}(t)}^2 &:= \mathcal{E}[\phi](t) \end{split}$$

 $\mathcal{H}(t)$ the finite energy space: completion of $\mathcal{C}_c^{\infty}(t)$.

Finite Energy Spaces

$$\begin{split} \mathcal{C}_c^{\infty}(t) &:= \mathcal{C}_c^{\infty}(\Sigma_t) \times \mathcal{C}_c^{\infty}(\Sigma_t) \text{ with the energy norm } \|(\psi_0, \psi_1)\|_{\mathcal{E}(t)} \\ \|(\phi(t), \partial_t \phi(t))\|_{\mathcal{E}(t)}^2 &:= \mathcal{E}[\phi](t) \end{split}$$

 $\mathcal{H}(t)$ the finite energy space: completion of $\mathcal{C}_c^{\infty}(t)$.

 \mathcal{H}^+ on the Cauchy horizon \mathscr{H}_{r_-} with norm

$$\|(\xi,\zeta)\|_{\mathcal{H}^+} = \left(\int_{\mathbb{R}_u \times \mathcal{S}^2} (\partial_u \xi)^2 r_-^2 \mathrm{d}u \mathrm{d}^2 \omega + \int_{\mathbb{R}_v \times \mathcal{S}^2} (\partial_v \zeta)^2 r_-^2 \mathrm{d}v \mathrm{d}^2 \omega\right)^{\frac{1}{2}}.$$

 \mathcal{H}^- analogously on the event horizon \mathscr{H}_{r_+} .

1

Theorem (C. Kehle, Y. Shlapentokh-Rothman)

In the interior of a **Reissner-Nordström** black hole ($\Lambda = 0$), the scattering map $S : \mathcal{H}^- \to \mathcal{H}^+$ is a Hilbert space isomorphism.

 $S(\Phi_{-}) = \phi|_{\mathscr{H}_{r_{-}}}$

Theorem (C. Kehle, Y. Shlapentokh-Rothman)

In the interior of a **Reissner-Nordström** black hole ($\Lambda = 0$), the scattering map $S : \mathcal{H}^- \to \mathcal{H}^+$ is a Hilbert space isomorphism.

 $S(\Phi_{-}) = \phi|_{\mathscr{H}_{r_{-}}}$

Theorem (C. Kehle, Y. Shlapentokh-Rothman)

 C^1 -blowup at the Cauchy horizon.

Theorem (C. Kehle, Y. Shlapentokh-Rothman)

Breakdown of scattering for generic Klein-Gordon and cosmological settings $(\Lambda \neq 0)$: $\exists (\phi_n)_n \text{ with } \mathcal{E}_T[\phi_n](\mathscr{H}_{r_+}) = 1 \quad \forall n, \text{ but } \lim_{n \to \infty} \mathcal{E}_T[\phi_n](\mathscr{H}_{r_-}) = \infty.$

Theorem (R. Nasser , M.M.)

The trace mappings $T^{\pm}: \mathcal{H}(0) \to \mathcal{H}^{\pm}$, defined by:

$$T^{\mp}(\Phi_0, \Psi_0) = (\phi|_{\mathscr{H}_{r_{\pm}}^L}, \phi|_{\mathscr{H}_{r_{\pm}}^R}), \qquad (\Phi_0, \Psi_0) \in \mathcal{C}_c^{\infty}(0)$$

are linear bounded maps but they do not have bounded inverses.

There exist "decaying" sequences $(\phi_n^{\pm})_n$ of solutions:

$$\begin{split} \phi_n^{\pm}|_{\Sigma_0} \in \mathcal{C}_c^{\infty}(\Sigma_0) \quad and \quad \mathcal{E}[\phi_n^{\pm}](0) = 1 \qquad \forall n, \\ and \\ \lim_{n \to \infty} \lim_{t \to \pm \infty} \mathcal{E}[\phi_n^{\pm}](t) = 0. \end{split}$$

Note that

$$\lim_{t \to \pm \infty} \mathcal{E}[\phi_n^{\pm}](t) = \|T^{\pm}(\phi_n(0), \partial_t \phi_n(0))\|_{\mathcal{H}^{\pm}}.$$

As we shall see, the breakdown of scattering is a direct consequence of the behavior of solutions at high angular momenta (ℓ) and small spatial frequencies (ω) . As we shall see, the breakdown of scattering is a direct consequence of the behavior of solutions at high angular momenta (ℓ) and small spatial frequencies (ω) .

However,

$$\int_{\Sigma_t} |\nabla_{\mathcal{S}^2} \phi|^2 \mathrm{d}x \mathrm{d}^2 \omega \leq D \int_{\Sigma_t} |\partial_x \phi|^2 \mathrm{d}x \mathrm{d}^2 \omega, \quad \forall t \geq 0, \qquad (Cond.)$$

yields a "scattering theory"!

As we shall see, the breakdown of scattering is a direct consequence of the behavior of solutions at high angular momenta (ℓ) and small spatial frequencies (ω) .

However,

$$\int_{\Sigma_t} |\nabla_{\mathcal{S}^2} \phi|^2 \mathrm{d}x \mathrm{d}^2 \omega \leq D \int_{\Sigma_t} |\partial_x \phi|^2 \mathrm{d}x \mathrm{d}^2 \omega, \quad \forall t \geq 0, \qquad (Cond.)$$

yields a "scattering theory"!

One way to impose (Cond.): $|\omega| \ge \omega_0 > 0$ and $\ell \le \ell_0$.

Reduction to 1+1-dimensions and rescaling

• Simplify $\Box \phi = 0$ by rescaling $u := r\phi$.

Reduction to 1+1-dimensions and rescaling

- Simplify $\Box \phi = 0$ by rescaling $u := r\phi$.
- Decompose on spherical harmonics $u = \sum_{\ell} u_{\ell}(t, x) Y_{\ell}(\theta, \varphi)$:

$$\partial_t^2 u_\ell - \partial_x^2 u_\ell + V_\ell(t) u_\ell = 0 , \qquad (\star_\ell)$$
$$V_\ell = -\frac{f}{r^2} \Big(\ell(\ell+1) + rf' \Big)$$

Note that $V_{\ell} > 0$ only for $\ell \ge \ell_0 > 0$.

Reduction to 1+1-dimensions and rescaling

- Simplify $\Box \phi = 0$ by rescaling $u := r\phi$.
- Decompose on spherical harmonics $u = \sum_{\ell} u_{\ell}(t, x) Y_{\ell}(\theta, \varphi)$:

$$\partial_t^2 u_\ell - \partial_x^2 u_\ell + V_\ell(t) u_\ell = 0 , \qquad (\star_\ell)$$
$$V_\ell = -\frac{f}{r^2} \Big(\ell(\ell+1) + rf' \Big)$$

Note that $V_{\ell} > 0$ only for $\ell \ge \ell_0 > 0$.

• Auxiliary "energy":

$$E_{\ell}[u](t) = \int_{\mathbb{R}_x} (\partial_t u_{\ell})^2 + (\partial_x u_{\ell})^2 + V_{\ell} u_{\ell}^2 \mathrm{d}x.$$

Note that $E_{\ell}[u] = \mathcal{E}_{\ell}[\phi]$ for all $\ell \geq \ell_0$.

A general form of Equation (\star_{ℓ}) :

$$\partial_t^2 u - \partial_x^2 u + V(t)u = 0 , \quad (t, x) \in \mathbb{R}_t^+ \times \mathbb{R}_x \tag{(\star)}$$

 with

$$\begin{cases} 0 < V \in \mathcal{C}^{\infty}(\mathbb{R}^+) \\ V' < 0 \quad \text{and} \quad V = e^{-\lambda t}, \quad \forall t > t_{large} \ge 0 \quad \text{with} \quad \lambda > 0. \end{cases}$$
(GC)

Note that V_{ℓ} satisfies (GC) for $\ell \geq \ell_0$ on both $t = \pm \infty$.

Proposition

Consider (\star) with V satisfying (GC) and

$$E[u](t) = \int_{\mathbb{R}_x} (\partial_t u)^2 + (\partial_x u)^2 + V u^2 \mathrm{d}x.$$

 $\exists (u_n)_n \text{ of solutions to } (\star) \text{ such that } E[u_n](0) = 1 \text{ and } u_n(0,x) \in \mathcal{C}_c^{\infty}(\mathbb{R}_x) \text{ for all } n, \text{ and}$

$$\lim_{n \to \infty} \lim_{t \to +\infty} E[u_n](t) = 0.$$

Proposition

Consider (\star) with V satisfying (GC) and

$$E[u](t) = \int_{\mathbb{R}_x} (\partial_t u)^2 + (\partial_x u)^2 + V u^2 \mathrm{d}x.$$

 $\exists (u_n)_n \text{ of solutions to } (\star) \text{ such that } E[u_n](0) = 1 \text{ and } u_n(0,x) \in \mathcal{C}_c^{\infty}(\mathbb{R}_x) \text{ for all } n, \text{ and}$

 $\lim_{n \to \infty} \lim_{t \to +\infty} E[u_n](t) = 0.$

Black hole case follows as a corollary.

but first a toy-model...

Consider the case $V(t) = e^{-\lambda t}, \forall t \in \mathbb{R}^+$.

• Take Fourier transform of (\star) in x:

$$\hat{u}_{\omega}^{\prime\prime}(t)+(\omega^2+e^{-\lambda t})\hat{u}_{\omega}(t)=0.$$

Explicit solution using Bessel functions.

but first a toy-model...

Consider the case $V(t) = e^{-\lambda t}, \forall t \in \mathbb{R}^+$.

• Take Fourier transform of (\star) in x:

$$\hat{u}_{\omega}''(t) + (\omega^2 + e^{-\lambda t})\hat{u}_{\omega}(t) = 0.$$

Explicit solution using Bessel functions.

• Carefully chosen $(\hat{u}_{\omega}(0), \hat{u}'_{\omega}(0))$:

$$E_{\omega}[\hat{u}_{\omega}](t) = |\hat{u}_{\omega}'(t)|^2 + (\omega^2 + V(t))|\hat{u}_{\omega}(t)|^2 \xrightarrow[t \to +\infty]{\omega \to 0} 0.$$

Toy-model: decaying sequence

For
$$\omega = 0$$
:
 $(\hat{u}_0(0), \hat{u}'_0(0)) = \left(2J_0\left(\frac{2}{\lambda}\right), 2J_1\left(\frac{2}{\lambda}\right)\right)$
 $\hat{u}_0(t) = J_0\left(\frac{2}{\lambda}e^{-\frac{1}{2}\lambda t}\right)$

and indeed

$$E_0[\hat{u}_0](t) \xrightarrow[t \to +\infty]{} 0$$

Toy-model: decaying sequence

For
$$\omega = 0$$
:
 $(\hat{u}_0(0), \hat{u}'_0(0)) = \left(2J_0\left(\frac{2}{\lambda}\right), 2J_1\left(\frac{2}{\lambda}\right)\right)$
 $\hat{u}_0(t) = J_0\left(\frac{2}{\lambda}e^{-\frac{1}{2}\lambda t}\right)$

and indeed

$$E_0[\hat{u}_0](t) \xrightarrow[t \to +\infty]{} 0$$

Decaying sequence: $\varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}_{x})$ with $\|\varphi\|_{L^{2}} = 1$,

$$(u_n(0,x),\partial_t u_n(0,x)) = \frac{2\varphi(\frac{x}{n})}{\sqrt{n}} \left(J_0\left(\frac{2}{\lambda}\right), J_1\left(\frac{2}{\lambda}\right) \right)$$

$$\hat{u}''(t) + (w^2 + V(t))\hat{u}(t) = 0.$$

• Let
$$t_0(n) \ge t_{large}$$
 and $\omega \in \left[-\frac{1}{n}, \frac{1}{n}\right]$:

$$\hat{u}(t_0(n)) \neq 0$$
 ; $\hat{u}'_n(t_0(n)) = 0.$

$$\hat{u}''(t) + (w^2 + V(t))\hat{u}(t) = 0.$$

• Let
$$t_0(n) \ge t_{large}$$
 and $\omega \in \left[-\frac{1}{n}, \frac{1}{n}\right]$:

$$\hat{u}(t_0(n)) \neq 0$$
 ; $\hat{u}'_n(t_0(n)) = 0.$

$$\hat{u}''(t) + (w^2 + V(t))\hat{u}(t) = 0.$$

• Let
$$t_0(n) \ge t_{large}$$
 and $\omega \in \left[-\frac{1}{n}, \frac{1}{n}\right]$:

Then:

$$\hat{u}(t_0(n)) \neq 0 \quad ; \quad \hat{u}'_n(t_0(n)) = 0.$$
$$\lim_{t \to +\infty} \frac{E_\omega[\hat{u}_n](t)}{E_\omega[\hat{u}_n](t_0(n))} \lesssim \frac{1}{n}.$$

$$\hat{u}''(t) + (w^2 + V(t))\hat{u}(t) = 0.$$

• Let
$$t_0(n) \ge t_{large}$$
 and $\omega \in \left[-\frac{1}{n}, \frac{1}{n}\right]$:

$$\hat{u}(t_0(n)) \neq 0$$
 ; $\hat{u}'_n(t_0(n)) = 0.$

Then:

$$\lim_{t \to +\infty} \frac{E_{\omega}[\hat{u}_n](t)}{E_{\omega}[\hat{u}_n](t_0(n))} \lesssim \frac{1}{n}.$$

• Let $\varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}_{x})$ such that $\|\varphi\|_{L^{2}} = 1$,

$$\begin{cases} u_n(t_0(n), x) = \frac{1}{n}\varphi(\frac{x}{n^2})\\ \partial_t u_n(t_0(n), x) = 0. \end{cases}$$

Then $(u_n)_n$ is the decaying sequence we are looking for.

Scattering breakdown for $(\star):$

• Full dynamics: $\mathbb{H}(t) = \left(H^1(\mathbb{R}) \times L^2(\mathbb{R}), \|\cdot\|_{E(t)}\right)$

 $\partial_t \tilde{U}(t) = i H(t) \tilde{U}(t) \iff (\star)$

Scattering breakdown for $(\star) :$

• Full dynamics: $\mathbb{H}(t) = (H^1(\mathbb{R}) \times L^2(\mathbb{R}), \|\cdot\|_{E(t)})$

$$\partial_t \tilde{U}(t) = iH(t)\tilde{U}(t) \iff (\star)$$

• Comparison dynamics: $\mathbb{H}^+ = \dot{H}^1(\mathbb{R}) \times L^2(\mathbb{R})$

$$\partial_t \tilde{U}(t) = i H_+ \tilde{U}(t) \iff \partial_t^2 u - \partial_x^2 u = 0$$

Scattering breakdown for $(\star) :$

• Full dynamics: $\mathbb{H}(t) = (H^1(\mathbb{R}) \times L^2(\mathbb{R}), \|\cdot\|_{E(t)})$

$$\partial_t \tilde{U}(t) = iH(t)\tilde{U}(t) \iff (\star)$$

• Comparison dynamics: $\mathbb{H}^+ = \dot{H}^1(\mathbb{R}) \times L^2(\mathbb{R})$

$$\partial_t \tilde{U}(t) = i H_+ \tilde{U}(t) \iff \partial_t^2 u - \partial_x^2 u = 0$$

Scattering breakdown for (\star) :

• Full dynamics: $\mathbb{H}(t) = (H^1(\mathbb{R}) \times L^2(\mathbb{R}), \|\cdot\|_{E(t)})$

$$\partial_t \tilde{U}(t) = iH(t)\tilde{U}(t) \iff (\star)$$

• Comparison dynamics: $\mathbb{H}^+ = \dot{H}^1(\mathbb{R}) \times L^2(\mathbb{R})$

$$\partial_t \tilde{U}(t) = iH_+ \tilde{U}(t) \iff \partial_t^2 u - \partial_x^2 u = 0$$

Theorem

The inverse wave operator Ω , defined by

$$\Omega U = \lim_{t \to +\infty} e^{-itH_+} \mathcal{U}(t,0) U \qquad \text{for } U \in \mathcal{C}^{\infty}_c(\mathbb{R}) \times \mathcal{C}^{\infty}_c(\mathbb{R}).$$

extends to a bounded linear map from $\mathbb{H}(0)$ to \mathbb{H}^+ ,

but Ω does not admit a bounded inverse.

Scattering breakdown for (\star) :

• Full dynamics: $\mathbb{H}(t) = (H^1(\mathbb{R}) \times L^2(\mathbb{R}), \|\cdot\|_{E(t)})$

$$\partial_t \tilde{U}(t) = iH(t)\tilde{U}(t) \iff (\star)$$

• Comparison dynamics: $\mathbb{H}^+ = \dot{H}^1(\mathbb{R}) \times L^2(\mathbb{R})$

$$\partial_t \tilde{U}(t) = iH_+ \tilde{U}(t) \iff \partial_t^2 u - \partial_x^2 u = 0$$

Theorem

The inverse wave operator Ω , defined by

$$\Omega U = \lim_{t \to +\infty} e^{-itH_+} \mathcal{U}(t,0) U \qquad \text{for } U \in \mathcal{C}^{\infty}_c(\mathbb{R}) \times \mathcal{C}^{\infty}_c(\mathbb{R}).$$

extends to a bounded linear map from $\mathbb{H}(0)$ to \mathbb{H}^+ ,

but Ω does not admit a bounded inverse.

Analgous theorem for black hole interior.

Expectations:

• Such a breakdown to be generic.

- Such a breakdown to be generic.
- The same phenomena inside rotating black holes.

- Such a breakdown to be generic.
- The same phenomena inside rotating black holes.
- The same to happen for Maxwell fields.

- Such a breakdown to be generic.
- The same phenomena inside rotating black holes.
- The same to happen for Maxwell fields.
- Applications beyond black holes.

- Such a breakdown to be generic.
- The same phenomena inside rotating black holes.
- The same to happen for Maxwell fields.
- Applications beyond black holes.

Expectations:

- Such a breakdown to be generic.
- The same phenomena inside rotating black holes.
- The same to happen for Maxwell fields.
- Applications beyond black holes.

Questions:

• Implication of intermediate scattering breakdown only?

Expectations:

- Such a breakdown to be generic.
- The same phenomena inside rotating black holes.
- The same to happen for Maxwell fields.
- Applications beyond black holes.

- Implication of intermediate scattering breakdown only?
- Physical mechanism?

Expectations:

- Such a breakdown to be generic.
- The same phenomena inside rotating black holes.
- The same to happen for Maxwell fields.
- Applications beyond black holes.

- Implication of intermediate scattering breakdown only?
- Physical mechanism?
- Blue-shift? Or a new phenomenon?

Expectations:

- Such a breakdown to be generic.
- The same phenomena inside rotating black holes.
- The same to happen for Maxwell fields.
- Applications beyond black holes.

- Implication of intermediate scattering breakdown only?
- Physical mechanism?
- Blue-shift? Or a new phenomenon?
- Is $\omega = 0$ some kind of a "resonance"?

Expectations:

- Such a breakdown to be generic.
- The same phenomena inside rotating black holes.
- The same to happen for Maxwell fields.
- Applications beyond black holes.

- Implication of intermediate scattering breakdown only?
- Physical mechanism?
- Blue-shift? Or a new phenomenon?
- Is $\omega = 0$ some kind of a "resonance"?
- Define resonances in such settings?