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Reissner-Nordstrom-(Anti-)de Slttm (RN(A)dS)

charged black hole solutions to Einstein-Maxwe

@ Spacetime (M, g): a 4-dimensional Lorentzian manifold.
e Timelike: g(X, X) > 0,
e Null: g(X, X) =0,
o Spacelike: g(X,X) < 0.
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Reissner-Nordstrom-(Anti-)de Sitter (RN(A)dS)

charged black hole solutions to Einstein-Maxwell System

@ Spacetime (M, g): a 4-dimensional Lorentzian manifold.

@ Spherically symmetric solutions to Einstein-Maxwell system:
RN(A)dS charged black hole spacetime,

M =R"N{0} = R;x]0, +00[xSj , ,

g = f(r)dt* — %dr2 —r?dw?
2M Q2
f(’/’):l*T+r72*AT2.
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Black hole spacetime
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Black Holes Dynamical “Inter-horizon” Interiors

A Model of the dynamical interior of Reissner-Nordstrém-type black hole

Black hole interior: M = R; x R, x S2
g=—f(r)(dt* — dz®) — r*dw?
r = r(t) defined by:
dr
a - (r)

Renaming old ¢ as z.
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Black Holes Dynamical “Inter-horizon” Interiors

A Model of the dynamical interior of Reissner-Nordstrém-type black hole

Black hole interior: M = R; x R, x S2
g=—f(r)(dt* — dz®) — r*dw?
r = r(t) defined by:
dr
a - (r)

Renaming old ¢ as z.

(1) fec=(lr-,rl),
(2) f <0on (T—7T+)7
(3) flre) =0 f'(re).
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Horizons as boundaries

We define u =t —x, v=t+ x, and we add to M:

%‘j{ = {r=r_} xR, xS%,
jff = {r=r_} xR, x$2,
j‘f;ﬁ = {r=r } xR, xS2,
%ﬂr}f = {r=r;} xR, xS2.
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The Gene1 al model

The interior between the Cauchy and the event horizons.
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Future Profile
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Stationary Approach

of scz

1%t Approach: Via the transmission and reflection coefficients.

Dynamic in time Fourier, Stationary: fixed frequency

Scattering Matrix S
S(bzn = ¢out
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Dynamic Approach

of scattering

2nd Approach: Via the wave operators.

Vo € H, Elg?) € H, and vice—versa, such that:

|vott. 006 — Ut 000
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Dynamic Approach

of scattering

2nd Approach: Via the wave operators.

Vo € H, Elg?) € H, and vice—versa, such that:
|Us(t.06 — Uk, 0)9

I

W+ =s— lim U0,0)Up(t,0) ; QF =s— lim Uy(0,t)U(t,0).

t—+oo t—too

H t—*oo
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Dynamic Approach

of scattering

2nd Approach: Via the wave operators.

Vo € H, Elg?) € H, and vice—versa, such that:
|Us(t.06 — Uk, 0)9

I

W+ =s— lim U0,0)Up(t,0) ; QF =s— lim Uy(0,t)U(t,0).

t—+oo t—too

H t—*oo

Scattering Operator S = QT .
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Geometric (Conformal)

of scattering

374 Approach: Via the trace operators.
Rescale and compactify (if necessary), then take “traces”.

Trace operators

T* (o) = ®| 5+

io

Scattering operator

S=T7H(T")"!
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Historical Context of Scattering Inside BHs

and the motivation by the Cosmic Censorship Conjecture
@ R. Penrose and M. Simpson (1973): numerically, blue shift inside
RN at the Cauchy horizon.

Blue-Shift
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RN at the Cauchy horizon.

e S. Chandrasekhar and J.B. Hartle (1982): blow-up for perturba-
tions of linearized gravity in RN.
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ical Context of Scattering Ins

and the motivation by the Cosmic Censorship Conjecture

o R. Penrose and M. Simpson (1973): numerically, blue shift inside
RN at the Cauchy horizon.

e S. Chandrasekhar and J.B. Hartle (1982): blow-up for perturba-
tions of linearized gravity in RN.

e D. Hifner, J.P. Nicolas, and M.M. (2020): scattering for charged
and massive Dirac fields inside RN(A)dS.

M.M. (2021): conformal approach for Dirac inside RN(A)dS using
the waves re-interpretation method.

e C. Kehle and Y. Shlapentokh-Rothman (2019): scattering for Lin-
ear waves in RN directly between the two horizons.

M.M. and R. Nasser (2021): scattering breakdown for linear waves
between the horizons and an intermediate hypersurface inside
RN(A)dS.
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Dirac Equation

Charged and massive Dirac equations:

{(VAA’ —igAM )ga = TN,

’

(Vaar —igAan)x* = — 504,

v=" (¢o,¢1,x°’,x1/) : M — C*
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Dirac Equation

Charged and massive Dirac equations:

{(VAA’ —igAM )ga = TN,

’

(Vaar —igAan)x* = — 504,

v=" (¢o,¢1,x°’,x1/) : M — C*

Always possesses a conserved current defining an L?-norm.

12 / 32



Hamiltonian Formulation

o The Schrédinger form of Dirac’s equation: 0,%(t) = iH (¢)W¥(t)

in  H=L*(Z=RxS8%; CY, ||‘Il||§_[:/2|\11|2da:dw
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Hamiltonian Formulation

o The Schrédinger form of Dirac’s equation: 0,%(t) = iH (¢)W¥(t)
in H=L*(Z=RxS8%; CY, |V} = / | U 2dedw
b

2

e Comparison dynamics at each horizon: Hy “ = . lirin H(t).
— oo
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Scattering Theory for Dirac Fields
Theorem (D.Hafner , J.-P. Nicolas , M.M.)
W= and QF are well-defined on H as:
WE =s— lim U(0,t)etHs
t—Foo

OF =5~ lim e_itHgLZ/{(t,O) )

t—+oo
are unitary on H.
WEQE = QFTWT =1dy, .

Scattering operator S = QW™ is unitary on H.
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Scattering Theory for Dirac Fields

Theorem (D.Hafner , J.-P. Nicolas , M.M.)
W= and QF are well-defined on H as:

WE =s— lim U(0,t)etHs
t—+oo

OF =5~ lim e_itHgLZ/{(t,O) )

t—+oo
are unitary on H.
WEQE = QFTWT =1dy, .

Scattering operator S = QW™ is unitary on H.

Theorem (M.M.)

The trace and scattering operators are isometries: S =T+ (T~)7 !,

TF : Hy o L2(%;CY) — L2940 :C?) @ L*(947 5 C?)
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The Wave Equation

The geometric wave equation:

D¢ = 0.
In (¢,x,0, ) coordinates:

1

2
Dg:VaV (35—8?)—;8,5—74—2A52

1
O f
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Energy-momentum tensor

The energy-momentum tensor

1
Toy := VoV — igabV%chb .
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Energy-momentum tensor

The energy-momentum tensor

1
Toy := VoV — igabV%chb .

It satisfies:

e Divergence-free:

Oy =0 = VT, = 0.
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Energy-momentum tensor

The energy-momentum tensor

1
Toy := VoV — igabV%chb .

It satisfies:

e Divergence-free:
g0 =0 = V*Ty =0.
@ Dominant Energy Cond. : for X and Y causal

T, XYt >0

16 / 32



For X a vector field , S a hypersurface:
The geometric “energy” flux:
let Jo = T X,,

£x[4](S) = / iydVolg.

S
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For X a vector field , S a hypersurface:
The geometric “energy” flux:
let J® = T X,

£x[6](S) = /S iydVolg.

o If X is timelike and S is spacelike, £ is definite positive (by
D.O.E.). Gives norm on ¢.

o If X is Killing, £ is conserved (by Stokes’ theorem).

However, inside the black hole there is no timelike Killing vector field!
Therefore, no energy norm is conserved.

17 / 32



Energies

Choose X to be T := 0.

E[el(t) :==Er[o](X:) = . Toor?dz A dw?

/ (007 + 0.0 - L9520 ) o
R x{t} xS2 r

N |

18 / 32



Energies

Choose X to be T := 0.

1
ElPl(t) = 5/ ((3t¢)2 + (5z¢)2 - “/;|V52¢|2> r?dzd®w
Ry x{t}xS2 r
T extends smoothly and becomes normal to the horizons:
exlol") = | (0u6r2 dud®s,
B Ry X{r_}x82
Erlel(AF) = / (0y¢)?r? dvd®w.
B R, x{r_}x82
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Finite Energy Spaces

C(t) := C°(X¢) x € (%) with the energy norm ||(bo, V1) |le ()

1(6(t), e () 12y = ELI()

H(t) the finite energy space: completion of C2°(¢).

19 / 32



Finite Energy Spaces

C(t) := C°(X¢) x € (%) with the energy norm ||(bo, V1) |le ()

1(6(t), e () 12y = ELI()

H(t) the finite energy space: completion of C2°(¢).

‘H* on the Cauchy horizon J7,_ with norm

1 O+ = (/ ] (au§)2r3dud2w+/R o (a,g)?ridvd?w) 3

Ry

H~ analogously on the event horizon s .
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Direct scattering between the two horizons

Theorem (C. Kehle, Y. Shlapentokh-Rothman)

In the interior of a Reissner—Nordstrom black hole ( A =0), the
scattering map S : H~ — H™T is a Hilbert space isomorphism.

S(®-) = @l
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Direct scattering between the two horizons

Theorem (C. Kehle, Y. Shlapentokh-Rothman)

In the interior of a Reissner—Nordstrom black hole ( A =0), the
scattering map S : H~ — H™T is a Hilbert space isomorphism.

S(®-) = bl

Theorem (C. Kehle, Y. Shlapentokh-Rothman)
C'-blowup at the Cauchy horizon.
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Breakdown result

Due to C. Kehle and Y. Shlapentokh-Rothman

Theorem (C. Kehle, Y. Shlapentokh-Rothman)

Breakdown of scattering for generic Klein-Gordon and cosmological
settings (A #0):
I(pn)n with Er[pn)(H,) =1 Vn, but ILm Er|dn](H4._) = .

21 / 32



Breakdown of Scattering between the horizons and >3

Theorem (R. Nasser , M.M.)
The trace mappings T+ : H(0) — HE, defined by:

TF (@9, ¥g) = (¢|&ﬁbi ,¢|32';1i s (@0, ¥o) € C°(0)

are linear bounded maps but they do not have bounded inverses.

22 / 32



Decaying sequence

There exist “decaying” sequences ((;Syil)n of solutions:
$E|s, €C°(%0) and E[PE)(0)=1  Vn,
and

lim lim &[¢T](t) = 0.

n—o00 t—+oo

Note that

Jim E[6771(8) = 175 (60(0), 0 (0)) 132+
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Cause of failure

Conditional (non-uniform) Scattering

As we shall see, the breakdown of scattering is a direct consequence of
the behavior of solutions at high angular momenta (¢) and small
spatial frequencies (w).
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Cause of failure

Conditional (non-uniform) Scattering

As we shall see, the breakdown of scattering is a direct consequence of
the behavior of solutions at high angular momenta (¢) and small
spatial frequencies (w).

However,

/ |V s20|?ded®w < D/ 10, ¢2dzd?w, WVt >0, (Cond.)
P Xy

yields a “scattering theory”!

One way to impose (Cond.): |w| > wo > 0 and £ < {j.

24 /) 32



Reduction to 1+1-dimensions and rescaling

e Simplify ¢ = 0 by rescaling u := r¢.
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Reduction to 1+1-dimensions and rescaling

e Simplify ¢ = 0 by rescaling u := r¢.

e Decompose on spherical harmonics u = ), ug(t, )Y (0, ¢):
Ofup — O2up + Vi(t)ug = 0, (%¢)

V, = —%(z(eﬂ)wf’)

Note that V; > 0 only for ¢ > ¢y > 0.

o Auxiliary “energy”:

Eolu)(t) = /R (Orug)? + (Opug)? + Veuida.

T

Note that Ey[u] = &[¢] for all £ > .

25 / 32



A general potential

A general form of Equation (x¢):
ORu—Pu+V(t)u=0, (t,z) e RS xR, (%)

with

(GC)

0<V eC®R")
V<0 and Vme M VE>tuge >0 with A>0.

Note that V; satisfies (GC') for £ > £y on both ¢ = £oo.

26 / 32



Proposition
Consider (%) with V satisfying (GC') and

Elu(t) = /R (0/)? + (Byu)? + Vulda.

I(un)n of solutions to (x) such that E[u,](0) =1 and
un (0,2) € C°(R,) for all n, and

lim lim FEfu,](t) = 0.

n—oo t——+oo
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Proposition
Consider (%) with V satisfying (GC') and

Elu(t) = /R (0/)? + (Byu)? + Vulda.

I(un)n of solutions to (x) such that E[u,](0) =1 and
un (0,2) € C°(R,) for all n, and

lim lim FEfu,](t) = 0.

n—oo t——+oo

Black hole case follows as a corollary.
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but first a toy-model...

Consider the case V(t) = e™ ¥Vt € R,

e Take Fourier transform of (¥) in x:
Al (t) + (w? 4+ e )i (t) = 0.

Explicit solution using Bessel functions.
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but first a toy-model...

Consider the case V(t) = e™ ¥Vt € R,

e Take Fourier transform of (¥) in x:
Al (t) + (w? 4+ e )i (t) = 0.

Explicit solution using Bessel functions.
e Carefully chosen (i, (0), @, (0)):

Bufi](t) = [, (0 + (2 + V)0 222 0

28 / 32



Toy-model: decaying sequence

For w = 0:
o3 )
to(t) = Jo <ie_2>‘t)
and indeed
Eo[ao](t) =0
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Toy-model: decaying sequence

For w = 0:
o3 )
to(t) = Jo <ie_2>‘t)
and indeed
Eo[ao](t) =0

Decaying sequence: ¢ € C°(R,) with ||¢| 2 =1,

(tn (0, ), Bytun (0, 2)) = 2(%) (JO (i) N (i))
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Idea of the proof of the proposition

o (t) + (w? + V(t)a(t) = 0.

o Let to(n) > tiarge and w € [-1, 1]

alto(n) £0 5 i, (to(n)) = 0.
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Idea of the proof of the proposition

a’(t) + (w* + V(2)a(t)

o Let to(n) > tiarge and w € [-1, 1]

Then:

0.
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Idea of the proof of the proposition

o (t) + (w? + V(t)a(t) = 0.

o Let tg(n) > tigrge and w € [— L1,

Then:

e Let ¢ € C°(R,) such that |||z =1,

un(to(n), x) = 5 o()
Opun (to(n), ) = 0.

Then (uy)n is the decaying sequence we are looking for.

30 / 32



Analytic scattering: wave operators

Scattering breakdown for (x):
o Full dynamics: H(t) = (H'(R) x L*(R), || - [| @)

QUt) =iHH)U(t) <= (%)

31 / 32



Analytic scattering: wave operators

Scattering breakdown for (x):
o Full dynamics: H(t) = (H'(R) x L*(R), || - [| @)

QUt) =iHH)U(t) <= (%)
o Comparison dynamics: Ht = H'(R) x L?(R)

OUt) =iH, U(t) <= 0lu—0?u=0

31 / 32



Analytic scattering: wave operators

Scattering breakdown for (x):
o Full dynamics: H(t) = (H'(R) x L*(R), || - [| @)

QUt) =iHH)U(t) <= (%)
o Comparison dynamics: Ht = H'(R) x L?(R)

OUt) =iH, U(t) <= 0lu—0?u=0

31 / 32



Analytic scattering: wave operators

Scattering breakdown for (x):
o Full dynamics: H(t) = (H'(R) x L*(R), || - [| @)
QUt) =iHH)U(t) <= (%)
o Comparison dynamics: Ht = H'(R) x L?(R)

OUt) =iH, U(t) <= 0lu—0?u=0

The inverse wave operator 2, defined by

QU = lim e HLY(t, 00U  for U € C°(R) x C°(R),

—+oo

extends to a bounded linear map from H(0) to HT,

but Q) does not admit a bounded inverse.
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Analytic scattering: wave operators

Scattering breakdown for (x):
o Full dynamics: H(t) = (H'(R) x L*(R), || - [| @)
QUt) =iHH)U(t) <= (%)
o Comparison dynamics: Ht = H'(R) x L?(R)

OUt) =iH, U(t) <= 0lu—0?u=0

The inverse wave operator 2, defined by

QU = lim e HLY(t, 00U  for U € C°(R) x C°(R),

—+oo

extends to a bounded linear map from H(0) to HT,

but Q) does not admit a bounded inverse.

Analgous theorem for black hole interior.

31 / 32



Perspective and open questions

Expectations:

@ Such a breakdown to be generic.
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Perspective and open questions

Expectations:
Such a breakdown to be generic.

°
@ The same phenomena inside rotating black holes.
@ The same to happen for Maxwell fields.

o

Applications beyond black holes.

Questions:
@ Implication of intermediate scattering breakdown only?
@ Physical mechanism?
@ Blue-shift? Or a new phenomenon?
o Is w = 0 some kind of a “resonance”?

@ Define resonances in such settings?

32 / 32



