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Introduction

Gravity is curvature.

How does curvature affect
area/volume?

What does matter do to geometry?



Pauli:Theory of Relativity

In an arbitrary [3-dimensional] Riemannian manifold, [the
volume of a sphere of radius `] becomes a complicated
function of `. We can imagine it to be expanded in a
power series in ` and retain only the [first non-trivial]
term. This gives

V =
4π

3
`3
(

1 +
R
30
`2 + . . .

)
[. . . ] Differentiating, one obtains [. . . ] the formula for the
surface of the sphere

A = 4π`2
(

1 +
R
18
`2 + . . .

)
Here, V is the volume of the ball, A is the “area” of its boundary, `
its radius, and R the scalar curvature at the ball’s center.



The Feynman lectures, vol.2

What matter does to geometry
The rule that Einstein gave for the curvature is the
following: If there is a region of space with matter in it
and we take a sphere small enough that the density % of
matter inside it is effectively constant, then the radius
excess for the sphere is proportional to the mass inside
the sphere. Using the definition of excess radius, we have

δ`|A = `−
√
A

4π
=

G

3c2
M

(
=

G

3c2

4π

3
%`3
)

Here M is the mass inside the sphere, and δ`|A is the “excess”
radius to keep the area fixed at its flat spacetime value.



Exponential map: Riemann normal coordinates

In any semi-Riemannian manifold (M, g) geodesic curves are
uniquely defined by having vanishing acceleration:

∇~v~v = 0 (⇐⇒ vµ∇µvα = 0).

In local coordinates the curve is given by xµ = Xµ(τ) and this
reads

d2Xµ

dτ2
+ Γµρσ

dXρ

dτ

dXσ

dτ
= 0

where Γµρσ are the Christoffel symbols of the connection ∇.
From the standard theory of ODEs, given an initial point
p := Xµ(0) and initial ‘velocity’ vµ := dXµ/dτ(0) there is a
unique solution, that is, a unique geodesic.
This allows to define a system of local coordinates in a
neighbourhood of p by using the exponential map from the
tangent space at p into the manifold: for every tangent vector
vµ at p take the point in the manifold at τ = 1 along the
unique geodesic defined by vµ.



Riemann normal coordinates

The deviations away from flatness near p can be characterized by
the curvature at p via the standard Riemann Normal Coordinate
(RNC) expansion

gαβ(x) = ηαβ −
1

3
xµxνRαµβν −

1

6
xµxνxρ∇µRανβρ

+xµxνxρxσ
(

2

45
RγµανRγρβσ −

1

20
∇µ∇νRαρβσ

)
+O(x5).

Here, ηαβ is the flat (Minkowski) metric and Rαµβν , ∇µRανβρ, and
∇µ∇νRαρβσ represent the components of the curvature and its
covariant derivatives at p.

µ, ν, · · · = 0, 1, 2, 3, i, j, · · · = 1, 2, 3, A,B, · · · = 2, 3



Spatial geodesic balls

Choose p ∈M and then choose uµ ∈ TpM, uµuµ = −1.

p

uµ

`

Adapt the RNC {xµ} based at p := {xµ = 0} so that uµ = δµ0
The spatial geodesic ball lies on the hypersurface t ≡ x0 = 0
and {xi} can be used as coordinates on the ball.
The spacelike geodesics generating it have

xµ = rnµ, uµn
µ = 0, =⇒ nµ = niδµi

where r is the affine parameter and we set δijninj = 1

ni

uµ
t = x0 = 0



Spatial geodesic balls’ metric

ni

uµ
t = x0 = 0

The metric on the ball reads (careful with the notation!)

hij(x) = δij −
1

3
xkxlRikjl −

1

6
xkxlxm∇kRiljm

+xkxlxmxn
(
− 2

45
R0kilR0mjn +

2

45
RpkilRpmjn −

1

20
∇k∇lRimjn

)
+ . . .



Spatial geodesic ball’s boundary

Denote by {θA} := {ϑ, ϕ} the local S2 coordinates on the
ball’s boundary,
Such boundary is described by giving its “radius” r as a
function of the initial direction ni, or equivalently of {ϑ, ϕ}.
Observe that ni(ϑ, ϕ) are given by

n1 = sinϑ cosϕ, n2 = sinϑ sinϕ, n3 = cosϑ

(the standard embedding of the unit 2-sphere in Euclidean
space).
The induced metric on the boundary of the ball reads

qAB = hij(rn
k)
∂xi

∂θA
∂xj

∂θB
.



Area and volume at first order

Define the ball’s boundary at first order by r = `+ δ`(1).
δ`(1) is a function defined on the 2-sphere so that it can be
expanded in spherical harmonics. Letting s denote the “spin”:

δ`(1) =

∞∑
s=0

Yi1...isn
i1 . . . nis := δ`1 +

∞∑
s=1

Yi1...isn
i1 . . . nis

where Yi1...is are totally symmetric and traceless for s > 1.
A calculation at linear order in the curvature gives, for the
volume of the geodesic ball and the area of its boundary

V − V [ = 4π`2
(
δ`1 −

R
90
`3
)

:= δ(1)V

A−A[ = 4π`

(
2δ`1 −

R
18
`3
)

:= δ(1)A

where V [ = 4π`3/3 is the volume of a radius ` round ball in
Euclidean space, A[ = 4π`2 has a similar meaning and R is
the intrinsic scalar curvature of the t = 0 hypersurface at p.



Using the Einstein field equations

Note: at first order, the volume and area depend only on the
spherically symmetric “excess” δ`1.
Observe: we recover Pauli’s remark by just setting δ`1 = 0
(keep the radius of the ball fixed!).
We also recover Feynman’s interesting remark by keeping the
area fixed (A = A[), recalling the constraint (or Gauss)
relation (Gµν is the Einstein tensor)

R = 2Gµνu
µuν +KµνK

µν −K2 =⇒ R = 2G00

and using Einstein’s field equations !

Gµν =
8πG

c4
Tµν .

Then

< δr > |A = δ`1|A =
`3

18
G00 =

8πG

c4

`3

18
T00 =

G

3c2

4π

3

T00

c2︸︷︷︸
%

`3



Variations of volume and the energy density

Similarly,

< δr > |V = δ`1|V =
`3

45
G00 =

8πG

c4

`3

45
T00 =

2G

15c2

4π

3

T00

c2︸︷︷︸
%

`3.

What is to be compared? One can keep one quantity (radius,
area and volume) fixed and see the effect on the other two.
At this order, these variations are

δ(1)V |r = δ(1)V |<r> = −8πG

c4
4π
`5

45
T00, δ(1)V |A = −8πG

c4
4π
`5

30
T00

δ(1)A|r = δ(1)A|<r> = −8πG

c4
4π
`4

9
T00, δ(1)A|V = −8πG

c4
4π
`4

15
T00

The variation is, in all cases, proportional to the energy density at
the center of the ball, with a different proportionality factor.
Is there a correct, or physically preferred, factor? Why Feynman
chose the radius excess?



Vacuum!

What does pure gravity do to
geometry?



Area deficit in vacuum

If Gµν = 0 the radius excess and the area and volume deficits
all vanish at first order in the curvature.
However, the gravitational field is itself a source of curvature,
and this “purely gravitational” curvature affects geometric
quantities too.
If we trust any of the relations between radius/area/volume
changes and energy density at first order, the corresponding
radius/area/volume changes in vacuum — which arise at
higher orders— should be related, in one way or another, to
the pure gravitational energy density
Alternatively, such variations could help provide a notion of
quasilocal energy for the gravitational field.
At second order in the RNC expansion, the volume of the ball
and the area of its boundary receive corrections depending
quadratically on the curvature.



Interlude: the electromagnetic field

The electromagnetic field is given by a 2-form F that satisfies
Maxwell equations

dF = 0, δF = j

(Here δ := ?d? is the co-differential, and ? the Hodge dual
operation for the canonical volume-element 4-form:
(?F )µν = 1

2ηµνρσF
ρσ).

The electric and magnetic fields relative to an observer uµ are
defined by

E := iuF , Eµ := −Fµνuν

B := iu ? F , Bµ := −(?F )µνu
ν

These are spacelike vectors and spatial (relative to uµ):
uµEµ = uµBµ = 0.
At the point p in RNC these read Ei = F0i and Bi = εijkF

jk.



The Weyl tensor and its decomposition

The Weyl tensor is the part of the curvature tensor not in the
Ricci tensor:

Rαβλµ = Cαβλµ+Rα[λgµ]β−Rβ[λgµ]α−
R

6
(gαλgβµ − gαµgβλ)

Cαβλµ = −Cαβµλ = −Cβαλµ, Cα[βλµ] = 0, Cρβρµ = 0

Given that Rµν |p = 0, Rαβµν = Cαβµν at p.
Cαβµν may be decomposed into their electric and magnetic
parts with respect to uµ (we only need them at p)

Eβµ := Cαβλµu
αuλ, Eβµ = Eµβ, Eβµu

µ = 0, Eµµ = 0

Bβµ := ?Cαβλµu
αuλ, Bβµ = Bµβ, Bβµu

µ = 0, Bµ
µ = 0.

where
?Cαβλµ =

1

2
ηαβρσC

ρσ
λµ

is the Hodge dual of the Weyl tensor, ηαβρσ being the
canonical volume element 4-form.



The Electric-magnetic decomposition of Cαβµν

Eβµ and Bβµ are purely spatial tensors (relative to uµ)
At the point p in the chosen RNC one has

Eij = C0i0j “electric”

Bij =
1

2
εjklC0i

kl “magnetic”

Cijkl = Eikhjl − Ejkhil − Eilhjk + Ejlhik hijCikjl = Ekl.

(hij is the metric on the hypersurface t = 0)
Remember, Eij and Bij are traceless and symmetric.



The ball at second order

p

uµ

Define the ball at second order by

r = `+ δ`1 +

∞∑
s=1

Yi1...isn
i1 . . . nis︸ ︷︷ ︸

O(1)

+ δ`2 + δ̃`2(ϑ, ϕ)︸ ︷︷ ︸
O(2)

.

δ`2 is the spherically symmetric piece (s = 0) of the 2nd-order
perturbation to r
We are going to prove that that δ̃`2 is irrelevant for the
volume and the area at quadratic order in curvature.



Volume of geodesic balls at quadratic order

The volume of the ball at this order (and with Rµν = 0) is

V − V [ = 4π

`2δ`1︸ ︷︷ ︸
O(1)

+
`7

1575

(
−B2 − E2

6

)

+`2δ`2 + `δ`21 + 2`

∞∑
s=1

csY
2

[s] −
`4

45
Y ijEij

}

where cs are known constant factors depending on s. In particular

c2 =
1

15
.

(Y 2
[s] ≡ Yi1...isY

i1...is , E2 ≡ EijEij , and B2 ≡ BijBij .)



Area of geodesic balls at quadratic order

Analogously, the area of the ball’s boundary at this order (and with
Rµν = 0) is

A−A[ = 4π

2`δ`1︸ ︷︷ ︸
O(1)

+
`6

225

(
−B2 − E2

6

)

+2`δ`2 + δ`21 +

∞∑
s=1

bsY
2

[s] −
4`3

45
Y ijEij

}

where bs are known constant factors depending on s. In particular

b2 =
8

15
.

(Y 2
[s] ≡ Yi1...isY

i1...is , E2 ≡ EijEij , and B2 ≡ BijBij .)



Only spin s = 2 is relevant!

Only the spin-2 deformation gives a different contribution to
the area and volume in curved spacetime than in flat
spacetime: the term Y ijEij

Given Eij as data, Yij can always be split

Yij = `3 (γEij + Zij) , EijZ
ij = 0.

Hence, it is only the component of Yij aligned with Eij that
contributes differently than in flat space.
Thus, Y[s] for all s 6= 2 and Zij cannot be fixed in terms of the
local gravitational field at this order in perturbations.
Put another way, the only relevant non-spherical deformation
at this order is given by Yij aligned with Eij —so that the
gravitational field itself determines the ball’s shape at this
order.



Variations with Yij aligned with Eij

With this in mind, setting δ`1 = 0 and Yi1...is = 0 for all s 6= 2 and

Yij = γ`3Eij

and using the explicit values of b2 = 8/15 and c2 = 1/15 one gets

V − V [ = 4π

{
`7

1575

(
−B2 − E2

6

)
+ `2δ`2 + 2γ2 `

7

15
E2 − γ `

7

45
E2

}

A−A[ = 4π

{
`6

225

(
−B2 − E2

6

)
+ 2`δ`2 + 8γ2 `

6

15
E2 − 4γ

`6

45
E2

}
The magenta terms give δ(2)A|r and δ(2)V |r, while the red terms

are due to the spin-2 deformation aligned with Eij .
Observe that the magenta terms alone give an expression which is

negative definite..., but is it a correct “energy density”?



Variations keeping A or < r > fixed

Keeping A = A[ (so that δ`1 = 0) we derive

< δr > |A = δ`2|A =
`5

450

[
B2 + E2 − 5

6
E2 (12γ − 1)2

]

One can also keep the averaged radius fixed. Recall that, at
first order, it was enough to set δ`1 = 0 (the spin-0 part), as
the rest did not contribute. Analogously, now only the spin-0
part of the second-order perturbation to the radius contributes
at this order, and it is enough to fix δ`2 = 0. Then

δ(2)A|<r> = −4π
`6

225

[
B2 + E2 − 5

6
E2 (12γ − 1)2

]



A pure gravitational energy formula?

Does any of these formulae
contain a quasi-local
gravitational energy?

What should we expect as the
correct answer at this quadratic

order, in vacuum?



Required properties

There are several desirable and expected properties for the sought
expression if it is to describe gravitational strength:

1 It should be positive definite, zero if and only if Cαβµν = 0

2 quadratic in the curvature (that is, in Cαβµν)
3 the timelike component (with respect to uµ) of a tensor field
4 This tensor field should have the properties ensuring that the

putative energy —its totally timelike component— propagates
causally, in the sense that it vanishes in the entire domain of
dependence of any spacelike region in which it initially
vanishes. This is known to require two important ingredients

some control of the tensor-field divergence (usually ensured by
the underlying field equations if they are hyperbolic)
the dominant property, which states that the tensor contracted
on any future-pointing vectors is non-negative. This dominant
property also guarantees that the ‘momentum density’ vector
(the tensor contracted on uµ on all indices but one) is
future-pointing casual. This momentum density points in the
direction of propagation of the putative energy



Interlude: Bel-Robinson super-energy tensor

There is a unique (symmetric) tensor with the above properties
(JMMS , Class. Quantum Grav. 17 (2000) 2799):

the Bel-Robinson tensor Tαβµν.



Recall: the electromagnetic field

Tµν = FµρFν
ρ − 1

4gµνFρσF
ρσ = 1

2 (FµρFν
ρ + ?Fµρ ? Fν

ρ)

Tµν = Tνµ

T ρρ = 0

TµρTν
ρ =

1

4
gµνTρσT

ρσ

Tµνu
µvν ≥ 0

for arbitrary future-pointing vectors uµ and vν (inequality is
strict if all of them are timelike). This is the Dominant Energy
property. The energy density of the e.m. field relative to uµ is
Tµνu

µuν = T00 = E2 + B2.
∇µTµν = Fνρj

ρ and therefore ∇µTµν = 0 if there are no
charge nor currents (jµ = 0).
This provides conserved quantities if there are (conformal)
Killing vector fields.



Bel-Robinson tensor

Tαβλµ = CαρλσCβ
ρ
µ
σ + CαρµσCβ

ρ
λ
σ − 1

8gαβgλµCρτσνC
ρτσν

Tαβλµ = CαρλσCβ
ρ
µ
σ + ?Cαρλσ ? Cβ

ρ
µ
σ

Tαβλµ = T(αβλµ)

T ρρλµ = 0

TαβλµTγβλµ =
1

4
gαγTρβλµT ρβλµ

Tαβλµuαvβwλzµ ≥ 0

for arbitrary future-pointing vectors uα, vβ , wλ, and zµ

(inequality is strict if all of them are timelike). This is called
the Dominant property. (T0000 = 0 =⇒ Cαβλµ = 0).

∇αTαβλµ = 0

if the vacuum Einstein’s field equations Gµν = 0 hold.
This provides conserved quantities if there are (conformal)
Killing vector fields.



Equivalence Principle!

Equivalence principle



Bel-Robinson versus energy

The Bel-Robinson tensor is reminiscent of energy-momentum
tensors, yet it is not such a thing –it cannot be!
Due to the equivalence principle, the gravitational field
does not possess any pointwise-defined energy-momentum tensor.
Gravitational energy is not localizable!
Still, Tαβλµ seems related somehow to the energy-momentum
properties of the the gravitational field —but its geometric
units (L−4) are wrong
The correct physical units (multiplying by c4/G) are energy
density per unit area.
is there any relation with gravitational energy?
The only sensible definitions of gravitational energy are either
global (ADM, Bondi-Trautman) or quasi-local.



Quasilocal energies

Quasilocal energies are defined associated to closed surfaces
—usually a topological sphere: they are intended to represent
the total gravitational energy contained inside that surface.
Unfortunately, there are (too) many definitions of quasilocal
energy (-momentum) in GR with no consensus on any
particular choice (see L.B. Szabados, Living Rev. Relativ. 2009).
As an example, we can consider the Hawking-Hayward-type
definition

EH(S) :=
c4

G

√
Area(S)

16π

1

16π

∫
S

(
K +

2− ε
2

HµH
µ + εKµ

ABK
AB
µ

)
where K is the Gaussian curvature, Kµ

AB the shape tensor and
Hµ = qABKµ

AB the mean curvature vector of S; ε ∈ [0, 1]
(ε = 0, 1 give the “Hawking” and “Hayward” masses,
respectively).



Quasilocal energy in the small sphere limit

Any of the quasilocal energies for closed surfaces applied to
very small spheres ⊕ of radius ` gives, at first non-trivial order
in `:

E⊕ =
4π

3
`3T00 +O(`4)

(in a basis with ~e0 orthogonal to the sphere).
But, what happens if we are in vacuum? That is, if Tµν = 0.
Then, as first proven by Horowitz and Schmidt (1982)

E⊕ = (constant)
c4

G
`5T0000 +O(`6)

The proportionality constant depends on the particular choice
of quasilocal energy definition (see Szabados, Living Rev. Relativ. 2009).
For instance, for EH(S) one derives (J Wang, CQG 37 (2020) 085004)

EH(⊕) =
1− 4ε

90

c4

G
`5T0000 +O(`6)

still depending on ε.



The area deficit in terms of T0000

Notice:
T0000 = E2 +B2

The previously computed formulas that were shown in blue can be
recast in the following appealing form:

< δr > |A = δ`2|A =
`5

450

[
T0000 −

5

6
E2 (12γ − 1)2

]

δ(2)A|<r> = −4π
`6

225

[
T0000 −

5

6
E2 (12γ − 1)2

]
Hence, if γ = 1/12 the result is the expected and natural
Bel-Robinson ‘super-energy’ !



The magic of γ = 1/12

The value γ = 1/12, that is to say, the deformation fixed to be

δ` = δ`1 +
`3

12
Eijn

inj + δ`2+δ̃`2(ϑ, ϕ)

provides at first order

< δr > |A = δ`1|A =
8πG

c4

`3

18
T00, δ(1)A|<r> = −8πG

c4
4π
`4

9
T00

and at second order (T00 = 0 = δ`1 = δ(1)A)

< δr > |A = δ`2|A =
`5

450
T0000, δ(2)A|<r> = −4π

`6

225
T0000

Observe that the relative factors agree.



The magic of γ = 1/12 (2)

Concerning the rest of the variations (volume changes, or
variations of area/radius keeping volume fixed) in all of them
the value of γ = 1/12 makes the variation extreme
It maximizes δ`2|V and δ(2)V |A, while it minimizes δ(2)A|V
and δ(2)V |<r> .
Still, is there any independent argument leading to such a
value of γ? Which balls are to be compared?
At quadratic order in the curvature, and given the anisotropy
of the gravitational field around generic points, the radius r of
the ball can be different for the various directions ni(ϑ, ϕ);
but, how to give a natural prescription that compares to the
round ball in flat space?



An independent argument

The mean curvature vector of the ball’s boundary is at linear
order in the curvature (Nµ is the normal to the boundary
within the t = 0 slice)

Hµ = Nµ

2

`
+

1

`2

∑
s 6=2

(s+ 2)(s− 1)Yi1...isn
i1 . . . nis

+ninj
(

4

`2
Yij −

`

3
Eij

)]
.

Therefore, ~H is constant on the entire boundary (and equal to
its flat spacetime value ~H[ = 2

`
~N) if and only if Y[s] = 0 for all

s 6= 2 and
Yij = `3Eij/12

This provides an intrinsic definition, independent of the
spacetime, of the boundary of the ball fixing Y[s] = 0 for all
s 6= 2 and γ = 1/12 at this order.



The quasilocal energy (or mass)

Recall (and notice that Feynman was right with his choice!):

δ`1|A =
8πG

c4

`3

18
T00, δ(1)A|<r> = −8πG

c4
4π
`4

9
T00

δ`2|A =
`5

450
T0000, δ(2)A|<r> = −4π

`6

225
T0000

Thus, one can define the (quasilocal) energy E or massM at first
non-trivial order by the averaged excess radius

E =Mc2 =
3c4

G
< δr >|A

or, alternatively, by the area deficit

E =Mc2 = − 3c4

8πG

1

`
δA|<r>

and these formulas are valid with and without matter.



The quasilocal mass of geodesic balls

These definitions lead to (% is the mass density relative to uµ)

E
c2

=M =
4π

3
%`3 +O(`5)

and, if we are in vacuum with % = 0, to

E
c2

=M =
1

150

c2

G
`5(E2 +B2) +O(`6)

Observe that this calculation fixes univocally the constant in blue!



Conclusion

Therefore, a general prescription for the quasilocal energy is:
1 At any point p choose a unit timelike vector uµ

2 Build a tiny spatial 2-sphere S (that is, locally orthogonal to
uµ) around p with a (angle dependent) radius determined by
the constancy of its mean curvature vector

3 Compute the area A of S, set `2 := A
4π and compute the

averaged excess radius of S with respect to `
4 Multiply by 3c4/G to get the quasilocal energy relative to the

“observer” determined by uµ around p
5 Alternatively, adjust the averaged radius of S to a fixed very

small value ` and compute the area deficit of S with respect to
the Euclidean area 4π`2

6 Multiply by −3c4/(8πG`) to get the same quasilocal energy
relative to the “observer” uµ around p



The quasilocal mass/energy in the Schwarzschild
metric

For the spherically symmetric vacuum Schwarzschild metric, the
energy E relative to any observer uµ orthogonal to the S2 orbits of
the symmetry group (and at any given point with area coordinate
r̄) is

E =Mc2 =
1

25

m`5

r̄6
Mc2 =

GM(M 25`5

r̄5
)

r̄

where m := GM/c2 and M is the (ADM) mass of the spacetime.

This formula should only be considered valid for `� r̄ (`→ 0).

Inside a ball with the Earth’s radius, at 1 AU from the Sun, the
total pure gravitational energy due to the Sun’s gravitational field is
about

120g ∼ 1 black truffle de Bourgogne (×c2)

(Compare to Earth’s mass: 6× 1027g).



Thanks!

Merci beaucoup pour votre
attention

Thank you very much for your
attention
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