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1. Introduction - Questions to be Addressed

In our courses, we tend to describe quantum-
mechanical systems as pairs of a Hilbert space, H , and
a propagator, U(t,s), describing time-evolution.
Unfortunately, these data encode almost no invariant
structure (beyond spectral properties of U(ts)) and
give the erroneous impression that quantum theory
might be deterministic. Thus, among fundamental
problems of quantum theory are:

* What do we have to add to the usual formalism of
quantum mechanics in order to arrive at a mathe-
matical structure that (through “interpretation”)
can be given physical meaning, independently of
“observers™




Questions, ctd.

* Where does intrinsic randomness in quantum
mechanics come from, given the deterministic
character of the Schrodinger equation? In which
way does it differ from classical randomness?

* Do we understand probabilistic phenomena in
quantum mechanics, such as “quantum jumps and
tracks” or “Quantum Brownian Motion”, etc.?

- What do we mean by a “closed system” in
quantum mechanics, and why is this an important
notion? How does one prepare a system in a
prescribed state?

Etc.




QM is QM-as-QM and everything else is
everything else*

* “The one thing to say
about art is that it is one
thing. Art is art-as-art
and everything else is
everything else.”

Ad Reinhardt




2. Quantum Systems & projective
measurements

A simple-minded definition of quantum-mechanical systems:

A closed quantum system, S, is characterized by following
choices:

@ (H,U(t,s)),R>t,s (U= unitary propagator)

(i) alist, Qg = {ai}ie Is » of bounded, selfadjoint
operators on H representing physical quantities/
potential properties of S that can be measured in
“projective measurements”; (S must be a closed

system chosen large enough for the quantities
represented by a;, 2 € Is , to be measureable).




QM systems, ctd.

Choose fiducial time, ¢,, and define
a(t) := Ul(ty, t)aU(t, ty), a € Og,

to be the operator representing the pot. prop. corresp.
to a € Og attime t; 9 list of ops. Og(t)

Pot. properties, a(s), measureable/observable at times
s> t generate a *alg. £>; . We set (see also Appendix):

Ag = €., Ss (states)
(1)
B(H) 2 As 2 &5 2 €552 Os(s), s>t
AN
# <&Information Loss!




Projective measurements

Let Qg D a = a* be a potential property of S that is
measured/observed around time ¢; (i.e., @ becomes
“objective”/ "empirical” around time t). Let ay, oo, ..., ai. be
the eigenvalues of @ , and consider the spect. decomposition

k
a(t) = Z a;11;(2) (2)

with {I1;(¢)},.; , the spectral projections. Let p be the state
of S right before a is measured/observed. Then (as one

would expect!)

k
p(b) = 3 p(IL;(R)BI; (1)),  forallbe sy (3)
=1




Projective measurements, ctd.

i.e., ,0|g>t is an incoherent superposition (mixture) of
eigenstates of @ . This is what is usually called a

“projective (or von Neumann) measurement”.
Information Loss => p|th can be a mixed state (even if, as
a state on Ag, P may be a pure state).

[t is important to note that the choice of time evolution

U(t,s), t,s € R, and of astate, p, determines which
potential property of S will first be observed (become
empirical) after preparation of p!

Details of characterization of “projective measurements” are
somewhat subtle; (see Appendix).




Projective measurements, ctd.

Axiom A
If @ is measured around time t then @ has avalue
- {al, eey ak} around time ¢t
The value a; of @ is observed with probability

P (t) = p(Hj (t)) (“Born Rule”) (4)
If Q; is observed around time t then the state

p5(-) = p;(t) ™" - p(I1;(t) ()IL;(t)) on & >)

should be used for improved predictions of future after time ¢,
=> Origin of indeterminism (randomness) in QM!




3. A simple model of a quantum system -
theory of indirect (and ND) measurements




Main features of model

S=(PVP)VE

At all times, only one e in “T-channel” C E.

The only possible projective measnt. in S is to observe

whether D; or Dy has clicked. This measurement is
represented by an operator, X, given by

X=1p®(é_01)E (6)

Thus, Og = {X}, in this example.

Question: What can one learn about S, in particular about P,
by performing long sequences of successive measnts. of X ?




Main features of model, ctd.

Upto N e’ sbound by P create “Coulomb blockade” in arm
of “T” reachingto D, thus discouraging € moving inside
“T” to be scattered onto D »- Simple qm calculations yield the
probabilities, p,(n) and pg(n), for an € to be scattered onto

D,, Dy, respectively. Here n is the number of electrons bound
by P.Clearly

pu(n) + pg(n) = 1 (7)

Note that n is an eigenvalue of the electron number
operator N whose eigenvalues correspond to the number
of electrons bound by P.

We now imagine that every T seconds an €"is injected
into “T” and gets scattered onto one of the two detectors,
thus resulting in a measurement of X. Let £ = %1 denote

the eigenvalues of X (corresp. to clickof D, , Dy, resp.) .




Main features of model, ctd.

A measurement protocol of length k consists of outcomes

£R = (¢,...,&), k=1,2,3,... (8)
of first k measurements of X. Choosing a state p of §
enables one to associate a probability (or “frequency”)

:u’p(gla e gk) (9)

with each measurement protocol, § (k), of length k =1,2,3,...
(The unique qm formula for the probabilities (9) has first
been found by Schwinger and rediscovered by Wigner,...)

sl > wo(Ery oy €1, 68) = pp(&1y ory Er1)
Sk

Let = denote the space of all 0o long measurement
protocols. Then p, defines a probability measure on = |




4. Indirect measurements & pointer
observables

We define the frequency of clicks of D, in first k measnts.
by

vr(EW) == %ﬁ{j c{1,...k}l¢;=1}  (10)

and v(§) the limit of VL(§(k)) ,ask — 00 . We expect:
vr(§) = pr(n), where n is an eigenvalue  (11)
of the number operator AV introduced after (7).

Important observation:

There is a close analogy between S, with (7) through (11),
and the classical stat. mech. of Spin Chains (SC):

time of S <+ 1D space of SC; 1, <> Gibbs state of SC




Indirect measurements, ctd.

Limit, as (discrete) time kK — oo <> TD limit of SC

Appealing to “equivalence of ensembles” in TD limit, we
expect that the fluctuations of vy (& (k)) around one of the
possible limiting values p,(n) tend to 0,as k — oo .

Precise statement
We define
Za(ki€) = {€ €| |u(€®) — pr(n)| < e}
and (12)
Z(k;€) :=UY_E,(kje) C E

where €; \, 0, as k — 00.




Indirect measurements, ctd.

Theorem
Hyp. (ND measnt.): Operator N (t) = N const. in time ¢;

& suppose that A = rnq,f,jrn,nﬁén2 | PL(nl) — PL(nz) |> 0.
Then:

(A) If k is so large that €, < A/2 then the sets
El(ka g)a voey EN(ka §)
are all disjoint from one another; and
= Lo £)C) — = Lo
(B) /.Lp(.:(k, §) ) =1- #’P(“(ka é)) < 5]5:7
with dx 0, as &k — oo.
The sequences € and ¢ can “usually” be chosen
to be independent of the state p.
General insight

Think of a more general quantum system, S, withQg = {X}.




5.Analogy to classical statistical mechanics

Imagine that many successive projective measurements of
Xattimes t; < £y < - - - < ;. are made, with outcomes

§(k) = (&4, ...,&), Where §; € spec(X) is the value of an

an obs. X measured at time L, J = 1,...k k=1,2,3,... .
Given any state p of S, one may predict the frequency,

Lo(&1y ..., &), of the measnt. protocol §(k) = (&1, ..., &k).

Let =g C = be the smallest set of arbitrarily long
measnt. prot. s.t. i,(2%) = 0, for all states, p, of S.

We define OS,oo to be the algebra of functions on =g
measureable at 00, which are also called “pointer obs.”.
(If S is autonomous and there is complete decoherence
then Qg , consists of all fus. invariant under right-shift!)




Analogy to class. Stat. mech,, ctd.

An example of a pointer observable is I/L(E) ; (see Eq. (10)).

The projections (characteristic functions) in the algebra
Og o describe events in the system S detected with the
help of very many successive measurements of X.

All states p / probability measures |4, can be decomposed
into a convex combination of mutually singular states/
prob. measures indexed by points in the spectrum

of Og0 (= &= =[ 18 ).

In our simpletmodel, Ogs « consists of all functions on

{1,..,N}, which is the spectrum of the number operator A/ .

Many successive measurements of X (detector clicks)
provide information about number of e bound by dot F.




6. Effective dynamics of pointer observables

Most indirect measurements are not non-demolition
measurements. Usually OS,oo is empty. However, there are

functions, Uk, on =g depending on measurement protocols

g(m,k) — (fmk+1, ceey g(m-i—l)k), m = O, 1) 2,

of lengt_h k, which approximate pointer observables -

m,k))

example I/L(f ( - whose level sets provide a decom-

position of =g into disjoint subsets,
E‘:f(m)('rn'a k; §)a a(m) € 2, (13)

with the property that the L, - measure of the complement
of their union, U Eo(m, k: g) , is tiny.
oEL




Effective dynamics, ctd.

A measurement protocol of length Mk, M < 00 not too large,
then determines a trajectory (or “history”)
{o(m)}m=123.. (14)
of events, U(m) m=12,..M.
Important problem

We would like to determine the effective stochastic dynamics
that determines the frequencies of event histories. Here is a
very simple model, where this can be done!

éUgé |l
I1f... - . si]
\_‘/—-’

N

-« == A_ —

Noow, 8= 0 ,(A—+ G’> Markovian tim




Effective dynamics, ctd.

In this model, the state tends to purify after N> 1projective
measurements of X within a time interval of length 6 and
then evolves unitarily during a time interval of length A - 6.
In the limiting regime, where first N tends to 00 and then 6
to 0, a Markov chain with transition function

. . 2
p(n,n) == |[exp(—iAH )|, (15)
describes the effective dynamics of events consisting of a
jump process on the spectrum of the number operator N .

There is a more interesting limiting regime that can be
analyzed with the help of Kurtz’ stochastic Trotter product
formula. But we don’t have time to describe it here.




7. Conclusions

“In all my films, | have been faithful
fo these suspension points in the
conclusions. Besides, | have never
written the word ‘END’ on the
screen.”

(Federico Fellini)

“Everyone wants to understand art (physics).
Why don’t we try to understand the song of a
bird? Why do we love the night, the flowers,
everything around us, without trying to
understand them? But in the case of a
painting (result in physics), people think they
have to understand.” (Pablo Picasso)

Thank you for listening!




Appendix to Sect. 2 (Quantum Systems...)

Recall definitions ofa(t) , Og and Og(t). Potential

properties measureable/obs. at times > t generate
W*-alg.

Est = () JJait)lai € Os,t: > 1) (A1)

Agi=EL oo, Sg (states)
(A2)

B(H) 2 As 2 €5 2 &5, 2 Og(s), s>t

# & [Information Loss!




Appendix, ctd.

Define

1s(a(t)) :=a(s+1) | (A3)

so that
Ts - SZt — 82(t+3)

Ts is a *endom; T4 not a *autom < information loss

= entanglement!
Some fundamental questions to be answered:

(1) What is meant by a “measurement” of a € Og ?
Around which time does it take place ? A measurement
of a oughttoresultin” a having a value”, i.e., become
an “empirical/objective property” of S

& state on £ ~ incoherent mixture of eigenstates of a(t),
for some time t.




Appendix, ctd.

(2) Given a state of S, does QM predict which a € OS
will be measured first; what does QM predict about the
outcome of measnt. of @ ? In which way is QM

intrinsically indeterministic? Why does a meant. @ of
have a random outcome?

Projective measurements

Consider

Os 3 a = a* with eigenvalues oy, ag, ..., ax,
? ? ?

k
a(t) =) a;ll;(2) (A4)
j=1

“Measurement/observation” of @ around time t, or




Appendix, ctd.

& @ is an “empirical/objective property” of S around time ¢t :

k
p(b) =) p(I;(t)bIL;(t)),  for all b € Es; (AS)
j=1

where p is the state of S right before measnt. of @, i.e.,

P = Pt = p|52t (A6)

Information Loss = 0 = ¢ isusually a mixed state
on £>; even if the initial state of S has been pure, as a
state on Ag !




Appendix, ctd.

Suppose, for simplicity, that £s; is isomorphic to some
B(H ), (i.e., £>¢ is of type I, ). Then

Eq.(5)  [a(t),P] =0, (A7)
where P, is the density matrix on £>; corresp. to p;
Definition

a € Qg is measured/observed around time t < @ isan
“empirical/objective prop.” of S around time t iff

a(t)|ranger, =t F'(P;) - 2, for some bd. fu. F, (A8)
and some z in the center of £>; .

(More generally, a(t) belongs to the “center of the
centralizer of the state pt“; use of Tomita-Takesaki th. !)




Appendix, ctd.

Axiom A

If @ is measured (i.e., an empirical/objective prop. of 5)
around time t then @ has avalue € {al, ceey ak} around
time ¢

The value a; of a is observed w. probability
p;(t) = p(IL;(t))
If a; is observed around time ¢ then the state

pi() = pi(t)™" - p(IL;(t) (-)T1;(2)) on Ex¢ (A9)
should be used for improved predictions of future after
time ¢,




Appendix, ctd.: Summary

(1) Given the initial state of the system S, time evolution,
{U(ts)}, determines which pot. prop. a € Qg will first
become empirical (objective, measureable), and around
which time.

(2) Measnt. of ay is independent of an earlier measnt. of q;
iff ap, becomes empirical/objective after time of measnt.
of a; , no matter what the outcome of measnt. of a; was,
. al . . . a) . .

i.e., for all states P; () ,j=1 .., k with p; ( ) asin (8).
=> Decoherence, “consistent histories”.

(3) Time of measurement: Time, t., of observation of a

RangeP; — F(})t) ) z“?

det. by minimizing the fu. ||a(%)
for some fu. F and some Z.

(4) General theory of repeated measurements (“POVM’s”),
etc.: Another time!




My Manifesto

I propose that, at all decent institutions of higher
education, one or two days per semester will be
declared to be

Days of Reflection and of Protest!

During these days, we will not teach or attend
committee meetings, and there won’t be any exercise
classes. Instead, we will discuss some of the serious
problems threatening our civilization, draft declarations
and reach out to the media, with the aim to make it clear
to all circles wielding power that we no longer accept —
(to mention some examples among others):




My Manifesto, ctd.

That internal tensions and conflicts in countries, such as
the Ukraine, are “solved” by armed conflicts rather than
by political dialogue and compromise;

that innocent people are slaughtered in ugly civil wars
and by terrorist activities, such as those in Syria and Irag;

that countries threaten other countries with warfare;

that weapons are sold to (clans) in countries plagued by
civil war or other forms of unrest and conflict;

that religions are abused for purposes of power and
suppression of people;

that the dignity and the rights of women are abused and
offended in the name of religion;




My Manifesto, ctd.

* that people are harassed or killed because of their race or faith;

* that nothing i1s done against the perversions of 215t Century
Capitalism;

* that the resources of Planet Earth continue to be looted
shamelessly.

These are but some examples of numerous problems threatening the
survival of humankind in peace and dignity. —

Where 1s the “Peace Movement”, where are movements such as
“Occupy Wall Street”, “Survivre et Vivre™? What is the “Club of
Rome” doing? Why are the media silent about the activities of these
and other groups? Why do academics not have a strong voice in

political debates, anymore?
ko

Students and Academics raise your voices, arise!




