Contribution ID: 13

Vortex sheet solutions for the Ginzburg–Landau system in cylinders

Tuesday, July 5, 2022 2:00 PM (1 hour)

We consider the Ginzburg-Landau energy E_{ϵ} for \mathbb{R}^M -valued maps defined in a cylinder $B^N \times (0, 1)^n$ satisfying the degree-one vortex boundary condition on $\partial B^N \times (0, 1)^n$ in dimensions $M \ge N \ge 2$ and $n \ge 1$. The aim is to study the radial symmetry of global minimizers of this variational problem. We prove the following: if $N \ge 7$, then for every $\epsilon > 0$, there exists a unique global minimizer which is given by the non-escaping radially symmetric vortex sheet solution $u_{\epsilon}(x, z) = (f_{\epsilon}(|x|)\frac{x}{|x|}, 0_{\mathbb{R}^{M-N}}), \forall x \in B^N$ that is invariant in $z \in (0, 1)^n$. If $2 \le N \le 6$ and $M \ge N + 1$, the following dichotomy occurs between escaping and non-escaping solutions: there exists $\epsilon_N > 0$ such that

• if $\epsilon \in (0, \epsilon_N)$, then every global minimizer is an escaping radially symmetric vortex sheet solution of the form $R\tilde{u}_{\epsilon}$ where $\tilde{u}_{\epsilon}(x, z) = (\tilde{f}_{\epsilon}(|x|)\frac{x}{|x|}, 0_{\mathbb{R}^{M-N-1}}, g_{\epsilon}(|x|))$ is invariant in z-direction with $g_{\epsilon} > 0$ in (0, 1) and $R \in O(M)$ is an orthogonal transformation keeping invariant the space $\mathbb{R}^N \times \{0_{\mathbb{R}^{M-N}}\}$;

• if $\epsilon \ge \epsilon_N$, then the non-escaping radially symmetric vortex sheet solution $u_\epsilon(x, z) = (f_\epsilon(|x|)\frac{x}{|x|}, 0_{\mathbb{R}^{M-N}})$, $\forall x \in B^N, z \in (0, 1)^n$ is the unique global minimizer; moreover, there are no bounded escaping solutions in this case.

We also discuss the problem of vortex sheet $\mathbb{S}^{M-1}\text{-valued}$ harmonic maps.

Presenter: IGNAT, Radu (Université Toulouse III - Paul Sabatier)