Dividing a set in half

Monday, July 4, 2022 11:30 AM (1 hour)

In this talk I will consider the following problem of isoperimetric type:
Given a set E in \mathbb{R}^{d} with finite volume, is it possible to find an hyperplane P that splits E in two parts with equal volume, and such that the area of the cut (that is, the intersection of P and E) is of the expected order, namely $(\operatorname{vol}(E))^{1-1 / d}$?

We can show that the answer is positive if the dimension d is 3 or higher, but, somewhat surprisingly, our proof breaks down completely in dimension $d=2$, and we do not know what happens in this case.
(However we know that the answer is positive even for $d=2$ if we allow cuts that are not exactly planar, but close to planar.)

This is a work in progress with Alan Chang (Princeton University).

Primary authors: CHANG, Alan; ALBERTI, Giovanni (Università di Pisa)
Presenter: ALBERTI, Giovanni (Università di Pisa)

