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Optimal stopping problem

Let Xt , t ≥ 0 be a diffusion process with values in D ⊆ Rn, defined on a
stochastic basis (Ω,F , {Ft , t ≥ 0},P).
Let us consider an optimal stopping problem for this process:

U(x) = sup
τ∈M

Exg(Xτ )e−ρτ1{τ<∞}, (1)

where:
g : D → R1 is payoff function,
ρ > 0 is discount rate,
1A is indicator function of the set A,
Ex means the expectation for the process Xt starting from the state x ,
M is some class of stopping times τ (which can take infinite values with
positive probability).
Usually M is the class of all stopping times.
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Two main approaches to solving an optimal stopping problem for diffusion
processes.

1 Markovian (or “mass”) approach embeds underlying optimal stopping
problem into the family of problems (1) with all initial states X0 = x
of the process Xt . In this case to solve problem (1) means to find the
value function U(x) and optimal stopping time τ∗(x) for all x .
(Excessive characterization, iterative methods, free-boundary
problem,...)

2 Martingale approach solves an optimal stopping problem (1) for fixed
initial state X0 = x .
(Snell’s envelope, Beibel–Lerche method, ...)
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Variational approach. I

We propose to find a solution to optimal stopping problem (1) over the
class M of first exit times of the process Xt from the sets belonging to the
given family, and to make optimization over this family of sets.
Arguments in favour of such a reduction of the class of stopping times:

• Under enough general assumptions an optimal stopping time can be find
as the first exit time of the process Xt out of the open “continuation” set
{U(x) > g(x)}. Hence, in one-dimensional case optimal stopping problem
can be reduced to finding optimal first exit time from intervals (a, b),
which contain starting point x of the process Xt .

• For a lot of optimal stopping problems (especially in multi-dimensional
case) the exact solution is very hard for calculations and interpretations.
Thus, if finding an optimal stopping decision is not the final goal of study
(for example, in investment models), then it makes sense to restrict
considerations to simple class of stopping times in order to obtain any
“reasonable” solution which will be tractable and suitable for analysis.
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Variational approach. II

Let G = {G} be a given family (class) of regions in Rn,
τG = τG (x) = inf{t ≥ 0 : Xt /∈ G} be a first exit time of process Xt from
the region G (obviously, τG = 0 whenever x /∈ G ), and
M(G) = {τG , G ∈ G} be a set of first exit times for all regions from the
class G.

Under fixed initial value x define the following function of sets G ∈ G
VG (x) = Exg(XτG )e−ρτG 1{τG<∞}.

Thus, an optimal stopping problem (1) over a class of stopping times
M = M(G) can be converted to the following variational problem:

VG (x)→ sup
G∈G

. (2)

If G ∗ is an optimal region in (2), then τG∗ will be the optimal stopping
time for the problem (1) over the class M = M(G).
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One-parametric family of regions

Let G = {Gp, p ∈ P ⊂ R1} be one-parametric family of regions in Rn,
τp = inf{t≥0 : Xt /∈ Gp},

V (p; x) = VGp (x) = Exg(Xτp )e−ρτp1{τp<∞}. (3)

The function V (p; x) is defined on P × D; V (p; x) = g(x) for x /∈ Gp.

Let a family of regions G = {Gp} satisfy the conditions:

x 
q(x) G1 Monotonicity. Gp1 ⊂ Gp2 whenever p1 < p2.

2 Thickness. Every point x ∈ D belongs
to the boundary of the unique set Gq(x) ∈ G.
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The variational problem (2) can be written as one-dimensional optimization:

V (p; x)→ sup
p∈P

. (4)

Necessary and sufficient conditions for maximization of V (p; x) in p:

Theorem 1
i) If p∗ = p∗(x) is the solution to the problem (4) then the following
conditions hold:

V (p; x) ≤ V (p∗; x) whenever p < p∗, x ∈ Gp ∪ ∂Gp, (5)
V (p; x) ≤ g(x) whenever p > p∗, x ∈ Gp \ Gp∗ . (6)

ii) If for some p∗ = p∗(x)

V (p1; x) ≥ V (p2; x) whenever p∗ ≤ p1 < p2, x ∈ Gp2 (7)

and condition (5) hold, then p∗ is the solution to the problem (4).
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One-dimensional diffusion processes. I

Let Xt , t ≥ 0 be a homogeneous diffusion process with values in the
segment D ⊆ R1 with boundary points l and r , where −∞ ≤ l < r ≤ +∞,
open or closed (it may be (l, r), [l, r), (l, r ], or [l, r ]), which describes by
the stochastic differential equation

dXt = a(Xt)dt + σ(Xt)dWt , X0 = x , (8)

where a(x) and σ(x) are the drift and diffusion functions and Wt is the
standard Wiener process.
The process Xt is assumed to be regular; i.e., starting from an arbitrary
point x ∈ intD = (l, r), the process reaches any point y ∈ (l, r) in finite
time with positive probability. The regularity of a process is guaranteed, if
at any x ∈ (l, r):∫ x+ε

x−ε

1 + |a(y)|
σ2(y)

dy <∞ for some ε > 0.

V.Arkin, A.Slastnikov Variational View to Optimal Stopping Angers, 2015 9 / 28



One-dimensional diffusion processes. II

The process Xt is associated with the infinitesimal operator

Lf (x) = a(x)f ′(x) +
1
2
σ2(x)f ′′(x).

It is known that under regularity conditions there exist (unique up to
constant positive multipliers) increasing and decreasing functions ψ(x) and
ϕ(x) (resp.) with absolutely continuous derivatives, ψ(x) and ϕ(x) are the
fundamental solutions to the ODE

Lu(x) = ρu(x) (9)

almost sure (in Lebesque measure) on the interval (l, r).
Moreover, 0 < ψ(x), ϕ(x) <∞ for x ∈ (l, r).
If functions a(x), σ(x) are continuous, then ψ, ϕ ∈ C 2(l, r).
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Two one-parametric families of sets for one-dimensional diffusions.

1. l-intervals
As the first family of sets we take intervals of the type
Gp = {x ∈ D : x < p}, p ∈ (l, r), which we call l-intervals.

 

( 

l 
) 

r 

p 

Gp 

l-interval Gp is [l, p) or (l, p) in dependence on l ∈ D or not.
Obviously, the class of l-intervals satisfies conditions (A1)–(A2).
The class of ‘threshold’ stopping times Ml = {τp, p ∈ (l, r)},
where τp = inf{t≥0 : Xt ≥ p} is the first exit time from the l-interval Gp.
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Threshold stopping times. Optimality conditions

An optimal stopping problem over the class Ml (induced by l-intervals) can
be written as a problem of one-dimensional optimization:

V (p; x) := Exg(Xτp )e−ρτp1{τp<∞} → sup
l<p<r

. (10)

Theorem 1 above gives a necessary and sufficient conditions for the
optimality over class of threshold stopping times.

Theorem 2
Threshold stopping time τp∗ is optimal in the problem (1) for all x ∈ (l, r)
over the class Ml of threshold stopping times if and only if the following
conditions hold:

g(p)

ψ(p)
≤ g(p∗)
ψ(p∗)

whenever p < p∗; (11)

g(p)

ψ(p)
does not increase for p > p∗. (12)
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Threshold stopping times. Smooth pasting

So, the optimal threshold p∗ is a point of maximum for the function
h(p) = g(p)/ψ(p). This implies a simple proof (under minor assumptions)
of the well-known smooth pasting principle.

Define V (x) = sup
l<p<r

Exg(Xτp )e−ρτp1{τp<∞}.

Corollary. Let τp∗ , where p∗ ∈ (l, r), be the optimal stopping time over the
class Ml and the payoff g(x) be differentiable at the point p∗. Then the
function V (x) is differentiable at the point p∗, and V ′(p∗)=g ′(p∗).

V.Arkin, A.Slastnikov Variational View to Optimal Stopping Angers, 2015 13 / 28



Optimality of threshold stopping time over all stopping times

The extended conditions of Theorem 2 remain necessary and sufficient for a
threshold structure of a solution to stopping problem (1) over all stopping
times.
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Theorem 3
Let for some p∗ ∈ (l, r) and set of isolated points {a1, ..., an, ...}, where
p∗<a1<a2<...<r , the derivative of payoff function g ′(p) be absolutely
continuous on the intervals (p∗, a1), (ai , ai+1), i ≥ 1 and there exist
one-sided derivatives g ′(p∗+0), g ′(ai±0), i ≥ 1, such that∑

i≥1 σ
2(ai )|g ′(ai+0)−g ′(ai−0)| <∞. Then threshold stopping time τp∗

is the optimal stopping time in problem (1) for all x ∈ (l, r) over class of all
stopping times, if and only if the following conditions hold:

g(p)

ψ(p)
≤ g(p∗)
ψ(p∗)

for p < p∗; (13)

ψ′(p∗)g(p∗) ≥ ψ(p∗)g ′(p∗+0); (14)

Lg(p) ≤ ρg(p) a.s. (in Lebesque measure) for p > p∗; (15)
g ′(ai+0)− g ′(ai−0) ≤ 0, i ≥ 1. (16)

These conditions can be viewed as a solution to ‘inverse optimal stopping
problem’ when it is required to find such a diffusion process and payoff
function that optimal decision will have a threshold structure.
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Another class of threshold stopping times

2. r -intervals.
Gp = {x ∈ D : x > p}, p ∈ (l, r), which we call r -intervals.

 

( 

l 
) 

r 

p 

Gp 

Define another class Mr of threshold stopping times
τ̄p = inf{t≥0 : Xt /∈ Gp} = inf{t≥0 : Xt ≤ p} — the class of first times
when process Xt falls below threshold p, p ∈ (l, r).

Threshold stopping times τ̄p appear, in particular, in optimal stopping
problems with both integral and terminal payoffs:

Ex
(∫ τ

0
g1(Xt)e−ρt dt + g0(Xτ )e−ρτ

)
→ sup

τ
, (17)

where g0(x), g1(x) are given functions.
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Necessary and sufficient conditions of optimality of threshold stopping time
in the problem with both integral and terminal payoff functions:

Theorem 4
Let for some p∗ ∈ (l, r) functions a, σ, g1 be continuous on segment (l, p∗],
g0 be twice differentiable on (l, p∗] and g0(x) ≥ R(x) on (l , p∗]. Then
threshold stopping time τ̄p∗ = inf{t≥0 : Xt ≤ p∗} is the optimal stopping
time in problem (17) over the class of all stopping times if and only if the
following conditions hold:

[g0(p)− R(p)]ϕ(p∗) ≤ [g0(p∗)− R(p∗)]ϕ(p) for p > p∗;

J(p∗)S ′(p∗) = g ′0(p∗)ϕ(p∗)− g0(p∗)ϕ′(p∗);

Lg0(p)− ρg0(p) ≤ LR(p)− ρR(p) for p < p∗,

Here, R(x) = Ex
∫ ∞

0
g1(Xt)e−ρt dt, J(x) =

∫ r

x
ϕ(y)g1(y)H(y) dy ,

S ′(x) = exp
{
−
∫

2a(x)/σ2(x)dx
}
, H(y) = 2/[σ2(y)S ′(y)],

and ϕ(p) — decreasing solution to ‘characteristic ODE’: Lu(x) = ρu(x).
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Application to Real Options Theory

1. Investment timing problem

An infinitely-lived investor faces a problem of choosing a time when to
finance some investment project. Investment is considered to be
instantaneous and irreversible, and the project begins to produce profits
just after the investment is made.
Let diffusion process Xt describe the Present Value of the implemented
project started at time t,
I be a cost of investment required for beginning the project.
The investor solves the following investment timing problem : to find such
a stopping time τ (investment rule), that maximizes the net present value
(NPV) from the project:

E(Xτ − I)e−ρτ1{τ<∞} → max
τ
,

where the maximum is taken over all possible stopping times τ .
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The majority of results on this problem has a threshold structure: to invest
when PV from the project exceeds the certain threshold. This is so for
geometric and arithmetic Brownian motions, mean-reverting process and
some other.
The general question: For what processes of PV from the project an optimal
decision of investment timing problem will have a threshold structure?

We give the necessary and sufficient conditions for optimality of threshold
strategy in investment timing problem:

Theorem 5
Threshold stopping time τp∗ , p∗ ∈ (l , r), is optimal in the investment
timing problem if and only if the following conditions hold:

(p − I)ψ(p∗) ≤ (p∗ − I)ψ(p) for p < p∗;

ψ(p∗) = (p∗ − I)ψ′(p∗);

a(p) ≤ ρ(p − I) for p > p∗,

where a(p) is the drift function of the process Xt , and ψ(p) is an increasing
solution to ‘characteristic ODE’: Lu(x) = ρu(x).
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Classic case
Let Xt be geometric Brownian motion with rate of drift α and volatility σ:

dXt = Xt(αdt + σdwt).

In this case, ψ(x) = xβ , where β is the positive root of the equation
1
2σ

2β(β − 1) + αβ = ρ. If ρ > α then β > 1.

Theorem 4 implies that optimal threshold is p∗ =
β

β − 1
I.

Note, if σ →∞ then β → 1 and, therefore, p∗ →∞. Hence, threshold for
investing increases when volatility grows.
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2. Abandonment problem

Let Xt be the price (at time t) of the good produced by the firm, and
function π(x) describes a dependence of firm’s current profit on current
price x .
The optimal abandonment problem is, using the available information
about current production prices Xt , to find a moment τ for terminating of
firm’s activity such that the net present value of the firm be maximal:

Ex
(∫ τ

0
π(Xt)e−ρt dt − Ae−ρτ

)
→ max

τ
,

where A ≥ 0 is the abandonment cost.

V.Arkin, A.Slastnikov Variational View to Optimal Stopping Angers, 2015 21 / 28



The above results allow to give the following necessary and sufficient
conditions for optimality of threshold stopping time
τ̄x∗ = inf{t≥0 : Xt ≤ x∗} in an abandonment problem:

[A + R(x)]ϕ(x∗) ≥ [A + R(x∗)]ϕ(x) for x > x∗; (18)

J(x∗)S ′(x∗) = Aϕ′(x∗); (19)

LR(x) ≥ ρR(x) + ρA for x < x∗, (20)

where R(x) = Ex
∫ ∞

0
π(Xt)e−ρt dt, J(x) =

∫ r

x
ϕ(y)π(y)H(y) dy ,

S ′(x) = exp
{
−
∫

2a(x)/σ2(x)dx
}
, H(y) = 2/[σ2(y)S ′(y)],

ϕ(p) — decreasing solution to ‘characteristic ODE’.

If profit π(x) increases when current price rises, then from (19) we have
π(x∗) < 0. It means that a firm should terminate an activity only when its
revenue falls below some negative level.
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Classic case

Let prices Xt is modelled by geometric Brownian motion with rate of drift
α < 0 and volatility σ, and π(x) = x − c . In this case,
R(x) = x/(ρ− α)− c/ρ, ϕ(x) = xβ1 , where β1 is the negative root of
the equation 1

2σ
2β(β − 1) + αβ = ρ.

The optimal threshold is x∗ =
β1

β1 − 1
· ρ− α

ρ
(c − ρA).

It is easy to see that x∗ < c−ρA and conditions (18)–(20) hold.
Note, that if volatility σ tends to +∞, then β1 → 0 and, therefore,
x∗ → 0. It means that large volatility implies low level of price for shut
down and more long period before abandonment of firm’s activity, even
though current profits Xt − c will be negative.
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Relationship between solutions to
optimal stopping problem and free-boundary problem

A free-boundary problem for threshold case:
to find threshold p∗, l < p∗ < r and twice differentiable function
H(x), l < x < p∗, such that

LH(x) = ρH(x), l < x < p∗; (21)
H(p∗ − 0) = g(p∗), (22)
H ′(p∗ − 0) = g ′(p∗). (23)

Conditions (21)–(22) hold for the function

H(x) = h(p∗)ψ(x), l < x < p∗ (24)

where ψ(x) is an increasing solution to ODE (9) and h(p) = g(p)/ψ(p).
Smooth pasting condition (23) at the point p∗ is equivalent to h′(p∗) = 0.
On the other hand, the optimal threshold must be a point of maximum of
the function h(p).
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Example. A solution to FB problem can not give a solution to OS problem.

Geometric Brownian motion Xt = x exp{wt}, payoff function
g(x)=(x − 1)3 + xδ for x ≥ 0, and discount rate ρ = δ2/2 (δ > 1).
For this case the free-boundary problem is the following one:{

1
2x

2H ′′(x) + 1
2xH

′(x) = ρH(x), 0 < x < p∗

H(p∗) = g(p∗), H ′(p∗) = g ′(p∗)
(25)

For δ ≤ 3 the free-boundary problem (25) has the unique solution:
H(x) = xδ, p∗ = 1, however, the stopping time τ1 is not optimal.

 

1 p
δ  

h(p) 

For δ > 3 the free-boundary problem (25)
has two solutions:

(a) H(x)=xδ, p∗ = 1
(b) H(x)=h(pδ)xδ, p∗=pδ=δ/(δ−3).

Note that h(pδ) > 1. Thus, the solution (a)
does not give a solution to the optimal stopping problem, but (b) gives.
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2xH

′(x) = ρH(x), 0 < x < p∗

H(p∗) = g(p∗), H ′(p∗) = g ′(p∗)
(25)

For δ ≤ 3 the free-boundary problem (25) has the unique solution:
H(x) = xδ, p∗ = 1, however, the stopping time τ1 is not optimal.

 

1 p
δ  

h(p) 

For δ > 3 the free-boundary problem (25)
has two solutions:

(a) H(x)=xδ, p∗ = 1
(b) H(x)=h(pδ)xδ, p∗=pδ=δ/(δ−3).

Note that h(pδ) > 1. Thus, the solution (a)
does not give a solution to the optimal stopping problem, but (b) gives.
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Relationship between solutions

Second-order conditions:

If τp∗ is optimal stopping time over the class Ml (induced by l-intervals),
and function g(x) is twice differentiable at the point p∗, then there exists a
solution to free-boundary problem (H(x), p∗) and H ′′(p∗−0) ≥ g ′′(p∗)

and vice versa

If a pair (H(x), p∗) is the unique solution to free-boundary problem, such
that H ′′(p∗−0)>g ′′(p∗), then τp∗ is optimal in stopping problem over the
class Ml .

But we can not say about the optimality of τp∗ over class of all stopping
times without the additional conditions on payoff function g(x).
In this sense an optimality over threshold stopping times can be viewed as
a minimal (or weakest) optimality which follows from the uniqueness of the
solution to free-boundary problem.

V.Arkin, A.Slastnikov Variational View to Optimal Stopping Angers, 2015 26 / 28



Relationship between solutions

Second-order conditions:

If τp∗ is optimal stopping time over the class Ml (induced by l-intervals),
and function g(x) is twice differentiable at the point p∗, then there exists a
solution to free-boundary problem (H(x), p∗) and H ′′(p∗−0) ≥ g ′′(p∗)

and vice versa

If a pair (H(x), p∗) is the unique solution to free-boundary problem, such
that H ′′(p∗−0)>g ′′(p∗), then τp∗ is optimal in stopping problem over the
class Ml .

But we can not say about the optimality of τp∗ over class of all stopping
times without the additional conditions on payoff function g(x).
In this sense an optimality over threshold stopping times can be viewed as
a minimal (or weakest) optimality which follows from the uniqueness of the
solution to free-boundary problem.

V.Arkin, A.Slastnikov Variational View to Optimal Stopping Angers, 2015 26 / 28



References

Peskir G., Shiryaev A. Optimal stopping and free-boundary problems. Birkhauser,
2006.

Dixit A.K., Pindyck R.S. Investment under Uncertainty. Princeton: Princeton
University Press, 1994.

Alvarez L.H.R. Reward functionals, salvage values, and optimal stopping. —
Mathematical Methods of Operations Research, 2001, v. 54, p. 315-337.

Arkin V.I., Slastnikov A.D. A variational approach to an optimal stopping problems
for diffusion processes. — Probability Theory and Applications, 2009, v. 53, No. 3.

Arkin V.I., Slastnikov A.D. Threshold Stopping Rules for Diffusion Processes and
Stefan’s Problem. — Doklady Mathematics, 2012, v. 86, No. 2, pp. 1–4.

F. Crocce, E. Mordecki. Explicit solutions in one-sided optimal stopping problems
for one-dimensional diffusions. — Stochastics, 86 (3), 491–509, 2014.

Villeneuve S. On the threshold strategies and smooth-fit principle for optimal
stopping problems. — Journal of Applied Probability, 2007, v. 44, No. 1, pp.
181–198.

V.Arkin, A.Slastnikov Variational View to Optimal Stopping Angers, 2015 27 / 28



Thank you for your attention !
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