# Free energy and BPS Wilson loop in $\mathcal{N}=2$ superconformal theories 

Arkady Tseytlin

M. Beccaria, AT

- $1 / N$ expansion of circular Wilson loop in $\mathcal{N}=2$ superconformal $\operatorname{SU}(N) \times \operatorname{SU}(N)$ quiver, 2102.07696
M. Beccaria, G. Dunne, AT
- BPS Wilson loop in $\mathcal{N}=2$ superconformal $\operatorname{SU}(N)$ "orientifold" gauge theory and weak-strong coupling interpolation, 2104.12625
- Strong coupling expansion of free energy and BPS Wilson loop in $\mathcal{N}=2$ superconformal models with fundamental hypermultiplets, 2105.14729
- $\mathcal{N}=4 \mathrm{SYM} \leftrightarrow \mathrm{AdS}_{5} \times S^{5}$ superstring quantitative understanding of duality
in planar limit based on integrability

| $\mathbf{N}=\mathbf{4} \mathbf{S Y M}$ | String theory in AdS ${ }^{\mathbf{5}} \times \mathbf{S}^{\mathbf{5}}$ |
| :---: | :---: |
| Yang-Mills coupling: $g_{Y M}$ <br> Number of colors: $N$ | String coupling: $g_{s}$  <br> Level 1: Exact equivalence  <br> $g_{s}=g_{Y M}^{2} / 4 \pi, \quad T=\sqrt{g_{Y M}^{2} N} / 2 \pi$  <br> Level 2: Equivalence in the 't Hooft limit  <br> Lens  <br> $N \rightarrow \infty, \quad \lambda=g_{Y M}^{2} N$-fixed <br> (planar limit)  <br> Level 3: Equivalence at strong coupling  <br> (non-interacting strings)  |
| $N \rightarrow \quad \lambda \gg 1$ | $g_{s} \rightarrow 0, \quad T \gg 1$ |

- beyond planar limit?
limited progress: BPS observable $\langle\mathcal{W}\rangle$ from localization matrix model $\rightarrow$ exact in $N, \lambda=g_{\mathrm{YM}}^{2} N$
but string loops in $\mathrm{AdS}_{5} \times S^{5}$ are hard
- beyond $\mathcal{N}=4$ susy:
$\mathcal{N}=2$ superconformal models planar-equivalent to $\mathcal{N}=4$ SYM
$\rightarrow$ models to study duality including $1 / N$ corrections
- $\mathcal{N}=2$ localization matrix model not exactly solvable (non-gaussian) but can extract leading $1 / N$ corrections, expand at $\lambda \gg 1$ and compare to dual string theory (orbifolds/orientifolds of $\mathrm{AdS}_{5} \times S^{5}$ )
$\rightarrow$ match some universal string predictions


## Plan

- $\mathcal{N}=4$ SYM: free energy $F$ and circular Wilson loop $\langle\mathcal{W}\rangle$ vs string theory
- $\mathcal{N}=2$ superconformal models planar-equivalent to $\mathcal{N}=4$ SYM
- $\operatorname{SU}(N) \times \operatorname{SU}(N)$ quiver
- $\operatorname{SU}(N)$ SA-model (symm+antisymm hypers)
- $\operatorname{SU}(N)$ FA-model (fund+antisymm hypers)
- $\operatorname{Sp}(2 N)$ FA-model
- $\mathcal{N}=2$ localization matrix model representation for $F$ and $\langle\mathcal{W}\rangle$
- $1 / N$ corrections from matrix model: relations between $F$ and $\langle\mathcal{W}\rangle$
- comments on dual string theory interpretation
$\operatorname{SU}(N) \mathcal{N}=4$ SYM: free energy on $S^{4}$ is scheme dependent

$$
F=-\log Z\left(S^{4}\right)=4 a \log \left(\Lambda_{\mathrm{UV}} \mathrm{r}\right)+F_{0}, \quad \mathrm{a}=\frac{1}{4}\left(N^{2}-1\right)
$$

- localization $\rightarrow$ Gaussian matrix model with $\lambda$-independent measure $\rightarrow Z\left(S^{4}\right)$ in special scheme $(r=1)$

$$
F=-2 \mathrm{a} \log \lambda+C(N)=-\frac{1}{2}\left(N^{2}-1\right) \log \lambda+C(N), \quad \lambda=N g_{\mathrm{YM}}^{2}
$$

- AdS/CFT: $F$ on $S^{4}$ should match $Z_{\text {str }}$ in $\mathrm{AdS}_{5} \times S^{5}$ planar ( 2 -sphere) order: $Z_{\text {str }} \sim$ IIB sugra action ( $+\alpha^{\prime}$-corrections) leading term $\sim \operatorname{vol}\left(\mathrm{AdS}_{5}\right) \rightarrow$ IR divergent $\sim \mathrm{a} \log \Lambda_{\mathrm{IR}}$ [reproduces $N^{2}$ part of SYM conformal anomaly $[$ [Liu, AT 9 ; Henningson, Skenderis 9 ss]
- matching $N^{2}$ term in $F$ for special "AdS/CFT motivated" $\Lambda_{\text {IR }}{ }^{[R u s s o s, ~ Z a r e m b o ~ 2012] ~}$
[ $\Lambda_{\mathrm{IR}}$ in units of $L ; \Lambda_{\mathrm{UV}}$ in SYM as limit $\sim \sqrt{\alpha^{\prime}}$; ratio: $\frac{L}{\sqrt{\alpha^{\prime}}}=\lambda^{1 / 4}$ ]
- $N^{2} \rightarrow N^{2}-1$ : one-loop (torus) term in $Z_{\text {str }} \sim$ regularized $\operatorname{vol}\left(\mathrm{AdS}_{5}\right)$ only from short multiplets $\rightarrow$ same as 1-loop sugra [Becaria, AT 2044]
$\frac{1}{2}$ BPS Wilson-Maldacena loop in $\operatorname{SU}(N)$ SYM

$$
W(C)=\frac{1}{N} \operatorname{tr} \mathrm{P} \exp \left[\oint_{C} d \tau\left(i A_{\mu}(x) \dot{x}^{\mu}+\Phi_{i}(x) \theta^{i}|\dot{x}|\right)\right] .
$$

- Localization $\rightarrow$ Gaussian matrix model:
exact expression for circular WL [Erickson, Semenoff, Zarembo 00; Drukker, Gross 00; Pestun 07]

$$
\begin{aligned}
& \mathcal{W}=\operatorname{Tr} P e^{\int(i A+\Phi)}, \quad\langle\mathcal{W}\rangle=e^{\frac{\lambda}{8 N}\left(1-\frac{1}{N}\right)} L_{N-1}^{1}\left(-\frac{\lambda}{4 N}\right) \\
& \langle\mathcal{W}\rangle_{N \rightarrow \infty}=N \frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda}) \stackrel{\lambda \gg 1}{=} W_{0}+\ldots, \quad W_{0}=N \sqrt{\frac{2}{\pi}} \lambda^{-3 / 4} e^{\sqrt{\lambda}}
\end{aligned}
$$

- $N \gg 1, \lambda \gg 1:$ compare to $\operatorname{AdS}_{5} \times S^{5}$ string theory

expansion near $\mathrm{AdS}_{2}$ minimal surface
disk partition function:

$$
\begin{gathered}
\langle\mathcal{W}\rangle=Z_{\mathrm{str}}=\frac{1}{g_{\mathrm{s}}} \mathrm{Z}_{1}+\mathcal{O}\left(g_{\mathrm{s}}\right), \quad \mathrm{Z}_{1}=\int[d x] \ldots e^{-T \int d^{2} \sigma L} \\
g_{\mathrm{s}}=\frac{g_{\mathrm{YM}}^{2}}{4 \pi}=\frac{\lambda}{4 \pi N}, \quad T=\frac{L^{2}}{2 \pi \alpha^{\prime}}=\frac{\sqrt{\lambda}}{2 \pi}, \quad \lambda=g_{\mathrm{YM}}^{2} N \\
\langle\mathcal{W}\rangle=W_{0}\left[1+\mathcal{O}\left(T^{-1}\right)\right]+\mathcal{O}\left(g_{\mathrm{s}}\right) \\
W_{0}=c_{1} \frac{\sqrt{T}}{g_{\mathrm{s}}} e^{2 \pi T}, \quad c_{1}=\frac{1}{2 \pi}
\end{gathered}
$$

- $e^{2 \pi T}=e^{-T \mathrm{vol}\left(\mathrm{AdS}_{2}\right)}-$ area of minimal surface ${ }_{\text {Berenstein, } \text { Corrado, Fischler, Maldaeena 98] }}$
- $c_{1}=\frac{1}{2 \pi}$ - fluct. det's in $Z_{1}$ and measure factor
[Drukker, Gross, AT 00; Kruczenski, Tirziu 08; Buchbinder, AT 14; Medina-Rincon, Zarembo, AT 18 ]
- $\sqrt{T}$ prefactor - from universal dependence of $\mathrm{Z}_{1}$ on $\operatorname{AdS}$ radius

$$
\log Z_{1-\text { loop }}=-\frac{1}{2} \log \frac{\left[\operatorname{det}\left(-\nabla^{2}+2\right)\right]^{3}\left[\operatorname{det}\left(-\nabla^{2}\right)\right]^{5}}{\left[\operatorname{det}\left(-\nabla^{2}+\frac{1}{2}\right)\right]^{8}}
$$

$$
\log Z_{1-\text { loop }}=B_{2} \log (L \Lambda)+\log c_{1}, \quad B_{2}=\frac{1}{4 \pi} \int d^{2} \sigma \sqrt{g} R^{(2)}=\chi
$$

- $B_{2}=\zeta_{\text {tot }}(0)=\chi=1-2 p$ is universal : for any genus $p_{[\text {Giombi, AT 20] }}$
- 2 d UV $\infty$ canceled by universal string measure contribution $\log \left(\sqrt{2 \pi \alpha^{\prime}} \Lambda\right)$ finite part of $\log Z_{p}:-\chi \log \frac{L}{\sqrt{2 \pi \alpha^{\prime}}}=-\chi \log \sqrt{T}$

$$
\mathrm{Z}_{p} \sim(\sqrt{T})^{\chi}, \quad T=\frac{L^{2}}{2 \pi \alpha^{\prime}}
$$

- disk with $p$ handles: $g_{s}^{-1} \rightarrow g_{s}^{\chi}, \quad \sqrt{T} \rightarrow(\sqrt{T})^{\chi}, \quad \chi=1-2 p$
- thus expect to find for $g_{s}$ expansion at large $T_{\text {[Giombi, AT 20] }}$

$$
\langle\mathcal{W}\rangle=e^{2 \pi T} \sum_{p=0}^{\infty} c_{p+1}\left(\frac{g_{s}}{\sqrt{T}}\right)^{2 p-1}\left[1+\mathcal{O}\left(T^{-1}\right)\right]
$$

- indeed consistent with $1 / N, \lambda \gg 1$ expansion of exact SYM result

$$
\begin{aligned}
\langle\mathcal{W}\rangle & =e^{\frac{\lambda}{8 N}\left(1-\frac{1}{N}\right)} L_{N-1}^{1}\left(-\frac{\lambda}{4 N}\right)=e^{\sqrt{\lambda}} \sum_{p=0}^{\infty} \frac{\sqrt{ }^{\sqrt{2}}}{96^{\sqrt{\pi} p!}} \frac{\lambda^{\frac{6 p-3}{4}}}{N^{2 p-1}}\left[1+\mathcal{O}\left(\frac{1}{\sqrt{\lambda}}\right)\right] \\
& =W_{1}\left(1+\frac{1}{96} \frac{\lambda^{3 / 2}}{N^{2}}\left[1+\mathcal{O}\left(\frac{1}{\sqrt{\lambda}}\right)\right]+\mathcal{O}\left(\frac{1}{N^{4}}\right)\right), \quad W_{1}=\langle\mathcal{W}\rangle_{N \rightarrow \infty}=W_{0}+\ldots
\end{aligned}
$$

- leading large $\lambda$ corrections at each order in $1 / N^{2}$ exponentiate:

$$
\langle\mathcal{W}\rangle=W_{0} e^{H}\left[1+\mathcal{O}\left(T^{-1}\right)\right], \quad W_{0}=\frac{1}{2 \pi} \frac{\sqrt{T}}{g_{\mathrm{s}}} e^{2 \pi T}, \quad H \equiv \frac{\pi}{12} \frac{g_{\mathrm{s}}^{2}}{T}
$$

- handle insertion operator $\rightarrow \exp H$ : "dilute handle gas" approx.
- structure should be universal:
should apply to circular WL in string theories in $\mathrm{AdS}_{5} \times M^{5}$
as $\mathrm{AdS}_{2}$ minimal surface lies in $\mathrm{AdS}_{5}$
(also applies to $\mathrm{AdS}_{3} \times S^{3} \times T^{4}$ string dual to $\mathrm{ABJM}{ }_{[\text {[Giombi, AT 20] }}$ )
- find that indeed in $\mathcal{N}=2$ models planar-equivalent to $\mathcal{N}=4$ SYM which are dual to orbifolds of $\mathrm{AdS}_{5} \times S^{5}$ superstring

$$
\begin{aligned}
\langle\mathcal{W}\rangle= & \langle\mathcal{W}\rangle_{\text {SYM }}\left(1+c \frac{\lambda^{3 / 2}}{N^{2}}\left[1+\mathcal{O}\left(\frac{1}{\sqrt{\lambda}}\right)\right]+\mathcal{O}\left(\frac{1}{N^{4}}\right)\right) \\
& \frac{\lambda^{3 / 2}}{N^{2}} \sim \frac{g_{\mathrm{s}}^{2}}{T}
\end{aligned}
$$

## $\mathcal{N}=2$ superconformal models

## planar-equivalent to $\mathcal{N}=4$ SYM

- conformal invariance of $\operatorname{SU}(\mathrm{N}) \mathcal{N}=2$ model with hypers in adjoint, fundamental, rank-2 symm, and rank-2 antisymm reps ${ }_{\text {[Koh, Rajpoot } 83 \text {; Howe, Stelle, West } 83]}$
$\operatorname{SU}(N): \quad \beta_{1}=2 N-2 N n_{\text {Adj }}-n_{F}-(N+2) n_{\mathrm{S}}-(N-2) n_{\mathrm{A}}=0$
- $n_{\text {Adj }}=1: \quad n_{\mathrm{F}}=n_{\mathrm{A}}=n_{\mathrm{S}}=0 \rightarrow \mathcal{N}=4 \mathrm{SYM}$
- $n_{\text {Adj }}=0: \quad n_{\mathrm{F}}=2 N-(N+2) n_{\mathrm{S}}-(N-2) n_{\mathrm{A}}$
- planar equivalence with $\mathcal{N}=4 \mathrm{SYM}(\rightarrow$ simple AdS dual):
- $n_{\mathrm{F}}=2 N, n_{\mathrm{S}}=n_{\mathrm{A}}=0 \rightarrow \operatorname{SU}(N) \times \operatorname{SU}(N)$ quiver $\left(\beta_{1}=0\right.$ for $\left.\lambda_{1,2}\right)$
- $n_{\mathrm{F}}$ not depending on $N \rightarrow n_{\mathrm{S}}+n_{\mathrm{A}}=2$ :
only two solutions: $\mathrm{SA}=$ symm+antisymm and $\mathrm{FA}=$ fund+antisymm SA: $\quad\left(n_{\mathrm{F}}, n_{\mathrm{S}}, n_{\mathrm{A}}\right)=(0,1,1), \quad$ FA: $\quad\left(n_{\mathrm{F}}, n_{\mathrm{S}}, n_{\mathrm{A}}\right)=(4,0,2)$
- SA and FA $\mathcal{N}=2$ theories dual to certain orbifold/orientifold projections of $\operatorname{AdS}_{5} \times S^{5}$ string ${ }_{\text {Ennes, }}$ Lozano, Naculich, Sccriniter 2000]
- conformal anomaly a and c coeffs of $\mathcal{N}=2$ models
= free-theory values fixed by numbers of hypers

$$
\mathrm{a}=\frac{5}{24} \mathrm{n}_{\mathrm{v}}+\frac{1}{24} \mathrm{n}_{\mathrm{h}}, \quad \mathrm{c}=\frac{1}{6} \mathrm{n}_{\mathrm{v}}+\frac{1}{12} \mathrm{n}_{\mathrm{h}}
$$

$\operatorname{SU}(N) \times \operatorname{SU}(N)$ quiver: $\quad$ (same as $2 \times \mathrm{SA}$ )

$$
\mathrm{a}=\frac{1}{2} N^{2}-\frac{5}{12}, \quad \mathrm{c}=\frac{1}{2} N^{2}-\frac{1}{3}
$$

| $S U(N)$ | a | c |
| :--- | :---: | :---: |
| $\mathcal{N}=4$ SYM | $\frac{1}{4} N^{2}-\frac{1}{4}$ | $\frac{1}{4} N^{2}-\frac{1}{4}$ |
| $\mathcal{N}=2$ SA | $\frac{1}{4} N^{2}-\frac{5}{24}$ | $\frac{1}{4} N^{2}-\frac{1}{6}$ |
| $\mathcal{N}=2$ FA | $\frac{1}{4} N^{2}+\frac{1}{8} N-\frac{5}{24}$ | $\frac{1}{4} N^{2}+\frac{1}{4} N-\frac{1}{6}$ |

- $\mathcal{N}=2 \operatorname{Sp}(2 N)$ models
$\operatorname{Sp}(2 N)=$ compact symplectic group $\equiv \operatorname{USp}(2 N)=U(2 N) \cap S p(2 N, C)$ $\operatorname{dim} \operatorname{Adj}=N(2 N+1), \operatorname{dim} F=2 N, \operatorname{dim} \mathrm{~A}=N(2 N-1)-1$.
conformal invariance condition:

$$
\operatorname{Sp}(2 N): \quad \beta_{1}=2 N+2-(2 N+2) n_{\text {Adj }}-n_{\mathrm{F}}-(2 N-2) n_{\mathrm{A}}=0
$$

- $n_{\text {Adj }}=1: \quad n_{\mathrm{F}}=n_{\mathrm{A}}=0 \rightarrow \mathcal{N}=4 \mathrm{SYM}$
- $n_{\text {Adj }}=0: \quad$ planar equivalence to $\mathcal{N}=4 \mathrm{SYM} \rightarrow n_{\mathrm{F}}=2 N+2$
or $n_{\mathrm{F}}$ independent of $N$ : $n_{\mathrm{F}}=4, n_{\mathrm{A}}=1$ - FA model

$$
S p(2 N) \quad \text { FA: } \quad\left(n_{\mathrm{F}}, n_{\mathrm{A}}\right)=(4,1)
$$

$S p(2 N)$
a
c

$$
\begin{array}{lcc}
\mathcal{N}=4 \mathrm{SYM} & \frac{1}{2} N^{2}+\frac{1}{4} N & \frac{1}{2} N^{2}+\frac{1}{4} N \\
\mathcal{N}=2 \mathrm{FA} & \frac{1}{2} N^{2}+\frac{1}{2} N-\frac{1}{24} & \frac{1}{2} N^{2}+\frac{3}{4} N-\frac{1}{12}
\end{array}
$$

## $\mathcal{N}=2$ localization matrix model

- free energy of superconformal model on $S^{4}$ of radius $r$

$$
\hat{F}=-\log \hat{Z}=4 \mathrm{a} \log (\Lambda \mathrm{r})+F(\lambda, N)
$$

renormalized $F$ depends on subtraction scheme

- localization matrix model for $\mathcal{N}=2$ model on $S^{4}{ }_{\text {[Pestun 2007] }}$

$$
\begin{gathered}
Z=e^{-F}=\int D a e^{-S_{0}(a)} \mathbb{Z}_{1 \text {-loop }}(a), \quad\langle\mathcal{W}\rangle=\left\langle\operatorname{Tr} e^{2 \pi \mathrm{r} a}\right\rangle \\
S_{0}=\frac{8 \pi^{2} N \mathrm{r}^{2}}{\lambda} \operatorname{Tr} a^{2}, \quad \mathbb{Z}_{1 \text {-loop }}(a)=e^{-S_{\text {intt }}(a)}
\end{gathered}
$$

$a=$ const scalar matrix: $\quad \int_{S^{4}} \frac{1}{6} R \operatorname{Tr} \phi^{2} \rightarrow \operatorname{Tr} a^{2} ; \quad \lambda=g_{\mathrm{YM}}^{2} N$ only in $S_{0}$

- $\mathcal{N}=4$ SYM: $\quad \mathbb{Z}_{1 \text {-loop }}=1$ : Gaussian, $\lambda$-independent measure $\rightarrow$
$Z_{\mathrm{SYM}}=C(N)\left(\frac{N \mathrm{r}^{2}}{\lambda}\right)^{-\frac{1}{2} \operatorname{dim} G}, \quad F_{\mathrm{SYM}}=-2 \mathrm{a} \log \left(\lambda \mathrm{r}^{-2}\right)+f(N), \quad \mathrm{a}=\frac{1}{4} \operatorname{dim} G$ for $G=\operatorname{SU}(N)$ in this special scheme $(r=1)$

$$
F_{\mathrm{SYM}}=-2 \mathrm{a} \log \lambda+f(N)=-\frac{1}{2}\left(N^{2}-1\right) \log \lambda+f(N)
$$

- $\mathcal{N}=2$ model with hypers in $R=\oplus R_{i}: \quad$ (ignore instantons in $1 / N$ ) $\hat{\mathbb{Z}}_{1 \text {-loop: }}$ : 1-loop dets on $S^{4}$ in $a=$ const backgr. - depend on r (no $\lambda$ )

$$
\hat{\mathbb{Z}}_{1 \text {-loop }}(a, \mathrm{r})=\prod_{n=1}^{\infty}\left(\frac{\prod_{\alpha \in \operatorname{roots}(\mathfrak{g})}\left[\mathrm{r}^{-2} n^{2}+(\alpha \cdot a)^{2}\right]}{\prod_{w \in \text { weights }(R)}\left[\mathrm{r}^{-2} n^{2}+(w \cdot a)^{2}\right]}\right)^{n}
$$

- $\prod_{\text {roots }}$ includes "massless" contributions: Cartan directions $\alpha \cdot a=0$ for which $a$-dependence and $r$ dependence not correlated
- regularized value of $\hat{\mathbb{Z}}_{\text {[Pestun 2007] }}$

$$
\mathbb{Z}_{1-\mathrm{loop}}(a \mathrm{r})=e^{-S_{\mathrm{intt}}(a \mathrm{r})}=\frac{\prod_{\alpha \in \operatorname{roots}(\mathfrak{g})} \mathrm{H}(i \alpha \cdot a \mathbf{r})}{\prod_{w \in \operatorname{weights}(R)} \mathrm{H}(i w \cdot a \mathrm{r})}
$$

$\mathrm{H}(x) \equiv \mathrm{G}(1+x) \mathrm{G}(1-x)$ - product of Barnes G-functions

- no "massless" contributions as $\mathrm{H}(0)=1$
$\rightarrow Z$ depends on $r$ as in $\mathcal{N}=4$ SYM
- $\mathcal{N}=2$ free energy: coeff. of $\log \lambda$ in regularized matrix integral not full a-anomaly coefficient beyond planar limit
- to get full conformal anomaly go back to unregularized expression

$$
\begin{aligned}
& \prod_{n=1}^{\infty}\left(\mathrm{r}^{-2} n^{2}+\mu^{2}\right)^{n}=\prod_{n=1}^{\infty} \mathrm{r}^{-2 n} \prod_{n=1}^{\infty}\left(n^{2}+\mathrm{r}^{2} \mu^{2}\right)^{n}, \quad \mu=\alpha \cdot a \text { or } w \cdot a \\
& \prod_{n=1}^{\infty} \mathrm{r}^{-2 n}=e^{-2 \zeta(-1) \log \mathrm{r}}=e^{\frac{1}{6} \log \mathrm{r}} \\
& \hat{\mathbb{Z}}_{1 \text {-loop }}(a, \mathrm{r}) \rightarrow e^{\frac{1}{6}(\operatorname{dim} G-\operatorname{dim} R) \log \mathrm{r}} \mathbb{Z}_{1 \text {-loop }}(a \mathrm{r})
\end{aligned}
$$

- after $\mathrm{r} a \rightarrow a$ find total dependence on r

$$
\begin{gathered}
F=\left[\operatorname{dim} G-\frac{1}{6}(\operatorname{dim} G-\operatorname{dim} R)\right] \log r+\ldots=4 a \log r+\ldots \\
a=\frac{5}{24} \operatorname{dim} G+\frac{1}{24} \operatorname{dim} R
\end{gathered}
$$

- "bare" matrix model integral reproduces full a-anomaly term in $F$
- correlation between $r$ and $\lambda$ only in Gaussian part of matrix integral

Matrix model for $\mathcal{N}=2 \operatorname{SU}(N)$ SA and FA models
$N \times N$ hermitian traceless matrix $a$ (eigenvalues $\{a\}_{r=1}^{N}$ )

$$
\begin{array}{cc}
Z \equiv e^{-F}=\int \mathcal{D} a e^{-S_{0}(a)-S_{\text {int }}(a)}, & S_{0}(a)=\frac{8 \pi^{2} N}{\lambda} \operatorname{Tr} a^{2}, \\
\mathcal{D} a \equiv \prod_{r=1}^{N} d a_{r} \delta\left(\sum_{s=1}^{N} a_{s}\right)[\Delta(a)]^{2}, & \Delta(a)=\prod_{1 \leq r<s \leq N} N \\
\left(a_{r}-a_{s}\right)
\end{array}
$$

- $\mathcal{N}=2$ model with $n_{F}, n_{\mathrm{S}}, n_{\mathrm{A}}$ hypers [Beccaria, Billo, Galvagno, Hasan, Lerda 20]

$$
\begin{aligned}
S_{\text {int }}(a)= & \sum_{r=1}^{N}\left[n_{\mathrm{F}} \log H\left(a_{r}\right)+n_{\mathrm{S}} \log H\left(2 a_{r}\right)\right] \\
& +\sum_{r<s=1}^{N}\left[\left(n_{\mathrm{S}}+n_{\mathrm{A}}\right) \log H\left(a_{r}+a_{\mathrm{s}}\right)-2 \log H\left(a_{r}-a_{\mathrm{S}}\right)\right] \\
H(x)= & \prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2}}\right)^{n} e^{-\frac{x^{2}}{n}}=e^{-\left(1+\gamma_{\mathrm{E}}\right) x^{2}} \mathrm{G}(1+i x) \mathrm{G}(1-i x) \\
\log H(x)= & \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+1} \zeta_{2 n+1} x^{2 n+2}
\end{aligned}
$$

$\operatorname{SU}(N)$ SA model: $n_{\mathrm{S}}=n_{\mathrm{A}}=1, n_{\mathrm{F}}=0 \quad\left(\operatorname{after} a \rightarrow \sqrt{\frac{\lambda}{N}} \hat{a}\right)$

$$
\begin{aligned}
S_{\text {int }}(a) & =\sum_{i, j=1}^{N}\left[\log H\left(a_{i}+a_{j}\right)-\log H\left(a_{i}-a_{j}\right)\right] \\
& =\sum_{i, j=1}^{\infty} C_{i j}(\lambda) \operatorname{Tr}\left(\frac{\hat{a}}{\sqrt{N}}\right)^{2 i+1} \operatorname{Tr}\left(\frac{\hat{a}}{\sqrt{N}}\right)^{2 j+1} \\
C_{i j}(\lambda) & =\left(\frac{\lambda}{8 \pi^{2}}\right)^{i+j+1} \zeta_{2 i+2 j+1} \frac{4(-1)^{i+j} \Gamma(2 i+2 j+2)}{\Gamma(2 i+2) \Gamma(2 j+2)}
\end{aligned}
$$

- WL defined by $\mathcal{N}=2$ vector multiplet fields: $\langle\mathcal{W}\rangle=\left\langle\operatorname{Tr} e^{2 \pi a}\right\rangle$
- free energy and WL: leading $1 / N^{2}$ correction

$$
\begin{gathered}
\left\langle e^{\left.-S_{\text {int }}\right\rangle_{0}}=\frac{Z_{\mathrm{SA}}}{Z_{\mathrm{SYM}}}=e^{-\Delta F}, \quad \Delta F(\lambda ; N)=F_{\mathrm{SA}}-F_{\mathrm{SYM}}\right. \\
\frac{\langle\mathcal{W}\rangle_{\mathrm{SA}}}{\langle\mathcal{W}\rangle_{\mathrm{SYM}}}=\frac{\left\langle e^{-S_{\text {int }}} \operatorname{Tr} e^{2 \pi a}\right\rangle_{0}}{\left\langle e^{-S_{\text {int }}}\right\rangle_{0}\left\langle\operatorname{Tr} e^{2 \pi a}\right\rangle_{0}}=1+\frac{1}{N^{2}} \Delta q(\lambda)+\mathcal{O}\left(\frac{1}{N^{4}}\right) \\
\langle\mathcal{W}\rangle_{\mathrm{SYM}}=\left\langle\operatorname{Tr} e^{2 \pi a}\right\rangle_{0}, \quad\langle\ldots\rangle_{0} \equiv \int D a e^{-S_{0}(a)} \ldots
\end{gathered}
$$

- non-planar correction from "connected" part of $\left\langle e^{-S_{\text {int }}} \operatorname{Tr} e^{2 \pi a}\right\rangle_{0}$

$$
\left\langle e^{-S_{\text {int }}} \operatorname{Tr} e^{2 \pi a}\right\rangle_{0}=N\left\langle e^{-S_{\text {int }}}\right\rangle_{0}+2 \pi^{2}\left\langle e^{-S_{\text {int }}} \operatorname{Tr} a^{2}\right\rangle_{0}+\ldots
$$

- insertion of $\operatorname{Tr} a^{2}=\frac{\lambda}{8 \pi^{2} N} S_{0}$ same as $\frac{d}{d \lambda} Z \quad{ }_{\text {[Beccaria, Dume, AT 2021] }}$
key relation between $\langle\mathcal{W}\rangle$ and $F$ :

$$
\begin{aligned}
& \Delta q=-\frac{1}{4} \lambda^{2} \frac{d}{d \lambda} \Delta F(\lambda) \\
& \Delta F(\lambda)=\lim _{N \rightarrow \infty} \Delta F(\lambda ; N)
\end{aligned}
$$

- main task is to compute $1 / N^{2}$ correction $\Delta F(\lambda)$
$\operatorname{SUU}(N)$ FA model $\left(n_{\mathrm{F}}=4, n_{\mathrm{S}}=0, n_{\mathrm{A}}=2\right):$

$$
\begin{gathered}
S_{\text {int }}(a)=4 \sum_{i=1}^{N} \log H\left(a_{i}\right)+\sum_{i, j=1}^{N}\left[\log H\left(a_{i}+a_{j}\right)-\log H\left(a_{i}-a_{j}\right)\right] \\
=\sum_{i=1}^{\infty} B_{i}(\lambda) \operatorname{Tr}\left(\frac{\hat{a}}{\sqrt{N}}\right)^{2 i+2}+\sum_{i, j=1}^{\infty} C_{i j}(\lambda) \operatorname{Tr}\left(\frac{\hat{a}}{\sqrt{N}}\right)^{2 i+1} \operatorname{Tr}\left(\frac{\hat{a}}{\sqrt{N}}\right)^{2 j+1} \\
B_{i}(\lambda)=4\left(\frac{\lambda}{8 \pi^{2}}\right)^{i+1} \frac{(-1)^{i}}{i+1} \zeta_{2 i+1}\left(1-2^{2 i}\right) \\
\Delta F(\lambda ; N)=F_{\mathrm{FA}}-F_{\mathrm{SYM}}=N F_{1}(\lambda)+F_{2}(\lambda)+\mathcal{O}\left(\frac{1}{N}\right)
\end{gathered}
$$

- novel order $N$ term due to $n_{\mathrm{F}} \neq 0$ from single $\operatorname{Tr}$ term
- WL defined by $\mathcal{N}=2$ vector multiplet fields: $\langle\mathcal{W}\rangle=\left\langle\operatorname{Tr} e^{2 \pi a}\right\rangle$

$$
\langle\mathcal{W}\rangle=N W_{0}(\lambda)+W_{1}(\lambda)+\frac{1}{N}\left[W_{0,2}(\lambda)+W_{2}(\lambda)\right]+\mathcal{O}\left(\frac{1}{N^{2}}\right)
$$

$\operatorname{Sp}(2 N)$ FA model $\left(n_{\text {Adj }}=0, n_{\mathrm{A}}=1, n_{\mathrm{F}}=4\right)$ :
much simpler than $S U(N)$ one:
only single Tr term in $S_{\text {int }}$ [Fiol, Martinez:Montoy, Fukelman 2000]

$$
S_{\text {int }}(\hat{a})=\sum_{i=1}^{\infty} B_{i}(\lambda) \operatorname{Tr}\left(\frac{\hat{a}}{\sqrt{N}}\right)^{2 i+2}
$$

- $\Delta F=F_{\mathrm{FA}}-F_{\mathrm{SYM}}$ in terms of $F_{1}$ and its derivatives only (!): [Becarai, Dumne, AT 21]

$$
\begin{aligned}
& \Delta F(\lambda ; N)=N F_{1}(\lambda)+F_{2}(\lambda)+\frac{1}{N} F_{3}(\lambda)+\ldots \\
& F_{1}(\lambda)=2 F_{1}(\lambda) \\
& F_{2}(\lambda)=\frac{1}{2} \frac{d}{d \lambda}\left[\lambda F_{1}(\lambda)\right]+2 \widetilde{F}_{2}(\lambda), \quad \frac{d}{d \lambda} \widetilde{F}_{2}=-\frac{\lambda}{2}\left[\frac{d^{2}}{d \lambda^{2}}\left(\lambda F_{1}\right)\right]^{2}
\end{aligned}
$$

- $\langle\mathcal{W}\rangle=N W_{0}+W_{1}+\frac{1}{N} W_{2}+\ldots$
also expressed in terms of derivatives of $F_{1}$ only

Aim: leading $\frac{1}{N^{2}}$ correction to WL

$$
\frac{\langle\mathcal{W}\rangle}{\langle\mathcal{W}\rangle_{0}}=1+\frac{1}{N^{2}} q(\lambda)+\mathcal{O}\left(\frac{1}{N^{4}}\right), \quad\langle\mathcal{W}\rangle_{0}=\frac{2 N}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda})
$$

- normalized to planar one $=S U(N)$ SYM one (expansion of Laguerre)

$$
\begin{gathered}
q^{\mathrm{SYM}}(\lambda)=\frac{\lambda}{96}\left[\frac{\sqrt{\lambda} I_{2}(\sqrt{\lambda})}{I_{1}(\sqrt{\lambda})}-12\right]= \begin{cases}-\frac{1}{8} \lambda+\frac{1}{384} \lambda^{2}+\mathcal{O}\left(\lambda^{3}\right), & \lambda \ll 1 \\
\frac{1}{96} \lambda^{3 / 2}-\frac{9}{64} \lambda+\frac{1}{256} \lambda^{1 / 2}+\mathcal{O}(1), & \lambda \gg 1\end{cases} \\
\frac{1}{N^{2}} q_{\mathrm{SYM}}(\lambda) \stackrel{\lambda \gg 1}{=} k_{0} \frac{\lambda^{3 / 2}}{N^{2}} \sim \frac{g_{\mathrm{s}}^{2}}{T}, \quad k_{0}=\frac{1}{96}
\end{gathered}
$$

- will confirm string-theory prediction

$$
q(\lambda) \stackrel{\lambda \gg 1}{=} k_{1} \lambda^{3 / 2}+\mathcal{O}(\lambda)
$$

$\operatorname{SU}(N) \times \operatorname{SU}(N)$ quiver ( $Z_{2}$ orbifold of SYM)

- from matrix model : $Z_{\text {orb }}=e^{-F}$ and $\langle\mathcal{W}\rangle_{\text {orb }} \rightarrow$

$$
\begin{aligned}
& \Delta q \equiv q_{\text {orb }}(\lambda)-q_{\mathrm{SYM}}(\lambda)=-\frac{1}{8} \lambda^{2} \frac{d}{d \lambda} \Delta F(\lambda) \\
& \Delta F(\lambda) \equiv\left[F_{\text {orb }}(\lambda ; N)-2 F_{\mathrm{SYM}}(\lambda ; N)\right]_{N \rightarrow \infty}=-\left.\log \frac{Z_{\text {orb }}(\lambda ; N)}{\left[Z_{\mathrm{SYM}}(\lambda ; N)\right]^{2}}\right|_{N \rightarrow \infty}
\end{aligned}
$$

Matrix model results:

- weak coupling

$$
\Delta q(\lambda) \stackrel{\lambda \leqq 1}{=}-\frac{3}{4} \zeta_{3}\left(\frac{\lambda}{8 \pi^{2}}\right)^{3}+\frac{45}{8} \zeta_{5}\left(\frac{\lambda}{8 \pi^{2}}\right)^{4}+\left[\frac{9}{2} \zeta_{3}^{2}-\frac{315}{8} \zeta_{7}\right]\left(\frac{\lambda}{8 \pi^{2}}\right)^{5}+\mathcal{O}\left(\lambda^{6}\right)
$$

- strong-coupling expansion of $q_{\text {orb }}(\lambda)$ requires resummation
- numerical approach [Becaria, AT 2]

$$
\begin{aligned}
\quad q_{\text {orb }}(\lambda) & \stackrel{\lambda \gg 1}{=} k_{1} \lambda^{\eta}\left[1+a_{1} \lambda^{-1 / 2}+\ldots\right], \\
\eta \sim 1.5, & k_{1} \simeq-0.005, \quad a_{1} \simeq 15
\end{aligned}
$$

consistent with string theory prediction $q \sim \lambda^{3 / 2}$

- $\Delta q_{\text {orb }}(\lambda)=q_{\text {orb }}-q_{\mathrm{SYM}}=-\frac{\lambda^{2}}{8} \frac{d}{d \lambda} \Delta F_{\text {orb }}(\lambda)$

$$
\Delta F_{\mathrm{orb}}(\lambda) \stackrel{\lambda \gg 1}{=} c_{1} \lambda^{1 / 2}+\cdots, \quad c_{1}=-16 k_{1} \simeq 0.08
$$

- analytic approach to strong coupling expansion: [Becarai, Korchemsky 22]
$\Delta F_{\text {orb }}$ as det of semi-infinite matrix ${ }_{\text {[Galvagno, }}$, Peeti 2020; ;illo, Frau, Galvagno, Lerda, Prini 2021]

$$
\begin{gathered}
\Delta F_{\text {orb }}(\lambda)=\frac{1}{2} \log \operatorname{det}\left[\left(1+M^{+}\right)\left(1+M^{-}\right)\right] \\
M_{n m}^{+}=8(-1)^{n+m} \sqrt{2 n} \sqrt{2 m} \int_{0}^{\infty} \frac{d t}{t} \frac{e^{2 \pi t}}{\left(e^{2 \pi t}-1\right)^{2}} J_{2 n}(t \sqrt{\lambda}) J_{2 m}(t \sqrt{\lambda}), \quad n, m>0 \\
M_{n m}^{-}=8(-1)^{n+m} \sqrt{2 n+1} \sqrt{2 m+1} \int_{0}^{\infty} \frac{d t}{t} \frac{e^{2 \pi t}}{\left(e^{2 \pi t}-1\right)^{2}} J_{2 n+1}(t \sqrt{\lambda}) J_{2 m+1}(t \sqrt{\lambda})
\end{gathered}
$$

- such Bessel integrals appear also in BES equation for cusp anomaly and in octagon correlator $\left\langle\operatorname{Tr}\left(Z^{k / 2} \bar{X}^{k / 2}\right)\left(x_{1}\right) \operatorname{Tr} X^{k}\left(x_{2}\right) \operatorname{Tr}\left(Z^{k / 2} \bar{X}^{k / 2}\right)\left(x_{3}\right) \operatorname{Tr} \bar{Z}^{k}\left(x_{4}\right)\right\rangle$
- similar analysis of det as for octagon case [Beitsky, Korchemsky 20]
- exact analytic results for coefficients [Becaria, Korchemsky 22]

$$
\begin{aligned}
& \Delta F_{\text {orb }}(\lambda) \stackrel{\lambda \geqq>1}{=} \frac{1}{4} \sqrt{\lambda}-\log \sqrt{\lambda}+n_{0}+\frac{1}{\sqrt{\lambda}} n_{1}+\ldots \\
& F_{\text {orb }}=F_{\mathrm{SYM} N \rightarrow \infty}+\Delta F_{\text {orb }} \stackrel{\lambda \gg 1}{=}-N^{2} \log \lambda+\frac{1}{4} \sqrt{\lambda}-\frac{1}{2} \log \lambda+\ldots+\mathcal{O}\left(\frac{1}{N^{2}}\right) \\
& \Delta q_{\text {orb }}=-\frac{1}{8} \lambda^{2} \frac{d}{d \lambda} \Delta F_{\text {orb }} \stackrel{\lambda \gg 1}{=}-\frac{1}{64} \lambda^{3 / 2}+\frac{1}{16} \lambda+\ldots \\
& \langle\mathcal{W}\rangle_{\text {orb }}=\langle\mathcal{W}\rangle_{0}\left[1+\frac{1}{N^{2}} q_{\text {orb }}(\lambda)+\ldots\right] \\
& q_{\text {orb }}=q_{\mathrm{SYM}}+\Delta q_{\text {orb }} \stackrel{\lambda \gg 1}{=}-\frac{1}{192} \lambda^{3 / 2}-\frac{5}{64} \lambda+\ldots
\end{aligned}
$$

- $\mathcal{O}\left(N^{0}\right)$ terms: predictions for string theory coeffs.:
"sphere with handle" (torus) contribution to $F_{\text {orb }}$ "disk with handle" contribution to $\langle\mathcal{W}\rangle_{\text {orb }}$

String theory interpretation

- $F \sim Z_{\text {str }}$ : presumably related to type IIB string effective action
$S=S_{0}+S_{1}+\ldots=\frac{1}{(2 \pi)^{7} g_{\mathrm{s}}^{2} \alpha^{\prime 4}} \int d^{10} x \sqrt{G}\left[(R+\ldots)+\alpha^{\prime 3} R^{4}+\ldots\right]+\mathcal{O}\left(g_{\mathrm{s}}^{0}\right)+\ldots$
- $\mathcal{N}=4$ SYM dual to $\mathrm{AdS}_{5} \times S^{5}$ string: tree (sugra) term $\rightarrow \frac{1}{\pi^{2}} N^{2} V_{\mathrm{AdS}_{5}}$ in "AdS/CFT motivated" IR regularization $V_{\mathrm{AdS}_{5}} \rightarrow-\pi^{2} \log \sqrt{\lambda}$ same as in matrix model scheme $\rightarrow-\frac{1}{2} N^{2} \log \lambda$ term in $F_{\text {SYM }}{ }^{[\text {Russo, Zarembo 12] }}$
- maximal susy case: tree level ( $\alpha^{1 / 3} R^{4}$ etc.) and loop corrections to $F$ should vanish apart from 1-loop (torus) contribution: $N^{2} \rightarrow N^{2}-1$
- $\mathcal{N}=2$ orbifold theory dual to $\mathrm{AdS}_{5} \times\left(S^{5} / \mathbb{Z}_{2}\right)$ : from matrix model

$$
F_{\text {orb }}(\lambda ; N) \stackrel{\lambda \triangleq 1}{=}-N^{2} \log \lambda+\left[c_{1} \lambda^{1 / 2}+c_{2} \log \lambda+\mathcal{O}\left(\frac{1}{\sqrt{\lambda}}\right)\right]+\mathcal{O}\left(\frac{1}{N^{2}}\right)
$$

- $N^{2}$ from planar equivalence: $F=-2 a \log \lambda+\mathcal{O}\left(N^{0}\right)$
$\operatorname{SU}(2 N)$ SYM $\rightarrow \operatorname{SU}(N) \times S U(N)$ with 2 bi-fund hypers: $a=\frac{1}{2} N^{2}-\frac{5}{12}$
- extra 2 also from IIB supergravity action on $\mathrm{AdS}_{5} \times\left(S^{5} / \mathbb{Z}_{2}\right)$ :
$N^{2} \rightarrow(2 N)^{2}$ and $\operatorname{vol}\left(S^{5} / \mathbb{Z}_{2}\right)=\frac{1}{2} \operatorname{vol}\left(S^{5}\right)$
- planar equivalence: tree level $\alpha^{\prime}$-corrections vanish on $\operatorname{AdS}_{5} \times\left(S^{5} / \mathbb{Z}_{2}\right)$
- subleading $\lambda^{1 / 2}$ term:
from 1-loop ( $g_{\mathrm{s}}^{0} \sim N^{0}$ ) term in IIB eff. action?
$S_{1} \sim \frac{1}{\alpha^{\prime}} \int d^{10} x \sqrt{G} R^{4}+\ldots$
on dimensional grounds $S_{1} \sim \frac{L^{2}}{\alpha^{\prime}} \sim \lambda^{1 / 2} \rightarrow \Delta F \sim \lambda^{1 / 2}$
$\neq 0$ on $\mathrm{AdS}_{5} \times\left(S^{5} / \mathbb{Z}_{2}\right)$ ?
localized contribution due to curvature singularity?
- puzzle: why 1-loop $R^{4}$ contributes to $F_{\text {orb }}$ while tree-level $R^{4}$ does not (both have same structure in type IIB theory)
- possible resolution:
$\lambda^{1 / 2}$ term comes from $Z_{\text {str }}$ (torus) and not from low-energy eff. action?
- $\mathcal{N}=2 \mathrm{SA}: n_{\mathrm{S}}=n_{\mathrm{A}}=1 \rightarrow$ planar-equivalent to $\mathcal{N}=4 \mathrm{SYM}:$
e.g. $\mathrm{a}=\frac{1}{4} N^{2}-\frac{5}{24}, \mathrm{c}=\frac{1}{4} N^{2}-\frac{1}{6}$ vs $\mathrm{a}=\mathrm{c}=\frac{1}{4} N^{2}-\frac{1}{4}$
"orientifold" of orbifold of $S U(N) \times S U(N)$ SYM:
$f_{i j^{\prime}}$ vs $s_{(i j)}+a_{[i j]}$ [Billo eal 21]
- string dual of $\mathcal{N}=2$ SA model: Prark, Rabadan, Uranga 99; Ennes, Lozano, Naculich, Schniter 00] IIB string on orientifold $\operatorname{AdS}_{5} \times S^{5} / G_{\text {orient }}, \quad G_{\text {orient }}=\left(\mathbb{Z}_{2}\right)_{\text {orb }} \times\left(\mathbb{Z}_{2}\right)_{\text {orient }}$ $\left(\mathbb{Z}_{2}\right)_{\text {orient }}$ : inversions in 2 directions $\perp$ D3-branes $\times$ [w-sh parity $\left.\Omega\right] \times(-1)^{F_{L}}$
- $S^{\prime 5}=S^{5} / G_{\text {orient: }}$ special identifications of angles

$$
\begin{aligned}
& d s_{5}^{\prime 2}=d \theta_{1}^{2}+\sin ^{2} \theta_{1} d \phi_{3}^{2}+\cos ^{2} \theta_{1}\left(d \theta_{2}^{2}+\sin ^{2} \theta_{2} d \phi_{2}^{2}+\cos ^{2} \theta_{2} d \phi_{1}^{2}\right) \\
& \theta_{1} \equiv \theta_{1}+\frac{\pi}{2}, \theta_{2} \equiv \theta_{2}+\frac{\pi}{2}, \quad \phi_{1} \equiv \phi_{1}+\frac{\pi}{2}, \quad \phi_{2} \equiv \phi_{2}-\frac{\pi}{2}, \quad \phi_{3} \equiv \phi_{3}+\pi
\end{aligned}
$$

- $Z_{\text {str }}$ expanded near $\mathrm{AdS}_{2}$ in $\mathrm{AdS}_{5}$ : UV $\infty$ of 1-loop dets not sensitive to global identifications $S^{\prime 5} \rightarrow$ universal $g_{s}$ and $T \gg 1$ expansion of $\langle W\rangle$

$$
\frac{\langle\mathcal{W}\rangle_{\mathrm{SA}}}{\langle\mathcal{W}\rangle_{\mathrm{SYM}}}=1+\frac{1}{N^{2}} \Delta q(\lambda)+\mathcal{O}\left(\frac{1}{N^{4}}\right), \quad \Delta q(\lambda \gg 1) \sim \lambda^{3 / 2}
$$

## Matrix model results

$$
\Delta q=-\frac{1}{4} \lambda^{2} \frac{d}{d \lambda} \Delta F(\lambda), \quad \Delta F(\lambda)=\lim _{N \rightarrow \infty} \Delta F(\lambda ; N)
$$

- like in orbifold model $\left(M=M^{-}\right)$

$$
\begin{gathered}
\Delta F(\lambda)=\frac{1}{2} \log \operatorname{det}(1+M) \\
M_{m n}=8(-1)^{m+n} \sqrt{2 n+1} \sqrt{2 m+1} \int_{0}^{\infty} \frac{d t}{t} \frac{e^{2 \pi t}}{\left(e^{2 \pi t}-1\right)^{2}} J_{2 n+1}(t \sqrt{\lambda}) J_{2 m+1}(t \sqrt{\lambda})
\end{gathered}
$$

Strong coupling expansion:

- approximate results confirmed $\Delta q \sim \lambda^{3 / 2}{ }_{\text {[Becaraia, Dunne, AT 2021] }}$
- exact form of $\lambda \gg 1$ expansion ${ }_{\text {[Beccara, Korrhemsky 2022] }}$

$$
\begin{aligned}
& \Delta F=\frac{1}{8} \sqrt{\lambda}-\frac{3}{8} \log \lambda+k_{0}+k_{1} \lambda^{1 / 2}+\ldots \\
& F_{\mathrm{SA}}(\lambda ; N) \stackrel{N, \lambda \gg 1}{=}-\frac{1}{2} N^{2} \log \lambda+\frac{1}{8} \lambda^{1 / 2}-\frac{3}{8} \log \lambda+k_{0}+\ldots+\mathcal{O}\left(\frac{1}{N^{2}}\right) \\
& \Delta q=-\frac{1}{64} \lambda^{3 / 2}+\frac{3}{32} \lambda+\frac{1}{8} k_{1} \lambda^{1 / 2}+\ldots \\
& q_{\mathrm{SA}}=q_{\mathrm{SYM}}+\Delta q_{\mathrm{SA}} \stackrel{\lambda \gg}{=}-\frac{1}{192} \lambda^{3 / 2}-\frac{3}{64} \lambda+\ldots
\end{aligned}
$$

- Remarks:
- coeff of $\log \lambda$ is not conf anomaly a $=\frac{1}{4} N^{2}-\frac{5}{24}$ beyond planar limit
- leading term in $q_{\mathrm{SA}}=-\frac{1}{192} \lambda^{3 / 2}+\ldots$ as in $\operatorname{SU}(N) \times \operatorname{SU}(N)$ model
- expansion in even powers of $1 / N$
(despite crosscup contributions expected for orientifold on string side?)


## $\mathcal{N}=2$ models with fundamental hypers mamis bmame rranu

- $\operatorname{SU}(N)$ FA $\left(n_{\mathrm{F}}=4, n_{\mathrm{A}}=2\right)$ and $\operatorname{Sp}(2 N)$ FA $\left(n_{\mathrm{F}}=4, n_{\mathrm{A}}=1\right)$
- realised on $N$ D3-branes with few D7-branes and O7-plane: dual string theories - particular orbifolds/orientifolds of $\operatorname{AdS}_{5} \times S^{5}$ superstring
- $1 / N$ expansion of $F$ and $\langle\mathcal{W}\rangle$ at large $\lambda$ from matrix model: structure of expansion now different: odd and even powers of $1 / \mathrm{N}$
- $\operatorname{Sp}(2 N)$ case much simpler - novel features:
- get resummed expressions for $\lambda \gg 1$ terms at each order in $1 / N$
- find exponentially suppressed at $\lambda \gg 1$ terms in $1 / N$ expansion
$S U(N)$ FA model

$$
F(\lambda)=F_{\mathrm{SYM}}(\lambda)+N F_{1}(\lambda)+F_{2}(\lambda)+\mathcal{O}\left(\frac{1}{N}\right), \quad F_{\mathrm{SYM}}=-\frac{1}{2}\left(N^{2}-1\right) \log \lambda
$$

$F_{1}$ (absent in SA case) has explicit form:

$$
\begin{aligned}
& F_{1}(\lambda)=\frac{2}{\sqrt{\lambda}} \int_{0}^{\infty} \frac{d t}{t^{2}} \frac{e^{2 \pi t}}{\left(e^{2 \pi t}+1\right)^{2}}\left[J_{1}(2 t \sqrt{\lambda})-t \sqrt{\lambda}+\frac{1}{2}(t \sqrt{\lambda})^{3}\right] \\
& F_{1} \stackrel{\lambda}{=} f_{1} \lambda+f_{2} \log \lambda+f_{3}+f_{4} \lambda^{-1}+\mathcal{O}\left(e^{-\sqrt{\lambda}}\right) \\
& f_{1}=\frac{1}{4 \pi^{2}} \log 2, \quad f_{2}=-\frac{1}{4}, \quad f_{3}=\frac{1}{2} \log \pi+\ldots, \quad f_{4}=-\frac{\pi^{2}}{4}, \ldots
\end{aligned}
$$

$f_{1}$ from Dirichlet $\eta(1)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}=\log 2$

- large $\lambda$ expansion:
finite set of "polynomial" terms + infinite set of $e^{-(2 n+1) \sqrt{\lambda}}$
- $F_{2}=\widetilde{F}_{2}+\bar{F}_{2}: \widetilde{F}_{2}$ related to $F_{1}$ and $\bar{F}_{2}=$ same as in SA case

$$
F_{2}(\lambda)=\widetilde{F}_{2}(\lambda)+\bar{F}_{2}(\lambda), \quad \widetilde{F}_{2}^{\prime}=-\frac{1}{2} \lambda\left[\left(\lambda F_{1}\right)^{\prime \prime}\right]^{2}, \quad(\ldots)^{\prime}=\frac{d}{d \lambda}(\ldots)
$$

$\mathrm{Sp}(2 \mathrm{~N})$ FA model

$$
\begin{aligned}
& F=F_{\mathrm{SYM}}+N F_{1}(\lambda)+F_{2}(\lambda)+\frac{1}{N} F_{3}(\lambda)+\frac{1}{N^{2}} F_{4}(\lambda)+\mathcal{O}\left(\frac{1}{N^{3}}\right) \\
& F_{\mathrm{SYM}}=-\frac{1}{2} N(2 N+1) \log \lambda
\end{aligned}
$$

- $\mathrm{F}_{n}$ expressed only in terms of $F_{1}$ of $S U(N)$ FA model

$$
\begin{gathered}
\mathrm{F}_{1}=2 F_{1}, \quad \mathrm{~F}_{2}=\frac{1}{2}\left(\lambda F_{1}\right)^{\prime}-\lambda\left[\left(\lambda F_{1}\right)^{\prime \prime}\right]^{2} \\
\mathrm{~F}_{3}=\frac{\lambda^{2}}{24}\left(\lambda F_{1}\right)^{\prime \prime \prime}-\frac{\lambda^{2}}{4}\left[\left(\lambda F_{1}\right)^{\prime \prime}\right]^{2}+\frac{\lambda^{3}}{3}\left[\left(\lambda F_{1}\right)^{\prime \prime}\right]^{3} \\
F=F_{\mathrm{SYM}}+\Delta F \stackrel{ }{ } \stackrel{\lambda 1}{=} \Delta F_{\mathrm{pol}}-\left(N^{2}+N-\frac{3}{16}\right) \log \lambda-\frac{\pi^{2}}{2} N \lambda^{-1}+\mathcal{O}\left(e^{-\sqrt{\lambda}}\right)
\end{gathered}
$$

- leading terms in $\Delta F_{\text {pol }}$ at each order in $1 / N$ sum up to simple log

$$
\begin{aligned}
\Delta F_{\mathrm{pol}} & =N\left(2 f_{1} \lambda+\ldots\right)+\left(2 f_{1}^{2} \lambda^{2}+\ldots\right)+\frac{1}{N}\left(\frac{8}{3} f_{1}^{3} \lambda^{3}+\ldots\right)+\mathcal{O}\left(\frac{1}{N^{2}}\right) \\
& =N^{2} \mathcal{F}\left(\frac{\lambda}{N}\right)+\ldots, \quad \mathcal{F}\left(\frac{\lambda}{N}\right)=\log \left(1+2 f_{1} \frac{\lambda}{N}\right), \quad f_{1}=\frac{\log 2}{4 \pi^{2}}
\end{aligned}
$$

- leading terms in strong-coupling expression for $F \quad\left(\lambda=N g_{\mathrm{YM}}^{2}\right)$

$$
\begin{aligned}
& F \stackrel{\lambda \gg 1}{=}-N^{2} \log \lambda+N^{2} \mathcal{F}\left(\frac{\lambda}{N}\right)+\ldots \\
& \quad=N^{2} \log \left(\lambda^{-1}+2 f_{1} N^{-1}\right)+\ldots=N^{2} \log \left[N^{-1}\left(g_{\mathrm{YM}}^{-2}+2 f_{1}\right)\right]+\ldots
\end{aligned}
$$

- large $N$ expansion of Wilson loop

$$
\langle\mathcal{W}\rangle=\langle\mathcal{W}\rangle_{\mathrm{SYM}}+\Delta\langle\mathcal{W}\rangle, \quad \Delta\langle\mathcal{W}\rangle=\langle\mathcal{W}\rangle_{1}+\frac{1}{N}\langle\mathcal{W}\rangle_{2}+\frac{1}{N^{2}}\langle\mathcal{W}\rangle_{3}+\ldots
$$

- $\mathcal{N}=4$ SYM contribution in case of $S p(2 N)_{\text {[FFiol, Carolera, Torrents } 2014 ; \text { Giombi, Offeraler 2000] }}$

$$
\begin{aligned}
& \langle\mathcal{W}\rangle_{\text {SYM }}=2 e^{\frac{\lambda}{16 N}} \sum_{k=0}^{N-1} L_{2 k+1}\left(-\frac{\lambda}{8 N}\right)=N\langle\mathcal{W}\rangle_{0}+\langle\mathcal{W}\rangle_{0,1}+\frac{1}{N}\langle\mathcal{W}\rangle_{0,2}+\mathcal{O}\left(\frac{1}{N^{2}}\right) \\
& \langle\mathcal{W}\rangle_{0}=\frac{4}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda})=2 W_{0}, \quad\langle\mathcal{W}\rangle_{0,1}=\frac{1}{2} I_{0}(\sqrt{\lambda})-\frac{1}{2}, \quad\langle\mathcal{W}\rangle_{0,2}=\frac{\lambda}{96} I_{2}(\sqrt{\lambda})
\end{aligned}
$$

- $\langle\mathcal{W}\rangle_{1,2}$ expressed in terms of $\mathrm{F}_{1}=2 F_{1}$

$$
\frac{\langle\mathcal{W}\rangle_{1}^{\prime}}{\langle\mathcal{W}\rangle_{0}}=-\frac{\lambda}{4}\left(\lambda F_{1}\right)^{\prime \prime}, \quad \frac{\langle\mathcal{W}\rangle_{2}}{\langle\mathcal{W}\rangle_{0}}=-\frac{\lambda^{2}}{8} F_{2}^{\prime}=-\frac{\lambda^{2}}{8}\left[\frac{1}{2}\left(\lambda F_{1}\right)^{\prime \prime}-\lambda\left[\left(\lambda F_{1}\right)^{\prime \prime}\right]^{2}\right]
$$

- large $\lambda$ expansion:

$$
\begin{aligned}
& \frac{\langle\mathcal{W}\rangle_{1}}{\langle\mathcal{W}\rangle_{0}} \stackrel{\lambda \gg 1}{=} \frac{W_{1}}{W_{0}}=-f_{1} \lambda^{3 / 2}+\frac{3}{2} f_{1} \lambda-\left(\frac{3}{8} f_{1}+\frac{1}{2} f_{2}\right) \lambda^{1 / 2}+\mathcal{O}\left(\lambda^{0}\right) \\
& \frac{\langle\mathcal{W}\rangle_{2}}{\langle\mathcal{W}\rangle_{0}} \stackrel{\lambda \gg 1}{=} \frac{1}{2} f_{1}^{2} \lambda^{3}-\frac{1}{8} f_{1}\left(1-4 f_{2}\right) \lambda^{2}-\frac{1}{16} f_{2}\left(1-2 f_{2}\right) \lambda+\mathcal{O}\left(e^{-\sqrt{\lambda}}\right)
\end{aligned}
$$

- suggests that leading large $\lambda$ terms at each order in $1 / N$ exponentiate

$$
\langle\mathcal{W}\rangle=\left(N\langle\mathcal{W}\rangle_{0}+\ldots\right)+\Delta\langle\mathcal{W}\rangle \stackrel{\lambda \geqq}{\stackrel{\lambda}{ }} N\langle\mathcal{W}\rangle_{0} \exp \left[-f_{1} \frac{\lambda^{3 / 2}}{N}\right]+\ldots
$$

- cf. similar exponentiation of large $\lambda$ terms in $\mathcal{N}=4$ SYM cases:

$$
\begin{array}{ll}
\operatorname{SU}(N): & \langle\mathcal{W}\rangle_{\mathrm{SYM}} \stackrel{\lambda \geqslant 1}{=} N W_{0} \exp \left[\frac{\lambda^{3 / 2}}{96 N^{2}}\right]+\ldots, \\
\operatorname{Sp}(2 N): & \langle\mathcal{W}\rangle_{\mathrm{SYM}} \stackrel{\lambda \geqslant 1}{=} 2 N W_{0}\left(1+\frac{\lambda^{1 / 2}}{8 N}\right) \exp \left[\frac{\lambda^{3 / 2}}{96(2 N)^{2}}\right]+\ldots
\end{array}
$$

$\operatorname{Sp}(2 N):\left(1+\frac{\lambda^{1 / 2}}{8 N}\right)$ that gives odd powers of $1 / N$ in $\langle\mathcal{W}\rangle_{\text {SYM }}$ can be absorbed into $e^{\sqrt{\lambda}}$ in $W_{0}$ by $N \rightarrow N+\frac{1}{4}$ in $\sqrt{\lambda}=g_{\mathrm{YM}} \sqrt{N}$

## Comments on dual string theory interpretation of FA models

- $\operatorname{SU}(N)$ FA ( $n_{\mathrm{F}}=4, n_{\mathrm{A}}=2$ ) engineered in flat-space IIB string as low-energy theory on $N$ D3-branes +4 D7-branes and 1 O7-plane
$\rightarrow$ modding out by $G_{\text {ori }}=\mathbb{Z}_{2, \text { orb }} \times \mathbb{Z}_{2, \text { ori }}$
$\mathbb{Z}_{2, \text { orb }}=\left\{1, I_{6789}\right\}, \quad \mathbb{Z}_{2, \text { ori }}=\left\{1, I_{45} \Omega(-1)^{F_{L}}\right\}$
$I_{n_{1} \ldots n_{r}}$ on $\mathbb{R}^{6}(4, \ldots, 9 \perp \mathrm{D} 3): \mathbb{Z}_{2, \text { orb }}: x_{6,7,8,9} \rightarrow-x_{6,7,8,9}, \mathbb{Z}_{2, \text { ori }}: x_{4,5} \rightarrow-x_{4,5}$ fixed-point set of $\mathbb{Z}_{2, \text { ori }}: x_{4,5}=0$ - position of O7 and 4 D7
- large- $N$ near-horizon limit $\rightarrow$ dual string is projection of $\operatorname{AdS}_{5} \times S^{5}$ :

IIB on $\operatorname{AdS}_{5} \times S^{\prime 5}, S^{\prime 5}=S^{5} / G_{\text {ori, }}, G_{\text {ori }}=\mathbb{Z}_{2, \text { orb }} \times \mathbb{Z}_{2, \text { ori }} \quad$ EEnnese eta 2000]
$d s_{5}^{2}=d \theta_{1}^{2}+\cos ^{2} \theta_{1}\left(d \theta_{2}^{2}+\cos ^{2} \theta_{2} d \varphi_{1}^{2}+\sin ^{2} \theta_{2} d \varphi_{2}^{2}\right)+\sin ^{2} \theta_{1} d \varphi_{3}^{2}$
$\mathbb{Z}_{2, \text { orb }}: \quad \varphi_{1} \rightarrow \varphi_{1}+\pi, \varphi_{2} \rightarrow \varphi_{2}+\pi ; \mathbb{Z}_{2, \text { ori }: ~} \quad \varphi_{3} \rightarrow \varphi_{3}+\pi$

- $\operatorname{Sp}(2 N)$ FA ( $n_{\mathrm{F}}=4, n_{\mathrm{A}}=1$ ): near-horizon limit of $N \mathrm{D} 3+8 \mathrm{D} 7+$ O7-plane $\rightarrow \mathrm{IIB}$ on $\mathrm{AdS}_{5} \times S^{\prime 5}, \quad S^{\prime 5}=S^{5} / \mathbb{Z}_{2, \text { ori }}$
D7 wrapping $\operatorname{AdS}_{5} \times S^{3}$ ( $S^{3}$ locus of $\mathbb{Z}_{2, \text { ori) }}$ ) Frayyazuddin, Spalisksi; Aharony, Feyyazuddin, Maldacera 9s]
- $n_{\mathrm{F}} \neq 0 \rightarrow$ D3-D7 open string sector: open-string $\left(g_{s}^{2 n+1} \sim 1 / N^{2 n+1}\right)+$ closed-string $\left(g_{s}^{2 n} \sim 1 / N^{2 n}\right)$ topologies
- $\operatorname{SU}(N)$ case: orientable surfaces (2-sphere with holes and handles)
- $\operatorname{Sp}(2 N) \mathcal{N}=4$ SYM: $1 / N^{2 n+1}$ contributions from crosscups [witen 98] [orientifold projection of $U(2 N)$ SYM dual to IIB on $\mathrm{AdS}_{5} \times \mathbb{R} \mathbb{P}^{5}$; $N \rightarrow N+\frac{1}{4}$ and $L^{4}=4 \pi g_{\mathrm{s}}\left(2 N+\frac{1}{2}\right) \alpha^{\prime 2}$ due to O3 or due to crosscups]
- $\operatorname{Sp}(2 N) \mathcal{N}=2$ FA: crosscups due to O7 + bndries due to D7
- $F\left(S^{4}\right) \sim Z_{\text {str }}$ on $\mathrm{AdS}_{5} \times S^{\prime 5}$ :
$N^{2}$ term from $Z_{\text {str }}\left(S^{2}\right) \sim$ IIB tree eff. action
- type I (disk) term in string eff action (here as D7 w-vol action) $\rightarrow$ AdS/CFT interpretation of $N$-term in conf. anom. of FA model
[Aharony,Pawelczyk,Theisen,Yankielowicz; Blau,Narain,Gava 99]
- $\operatorname{SU}(N)$ FA model: $F$ in terms of string parameters $T$ and $g_{s}$

$$
\begin{array}{r}
F\left(T, g_{\mathrm{s}}\right) \stackrel{T \geqq>}{\geqq}-\frac{\pi^{2} T^{4}}{g_{\mathrm{s}}^{2}} \log (2 \pi T)+\frac{\pi T^{2}}{g_{\mathrm{s}}}\left(f_{1}^{\prime} T^{2}+f_{2}^{\prime} \log T+f_{3}^{\prime}+\ldots\right) \\
\\
+\left(p_{1}^{\prime} T^{4}+p_{2}^{\prime} T^{2}+k_{1}^{\prime} T+k_{2}^{\prime \prime} \log T+k_{3}^{\prime \prime}+\ldots\right)+\mathcal{O}\left(g_{\mathrm{s}}\right)
\end{array}
$$

- $\frac{1}{g_{5}^{2}}$ term from sphere: $\frac{1}{8_{5}^{2} \alpha^{\prime 4}} \int d^{10} x \sqrt{g}(R+\ldots)$ on $\mathrm{AdS}_{5} \times S^{\prime 5}$
- $\frac{1}{g_{\mathrm{s}}}$ term from disk [in $S p(2 N)$ case also from crosscup]
$\frac{T^{2}}{g_{\mathrm{s}}} \log T$ from $\frac{1}{g_{\mathrm{s} \alpha^{\prime 2}}} \int d^{8} x \sqrt{g} R R$ in D7 action $\left(\right.$ on $\left.\mathrm{AdS}_{5} \times S^{3}\right) \sim \operatorname{vol}(\mathrm{AdS})$
$\rightarrow N$ term in conf. a-anomaly of FA model ${ }_{[B l a u, ~ N a r a i n, ~ G a v a ~}^{\text {ap] }}$
- $\mathcal{O}\left(g_{\mathrm{s}}^{0}\right)$ terms may come from closed-string (torus) and open-string (annulus or disk with crosscup):
$S^{\prime 5}$ not smooth (orbifold action has fixed points)
$\rightarrow$ from "localized" contributions
- WL in FA models

$$
\begin{aligned}
\langle\mathcal{W}\rangle \stackrel{\lambda}{\geqq} & e^{\sqrt{\lambda}}\left[N\left(b_{0} \lambda^{-3 / 4}+b_{01} \lambda^{-1 / 4}+\ldots\right)+\left(b_{1} \lambda^{3 / 4}+b_{12} \lambda^{1 / 4}+\ldots\right)\right. \\
& \left.\quad+\frac{1}{N}\left(b_{2} \lambda^{9 / 4}+b_{21} \lambda^{5 / 4}+\ldots\right)+\mathcal{O}\left(\frac{1}{N^{2}}\right)\right] \\
= & \frac{T^{1 / 2}}{g_{\mathrm{s}}} e^{2 \pi T}\left(b_{0}^{\prime}+b_{1}^{\prime} g_{\mathrm{s}} T+b_{2}^{\prime} g_{\mathrm{s}}^{2} T^{2}+\ldots\right)
\end{aligned}
$$

- $\operatorname{SU}(N)$ : expansion near $\mathrm{AdS}_{2}$ minimal surface with extra "disk with holes" in addition to "disk with handles" $\mathcal{O}\left(g_{\mathrm{s}}^{0}\right)$ term - annulus contribution (with Dirichlet + Neumann bc)
- $S p(2 N)$ : extra "disk with crosscups" contributions leading large $\lambda$ parts sum up to simple exp: $\left(f_{1}=\frac{\log 2}{4 \pi^{2}}\right)$

$$
\langle\mathcal{W}\rangle \stackrel{T 刃>1}{=} \frac{T^{1 / 2}}{\pi g_{\mathrm{s}}} e^{2 \pi T} e^{-8 \pi^{2} f_{1} g_{\mathrm{s}} T}+\ldots=\frac{T^{1 / 2}}{\pi g_{\mathrm{s}}} \exp \left[2 \pi T-2 \log 2 T g_{\mathrm{s}}\right]+\ldots
$$

Exponentially suppressed corrections in $\operatorname{SU}(N)$ FA model

$$
\begin{gathered}
F_{1} \stackrel{\lambda \gg 1}{=} F_{1}^{\mathrm{pol}}+F_{1}^{\exp }, \quad F_{1}^{\mathrm{pol}}=f_{1} \lambda+f_{2} \log \lambda+f_{3}+f_{4} \lambda^{-1} \\
F_{1}^{\exp }(\lambda) \stackrel{\lambda \geqq 1}{=} \lambda^{-1 / 4} \sum_{n=0}^{\infty} b_{n}(\lambda) e^{-(2 n+1) \sqrt{\lambda}} \\
b_{n}(\lambda)=\sum_{k=0}^{\infty} \frac{(-1)^{k}[4 k(k+4)+3] \Gamma\left(k+\frac{1}{2}\right) \Gamma\left(k-\frac{3}{2}\right)}{\pi^{5 / 2} 2^{k-5 / 2} \Gamma(k+1)(2 n+1)^{k}} \frac{1}{(\sqrt{\lambda})^{k}}
\end{gathered}
$$

- "instanton sum" $e^{-(2 n+1) \sqrt{\lambda}}$ multiplied by asymptotic series in $\frac{1}{\sqrt{\lambda}}$ : $b_{n}(\lambda)$ factorially div, but resurgent (large $k$ is encoded in low $k$ ) [Dunne, Unsal 16]
- $e^{-c \sqrt{\lambda}}$ in observables in CFT with AdS string dual:
$\frac{1}{\sqrt{\lambda}}$ expansion in 2d string sigma model is expected to be asymptotic cf. similar terms in cusp anom. dim in $\mathcal{N}=4$ SYM $_{\text {[Alday, Maldaceena } 07 \text {; Basso, Korchemsky } 09]}$ - $e^{-(2 k+1) \sqrt{\lambda}}$ in $F_{1}$ - instanton interpretation - wrapping of $S^{2}$ of $S^{5}$
- similar exp terms in $W_{1}$ in $\langle\mathcal{W}\rangle=N W_{0}+W_{1}+\frac{1}{N} W_{2}+\ldots$ related to $F_{1}$, etc.
- compare to WL in $\mathcal{N}=4$ SYM: $W_{0}=\frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda})$

$$
W_{0} \stackrel{\lambda \gg 1}{=} \sqrt{\frac{2}{\pi}} \lambda^{-3 / 4}\left[e^{\sqrt{\lambda}}\left(1-\frac{3}{8 \sqrt{\lambda}}+\ldots\right)-i e^{-\sqrt{\lambda}}\left(1+\frac{3}{8 \sqrt{\lambda}}+\ldots\right)\right]
$$

$e^{\sqrt{\lambda}}: \operatorname{AdS}_{2}$ in $\mathrm{AdS}_{5} ; \quad e^{-\sqrt{\lambda}}$ : unstable surface wrapping $S^{2}$ of $S^{5}{ }_{\text {[Drukker 66] }}$ [no $e^{-n \sqrt{\lambda}}$ terms - would correspond to multiply wrapped WL]

- $F_{1}$ in $\mathcal{N}=2$ FA: infinite exp series - multiple wraps allowed as $F_{1}=$ string path integral over disk with free boundary
- real coeffs in $F_{1}$ : w-sheet solutions stable due to orbifolding of $S^{5}$ no Im part: series Borel summable (coeffs. factorially div but sign-alternate)
- $W_{1}$ from both $F_{1}$ and $W_{0}$ : 2 sources of exp corrections
$\frac{d}{d \lambda} W_{1}=-\frac{\lambda}{4} W_{0} \frac{d^{2}}{d \lambda^{2}}\left(\lambda F_{1}\right) \sim\left[e^{\sqrt{\lambda}} w(\lambda)+i e^{-\sqrt{\lambda}} w(-\lambda)\right] \sum_{k=0}^{\infty} u_{k}(\lambda) e^{-(2 k+1) \sqrt{\lambda}}$
- $W_{1}$ : annular w -sheets with one bndry fixed by WL circle and other free: stability of wrappings of $S^{2}$ in $S^{\prime 5}$ implying real $F_{1}$ may no longer apply


## Comments and open questions

- related results for strong-coupling expansions of $1 / N$ terms in 2-point and 3-point correlation functions of chiral operators
[Beccaria, Billo, Galvagno, Hasan, Lerda 20; Billo, Frau, Galvgno, Lerda, Pini 21; Billo, Frau, Lerda, pini, Vallario 22 ]
- need further progress towards analytic control of $\mathcal{N}=2$ matrix models: generalization of differential relations between $F$ and $\langle W\rangle$ ? exact form of $F$ and $\langle W\rangle$ in $S p(2 N)$ FA model? direct proof of exponential resummations of leading strong-coupling terms?
- need more computations on string side (already for dual of $\mathcal{N}=4$ SYM) planar: subleading $\frac{1}{\sqrt{\lambda}}$ terms on a disk non-planar: reproduce coefficients of 1-handle and 1-crosscup terms
- string-side understanding of resummation of leading crosscups in $S p(2 N)$ ?
- possible role of integrability?
all planar-equivalent models integrable at leading $N^{2}$ order integrability determines string spectrum $\rightarrow$ should have some consequences in loops (handle operator, etc.) planar integrability may be reflected in $1 / N$ corrections?
- string interpretation of differential relations between the $1 / N$ corrections to $F$ and $\langle W\rangle$ follow from localization matrix model on gauge side but unexpected on dual string theory side:
$F$ and $\langle\mathcal{W}\rangle$ are computed using quite different procedures
- $1 / N$ corrections in other planar-equivalent $\mathcal{N}=2$ models? in $\mathcal{N}=1$ models?

