

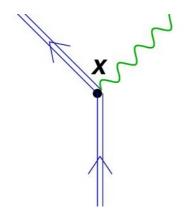
SFQEDtoolkit: a high-performance library for the accurate modelling of strong-field QED effects in PIC and Monte Carlo codes

Samuele Montefiori, Matteo Tamburini

Presented by Samuele Montefiori

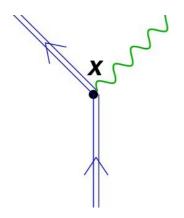
Smilei Workshop

9 March 2022



Non-linear Compton scattering

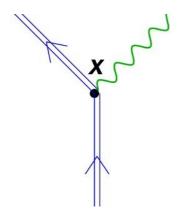
Breit-Wheeler pair production



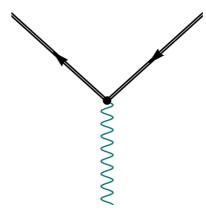
Non-linear Compton scattering

Breit-Wheeler pair production

Implementation Issues:



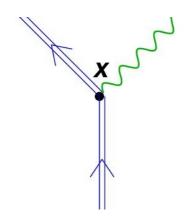
Non-linear Compton scattering



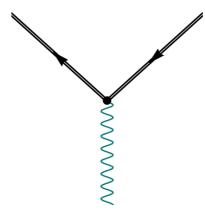
Breit-Wheeler pair production

Implementation Issues:

Precomputed tables



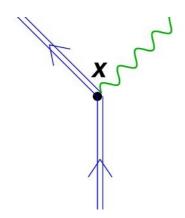
Non-linear Compton scattering



Breit-Wheeler pair production

Implementation Issues:

- Precomputed tables
- Limited accuracy

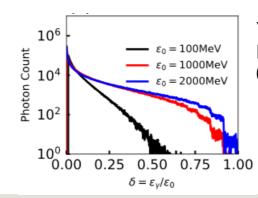


Non-linear Compton scattering

Breit-Wheeler pair production

Implementation Issues:

- Precomputed tables
- Limited accuracy
- Spectrum is not complete (stairlike structures)



Yinlong Guo et al. Phys. Rev. E 105, 025309

Smilei Radiation reaction models

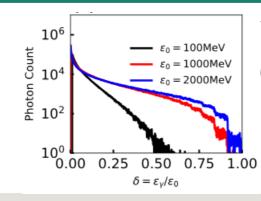
Regime	χ value	Description	Models
Classical radiation emission	$\chi \sim 10^{-3}$	$\gamma_{\gamma} \ll \gamma$, radiated energy overestimated for $\chi > 10^{-2}$	Landau-Lifshitz
Semi-classical radiation emission	$\chi \sim 10^{-2}$	$\gamma_{\gamma} \ll \gamma$, no stochastic effects	Corrected Landau-Lifshitz
Weak quantum regime	$\chi \sim 10^{-1}$	$\gamma_{\gamma} < \gamma$, $\gamma_{\gamma} \gg mc^2$	Stochastic model of Niel et al / Monte- Carlo
Quantum regime	$\chi \sim 1$	$\gamma_{\gamma}\gtrsim\gamma$	Monte-Carlo

duction

Implementation Issues:

Com

- Precomputed tables
- Limited accuracy
- Spectrum is not complete (stairlike structures)



Yinlong Guo et al. Phys. Rev. E 105, 025309

addressed by

SFQEDtoolkit

- Synchrotron emission (LCFA & BLCFA)
- Pair production (LCFA)

- Synchrotron emission (LCFA & BLCFA)
- Pair production (LCFA)
- Be accurate* and fast

- Synchrotron emission (LCFA & BLCFA)
- Pair production (LCFA)
- Be accurate* and fast
- Cover all the spectrum

- Synchrotron emission (LCFA & BLCFA)
- Pair production (LCFA)
- Be accurate* and fast
- Cover all the spectrum

- Synchrotron emission (LCFA & BLCFA)
- Pair production (LCFA)
- Be accurate* and fast
- Cover all the spectrum

Chebyshev expansion &
Asymptotic expansion

- Synchrotron emission (LCFA & BLCFA)
- Pair production (LCFA)
- Be accurate* and fast
- Cover all the spectrum

Chebyshev expansion & Asymptotic expansion

Chebyshev polynomials

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 $T_0(x) = 1, T_1(x) = x,$

- Synchrotron emission (LCFA & BLCFA)
- Pair production (LCFA)
- Be accurate* and fast
- Cover all the spectrum

Chebyshev expansion Asymptotic expansion

Chebyshev polynomials

Infinite-dimensional orthogonal basis:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 $T_0(x) = 1, T_1(x) = x,$

$$T_0(x) = 1, T_1(x) = x$$

- Synchrotron emission (LCFA & BLCFA)
- Pair production (LCFA)
- Be accurate* and fast
- Cover all the spectrum

Chebyshev expansion Asymptotic expansion

Chebyshev polynomials

Infinite-dimensional orthogonal basis:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 $T_0(x) = 1, T_1(x) = x,$

$$T_0(x) = 1, T_1(x) = x$$

- Synchrotron emission (LCFA & BLCFA)
- Pair production (LCFA)
- Be accurate* and fast
- Cover all the spectrum

Chebyshev expansion Asymptotic expansion

Chebyshev polynomials

Infinite-dimensional orthogonal basis:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 $T_0(x) = 1, T_1(x) = x,$

$$T_0(x) = 1, T_1(x) = x$$

•
$$f(x,y) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} c_{ij} T_i(x) T_j(y)$$

- Synchrotron emission (LCFA & BLCFA)
- Pair production (LCFA)
- Be accurate* and fast
- Cover all the spectrum

Chebyshev expansion Asymptotic expansion

Chebyshev polynomials

Infinite-dimensional orthogonal basis:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 $T_0(x) = 1, T_1(x) = x,$

$$T_0(x) = 1, T_1(x) = x,$$

•
$$f(x,y) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} c_{ij} T_i(x) T_j(y)$$

Clenshaw's recurrence formula:

f(x) can be evaluated just by knowing its Chebyshev coefficients C_i

- Synchrotron emission (LCFA & BLCFA)
- Pair production (LCFA)
- Be accurate* and fast
- Cover all the spectrum

Chebyshev expansion Asymptotic expansion

Chebyshev polynomials

Infinite-dimensional orthogonal basis:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 $T_0(x) = 1, T_1(x) = x,$

$$T_0(x) = 1, T_1(x) = x$$

 $\bullet f(x) = \sum c_i T_i(x)$

•
$$f(x,y) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} c_{ij} T_i(x) T_j(y)$$

Clenshaw's recurrence formula:

f(x) can be evaluated just by knowing its Chebyshev coefficients $|\mathcal{C}_i|$

Chebyshev transform

$$\int_0^{\bar{\varepsilon}} f(x,\varepsilon)d\varepsilon - r \int_0^{\varepsilon_{tot}} f(x,\varepsilon)d\varepsilon = 0$$

$$\int_{0}^{\bar{\varepsilon}} f(x,\varepsilon)d\varepsilon - r \int_{0}^{\varepsilon_{tot}} f(x,\varepsilon)d\varepsilon = 0$$

$$\int_0^{\bar{\varepsilon}} f(x,\varepsilon) d\varepsilon - r \int_0^{\varepsilon_{tot}} f(x,\varepsilon) d\varepsilon = 0$$
 For the Synchrophoton emission:

$$\frac{d^2W_{pe}}{dtd\varepsilon_{\gamma}}(\varepsilon_e,\varepsilon_{\gamma},\chi_e) = \frac{\alpha m^2 c^4}{\sqrt{3}\pi\hbar\varepsilon_e^2} \frac{1}{(1+u)} \left[\left[1 + (1+u)^2 \right] K_{\frac{2}{3}} \left(\frac{2u}{3\chi_e} \right) - (1+u) \int_{\frac{2u}{3\chi_e}}^{\infty} K_{\frac{1}{3}}(y) dy \right], \quad u = \frac{\varepsilon_{\gamma}}{\varepsilon_e - \varepsilon_{\gamma}}$$

Main purpose: create particles whose energies $\bar{\varepsilon}$ are distributed between $0 \leq \bar{\varepsilon} \leq \varepsilon_{tot}$ according to f

Problems:

Use the Inverse Transform Sampling (ITS) method

$$\int_{0}^{\bar{\varepsilon}} f(x,\varepsilon)d\varepsilon - r \int_{0}^{\varepsilon_{tot}} f(x,\varepsilon)d\varepsilon = 0$$

For the Synchrophoton emission:

$$\frac{d^2W_{pe}}{dtd\varepsilon_{\gamma}}(\varepsilon_e,\varepsilon_{\gamma},\chi_e) = \frac{\alpha m^2 c^4}{\sqrt{3}\pi\hbar\varepsilon_e^2} \frac{1}{(1+u)} \left[\left[1 + (1+u)^2 \right] K_{\frac{2}{3}} \left(\frac{2u}{3\chi_e} \right) - (1+u) \int_{\frac{2u}{3\chi_e}}^{\infty} K_{\frac{1}{3}}(y) dy \right], \quad u = \frac{\varepsilon_{\gamma}}{\varepsilon_e - \varepsilon_{\gamma}}$$

Main purpose: create particles whose energies $\bar{\varepsilon}$ are distributed between $0 \leq \bar{\varepsilon} \leq \varepsilon_{tot}$ according to f

Use the Inverse Transform Sampling (ITS) method

$$\int_{0}^{\bar{\varepsilon}} f(x,\varepsilon)d\varepsilon - r \int_{0}^{\varepsilon_{tot}} f(x,\varepsilon)d\varepsilon = 0$$

For the Synchrophoton emission:

$$\frac{d^2W_{pe}}{dtd\varepsilon_{\gamma}}(\varepsilon_e, \varepsilon_{\gamma}, \chi_e) = \frac{\alpha m^2 c^4}{\sqrt{3}\pi\hbar\varepsilon_e^2} \frac{1}{(1+u)} \left[\left[1 + (1+u)^2 \right] K_{\frac{2}{3}} \left(\frac{2u}{3\chi_e} \right) - (1+u) \int_{\frac{2u}{3\chi_e}}^{\infty} K_{\frac{1}{3}}(y) dy \right], \quad u = \frac{\varepsilon_{\gamma}}{\varepsilon_e - \varepsilon_{\gamma}}$$

Modified Bessel Functions

Main purpose: create particles whose energies $\bar{arepsilon}$ are distributed between $0 \leq \bar{arepsilon} \leq arepsilon \leq$

Use the Inverse Transform Sampling (ITS) method

$$\int_0^{\bar{\varepsilon}} f(x,\varepsilon) d\varepsilon - r \int_0^{\varepsilon_{tot}} f(x,\varepsilon) d\varepsilon = 0$$
 For the Synchrophoton emission:

Problems:

- Modified Bessel Functions
- Numerical integration

$$\frac{d^2W_{pe}}{dtd\varepsilon_{\gamma}}(\varepsilon_e,\varepsilon_{\gamma},\chi_e) = \frac{\alpha m^2 c^4}{\sqrt{3}\pi\hbar\varepsilon_e^2} \frac{1}{(1+u)} \left[\left[1 + (1+u)^2 \right] K_{\frac{2}{3}} \left(\frac{2u}{3\chi_e} \right) - (1+u) \int_{\frac{2u}{3\chi_e}}^{\infty} K_{\frac{1}{3}}(y) dy \right], \quad u = \frac{\varepsilon_{\gamma}}{\varepsilon_e - \varepsilon_{\gamma}}$$

Main purpose: create particles whose energies $\bar{arepsilon}$ are distributed between $0 \leq \bar{arepsilon} \leq arepsilon \leq$

Use the Inverse Transform Sampling (ITS) method

$$\int_0^{\bar{\varepsilon}} f(x,\varepsilon) d\varepsilon - r \int_0^{\varepsilon_{tot}} f(x,\varepsilon) d\varepsilon = 0$$
 For the Synchrophoton emission:

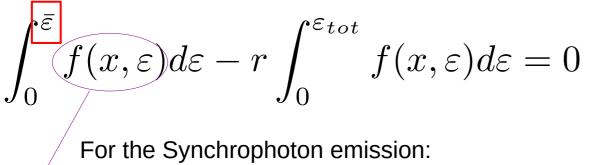
Problems:

- Modified Bessel Functions
- Numerical integration
- Numerical inversion

$$\frac{d^2W_{pe}}{dtd\varepsilon_{\gamma}}(\varepsilon_e,\varepsilon_{\gamma},\chi_e) = \frac{\alpha m^2 c^4}{\sqrt{3}\pi\hbar\varepsilon_e^2} \frac{1}{(1+u)} \left[\left[1 + (1+u)^2 \right] K_{\frac{2}{3}} \left(\frac{2u}{3\chi_e} \right) - (1+u) \int_{\frac{2u}{3\chi_e}}^{\infty} K_{\frac{1}{3}}(y) dy \right], \quad u = \frac{\varepsilon_{\gamma}}{\varepsilon_e - \varepsilon_{\gamma}}$$

Main purpose: create particles whose energies $\bar{\varepsilon}$ are distributed between $0 \leq \bar{\varepsilon} \leq \varepsilon_{tot}$ according to f

Use the Inverse Transform Sampling (ITS) method



Problems:

- Modified Bessel Functions
- Numerical integration
- Numerical inversion

Solution:

<u>Use Chebyshev transforms!</u>

$$\frac{d^2W_{pe}}{dtd\varepsilon_{\gamma}}(\varepsilon_e,\varepsilon_{\gamma},\chi_e) = \frac{\alpha m^2 c^4}{\sqrt{3}\pi\hbar\varepsilon_e^2} \frac{1}{(1+u)} \left[\left[1 + (1+u)^2 \right] K_{\frac{2}{3}} \left(\frac{2u}{3\chi_e} \right) - (1+u) \int_{\frac{2u}{3\chi_e}}^{\infty} K_{\frac{1}{3}}(y) dy \right], \quad u = \frac{\varepsilon_{\gamma}}{\varepsilon_e - \varepsilon_{\gamma}}$$

Main purpose: create particles whose energies $\bar{\varepsilon}$ are distributed between $0 \leq \bar{\varepsilon} \leq \varepsilon_{tot}$ according to f

Use the Inverse Transform Sampling (ITS) method

$$\int_{0}^{\bar{\varepsilon}} f(x,\varepsilon)d\varepsilon - r \int_{0}^{\varepsilon_{tot}} f(x,\varepsilon)d\varepsilon = 0$$

For the Synchrophoton emission:

Problems:

- Modified Bessel Functions
- Numerical integration
- Numerical inversion

Solution:

<u>Use Chebyshev transforms!</u>

$$\frac{d^2W_{pe}}{dtd\varepsilon_{\gamma}}(\varepsilon_e,\varepsilon_{\gamma},\chi_e) = \frac{\alpha m^2 c^4}{\sqrt{3}\pi\hbar\varepsilon_e^2} \frac{1}{(1+u)} \left[\left[1 + (1+u)^2 \right] K_{\frac{2}{3}} \left(\frac{2u}{3\chi_e} \right) - (1+u) \int_{\frac{2u}{3\chi_e}}^{\infty} K_{\frac{1}{3}}(y) dy \right], \quad u = \frac{\varepsilon_{\gamma}}{\varepsilon_e - \varepsilon_{\gamma}}$$

$$\bar{\varepsilon} = G(x,r) \equiv \mathrm{inverse} \left[\int_0^{\bar{\varepsilon}} f(x,\varepsilon) d\varepsilon - r \int_0^{\varepsilon_{tot}} f(x,\varepsilon) d\varepsilon = 0 \right] \Rightarrow Ch[G(x,r)]$$

Main purpose: create particles whose energies $\bar{\varepsilon}$ are distributed between $0 \leq \bar{\varepsilon} \leq \varepsilon_{tot}$ according to f

Use the Inverse Transform Sampling (ITS) method

$$\int_0^{\bar{\varepsilon}} f(x,\varepsilon)d\varepsilon - r \int_0^{\varepsilon_{tot}} f(x,\varepsilon)d\varepsilon = 0$$

For the Synchrophoton emission:

Problems:

- Modified Bessel Functions
- Numerical integration
- Numerical inversion

Solution:

<u>Use Chebyshev transforms!</u>

$$\frac{d^2W_{pe}}{dtd\varepsilon_{\gamma}}(\varepsilon_e,\varepsilon_{\gamma},\chi_e) = \frac{\alpha m^2 c^4}{\sqrt{3}\pi\hbar\varepsilon_e^2} \frac{1}{(1+u)} \left[\left[1 + (1+u)^2 \right] K_{\frac{2}{3}} \left(\frac{2u}{3\chi_e} \right) - (1+u) \int_{\frac{2u}{3\chi_e}}^{\infty} K_{\frac{1}{3}}(y) dy \right], \quad u = \frac{\varepsilon_{\gamma}}{\varepsilon_e - \varepsilon_{\gamma}}$$

$$\bar{\varepsilon} = G(x,r) \equiv \mathrm{inverse} \bigg[\int_0^{\bar{\varepsilon}} f(x,\varepsilon) d\varepsilon - r \int_0^{\varepsilon_{tot}} f(x,\varepsilon) d\varepsilon = 0 \bigg] \Rightarrow Ch[G(x,r)]$$

Is this always possible???

Main purpose: create particles whose energies $\bar{\varepsilon}$ are distributed between $0 \leq \bar{\varepsilon} \leq \varepsilon_{tot}$ according to f

Use the Inverse Transform Sampling (ITS) method

$$\int_0^{\bar{\varepsilon}} f(x,\varepsilon)d\varepsilon - r \int_0^{\varepsilon_{tot}} f(x,\varepsilon)d\varepsilon = 0$$

For the Synchrophoton emission:

Problems:

- Modified Bessel Functions
- Numerical integration
- Numerical inversion

Solution:

<u>Use Chebyshev transforms!</u>

$$\frac{d^2W_{pe}}{dtd\varepsilon_{\gamma}}(\varepsilon_e,\varepsilon_{\gamma},\chi_e) = \frac{\alpha m^2 c^4}{\sqrt{3}\pi\hbar\varepsilon_e^2} \frac{1}{(1+u)} \left[\left[1 + (1+u)^2 \right] K_{\frac{2}{3}} \left(\frac{2u}{3\chi_e} \right) - (1+u) \int_{\frac{2u}{3\chi_e}}^{\infty} K_{\frac{1}{3}}(y) dy \right], \quad u = \frac{\varepsilon_{\gamma}}{\varepsilon_e - \varepsilon_{\gamma}}$$

$$\bar{\varepsilon} = G(x,r) \equiv \text{inverse} \left[\int_0^{\bar{\varepsilon}} f(x,\varepsilon) d\varepsilon - r \int_0^{\varepsilon_{tot}} f(x,\varepsilon) d\varepsilon = 0 \right] \Rightarrow Ch[G(x,r)]$$
Obviously no
Is this always possible???

Main purpose: create particles whose energies $\bar{\varepsilon}$ are distributed between $0 \leq \bar{\varepsilon} \leq \varepsilon_{tot}$ according to f

Use the Inverse Transform Sampling (ITS) method

$$\int_0^{\bar{\varepsilon}} f(x,\varepsilon)d\varepsilon - r \int_0^{\varepsilon_{tot}} f(x,\varepsilon)d\varepsilon = 0$$

For the Synchrophoton emission:

Problems:

- Modified Bessel Functions
- Numerical integration
- Numerical inversion

Solution:

Use Chebyshev transforms!

$$\frac{d^2W_{pe}}{dtd\varepsilon_{\gamma}}(\varepsilon_e,\varepsilon_{\gamma},\chi_e) = \frac{\alpha m^2 c^4}{\sqrt{3}\pi\hbar\varepsilon_e^2} \frac{1}{(1+u)} \left[\left[1 + (1+u)^2 \right] K_{\frac{2}{3}} \left(\frac{2u}{3\chi_e} \right) - (1+u) \int_{\frac{2u}{3\chi_e}}^{\infty} K_{\frac{1}{3}}(y) dy \right], \quad u = \frac{\varepsilon_{\gamma}}{\varepsilon_e - \varepsilon_{\gamma}}$$

Turn to
Asymptotic
expansions

$$\bar{\varepsilon} = G(x,r) \equiv \text{inverse} \left[\int_0^{\bar{\varepsilon}} f(x,\varepsilon) d\varepsilon - r \int_0^{\varepsilon_{tot}} f(x,\varepsilon) d\varepsilon = 0 \right] \Rightarrow Ch[G(x,r)]$$
Obviously
no
Is this always possible???

Emission rate

Emission rate (What tells us if the event occurs)

Emission rate

(What tells us if the event occurs)

From the Baier-Katkov:

$$R_{pe}(\varepsilon_e, \chi_e) = \frac{\alpha m^2 c^4}{3\sqrt{3}\pi\hbar\varepsilon_e} \int_0^\infty \frac{5u^2 + 7u + 5}{(1+u)^3} K_{\frac{2}{3}}\left(\frac{2u}{3\chi_e}\right) du$$

(What tells us if the event occurs)

$$R_{pe}(\varepsilon_e, \chi_e) = \frac{\alpha m^2 c^4}{3\sqrt{3}\pi\hbar\varepsilon_e} \int_0^\infty \frac{5u^2 + 7u + 5}{(1+u)^3} K_{\frac{2}{3}}\left(\frac{2u}{3\chi_e}\right) du$$

$$u \to v = \frac{2u}{3\chi_e}$$

(What tells us if the event occurs)

$$R_{pe}(\varepsilon_e, \chi_e) = \frac{\alpha m^2 c^4}{3\sqrt{3}\pi\hbar\varepsilon_e} \int_0^\infty \frac{5u^2 + 7u + 5}{(1+u)^3} K_{\frac{2}{3}}\left(\frac{2u}{3\chi_e}\right) du$$

$$u \to v = \frac{2u}{3\chi_e} \qquad \varepsilon_e = \gamma_e mc^2$$

(What tells us if the event occurs)

$$R_{pe}(\varepsilon_e, \chi_e) = \frac{\alpha m^2 c^4}{3\sqrt{3}\pi\hbar\varepsilon_e} \int_0^\infty \frac{5u^2 + 7u + 5}{(1+u)^3} K_{\frac{2}{3}}\left(\frac{2u}{3\chi_e}\right) du$$

$$u \to v = \frac{2u}{3\chi_e}$$
 $\varepsilon_e = \gamma_e mc^2$ $\lambda_C = \frac{\hbar}{mc}$

(What tells us if the event occurs)

$$R_{pe}(\varepsilon_e, \chi_e) = \frac{\alpha m^2 c^4}{3\sqrt{3}\pi\hbar\varepsilon_e} \int_0^\infty \frac{5u^2 + 7u + 5}{(1+u)^3} K_{\frac{2}{3}}\left(\frac{2u}{3\chi_e}\right) du$$

$$u \to v = \frac{2u}{3\chi_e}$$
 $\varepsilon_e = \gamma_e mc^2$ $\lambda_C = \frac{\hbar}{mc}$ $\omega_r = \frac{c}{\lambda_r}$

(What tells us if the event occurs)

$$R_{pe}(\varepsilon_e, \chi_e) = \frac{\alpha m^2 c^4}{3\sqrt{3}\pi\hbar\varepsilon_e} \int_0^\infty \frac{5u^2 + 7u + 5}{(1+u)^3} K_{\frac{2}{3}}\left(\frac{2u}{3\chi_e}\right) du$$

$$u \to v = \frac{2u}{3\chi_e}$$
 $\varepsilon_e = \gamma_e mc^2$ $\lambda_C = \frac{\hbar}{mc}$ $\omega_r = \frac{c}{\lambda_r}$

$$R_{pe}(\gamma_e, \chi_e) = \omega_r \frac{\alpha}{\sqrt{3}\pi} \frac{\lambda_r}{\lambda_C} \frac{\chi_e}{\gamma_e} \int_0^\infty \frac{45(v\chi)^2 + 42v\chi + 20}{(2+3v\chi)^3} K_{\frac{2}{3}}(v) dv$$

(What tells us if the event occurs)

$$R_{pe}(\varepsilon_e, \chi_e) = \frac{\alpha m^2 c^4}{3\sqrt{3}\pi\hbar\varepsilon_e} \int_0^\infty \frac{5u^2 + 7u + 5}{(1+u)^3} K_{\frac{2}{3}}\left(\frac{2u}{3\chi_e}\right) du$$

$$u \to v = \frac{2u}{3\chi_e}$$
 $\varepsilon_e = \gamma_e mc^2$ $\lambda_C = \frac{\hbar}{mc}$ $\omega_r = \frac{c}{\lambda_r}$

$$R_{pe}(\gamma_e, \chi_e) = \omega_r \frac{\alpha}{\sqrt{3}\pi} \frac{\lambda_r}{\lambda_C} \frac{\chi_e}{\gamma_e} \int_0^\infty \frac{45(v\chi)^2 + 42v\chi + 20}{(2+3v\chi)^3} K_{\frac{2}{3}}(v) dv$$

(What tells us if the event occurs)

$$R_{pe}(\varepsilon_e, \chi_e) = \frac{\alpha m^2 c^4}{3\sqrt{3}\pi\hbar\varepsilon_e} \int_0^\infty \frac{5u^2 + 7u + 5}{(1+u)^3} K_{\frac{2}{3}}\left(\frac{2u}{3\chi_e}\right) du$$

$$u \to v = \frac{2u}{3\chi_e}$$
 $\varepsilon_e = \gamma_e mc^2$ $\lambda_C = \frac{\hbar}{mc}$ $\omega_r = \frac{c}{\lambda_r}$

$$R_{pe}(\gamma_e, \chi_e) = \omega_r \frac{\alpha}{\sqrt{3}\pi} \frac{\lambda_r}{\lambda_C} \frac{\chi_e}{\gamma_e} \int_0^\infty \frac{45(v\chi)^2 + 42v\chi + 20}{(2 + 3v\chi)^3} K_{\frac{2}{3}}(v) dv$$

$$\tilde{W}_{rad}(\chi_e)$$

(What tells us if the event occurs)

From the Baier-Katkov:

$$R_{pe}(\varepsilon_e, \chi_e) = \frac{\alpha m^2 c^4}{3\sqrt{3}\pi\hbar\varepsilon_e} \int_0^\infty \frac{5u^2 + 7u + 5}{(1+u)^3} K_{\frac{2}{3}}\left(\frac{2u}{3\chi_e}\right) du$$

$$u \to v = \frac{2u}{3\chi_e}$$
 $\varepsilon_e = \gamma_e mc^2$ $\lambda_C = \frac{\hbar}{mc}$ $\omega_r = \frac{c}{\lambda_r}$

$$R_{pe}(\gamma_e, \chi_e) = \omega_r \frac{\alpha}{\sqrt{3}\pi} \frac{\lambda_r}{\lambda_C} \frac{\chi_e}{\gamma_e} \int_0^\infty \frac{45(v\chi)^2 + 42v\chi + 20}{(2+3v\chi)^3} K_{\frac{2}{3}}(v) dv$$

SFQEDtoolkit is loaded with the coefficients of

$$Ch[\tilde{W}_{rad}(\chi_e)]$$

over the range

$$0 \le \chi_e \le 2000$$

(What tells us if the event occurs)

From the Baier-Katkov:

$$R_{pe}(\varepsilon_e, \chi_e) = \frac{\alpha m^2 c^4}{3\sqrt{3}\pi\hbar\varepsilon_e} \int_0^\infty \frac{5u^2 + 7u + 5}{(1+u)^3} K_{\frac{2}{3}}\left(\frac{2u}{3\chi_e}\right) du$$

$$u \to v = \frac{2u}{3\chi_e}$$
 $\varepsilon_e = \gamma_e mc^2$ $\lambda_C = \frac{\hbar}{mc}$ $\omega_r = \frac{c}{\lambda_r}$

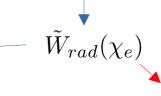
$$R_{pe}(\gamma_e, \chi_e) = \omega_r \frac{\alpha}{\sqrt{3}\pi} \frac{\lambda_r}{\lambda_C} \frac{\chi_e}{\gamma_e} \int_0^\infty \frac{45(v\chi)^2 + 42v\chi + 20}{(2+3v\chi)^3} K_{\frac{2}{3}}(v) dv$$

SFQEDtoolkit is loaded with the coefficients of

$$Ch[\tilde{W}_{rad}(\chi_e)]$$

over the range

$$0 \le \chi_e \le 2000$$



$$\int_{0}^{700} \frac{45(v\chi)^{2} + 42v\chi + 20}{(2+3v\chi)^{3}} K_{\frac{2}{3}}(v) dv$$

(What tells us if the event occurs)

From the Baier-Katkov:

$$R_{pe}(\varepsilon_e, \chi_e) = \frac{\alpha m^2 c^4}{3\sqrt{3}\pi\hbar\varepsilon_e} \int_0^\infty \frac{5u^2 + 7u + 5}{(1+u)^3} K_{\frac{2}{3}}\left(\frac{2u}{3\chi_e}\right) du$$

$$u \to v = \frac{2u}{3\chi_e}$$
 $\varepsilon_e = \gamma_e mc^2$ $\lambda_C = \frac{\hbar}{mc}$ $\omega_r = \frac{c}{\lambda_r}$

Exponentially fast convergence for C^{∞} functions

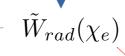
$$R_{pe}(\gamma_e, \chi_e) = \omega_r \frac{\alpha}{\sqrt{3}\pi} \frac{\lambda_r}{\lambda_C} \frac{\chi_e}{\gamma_e} \int_0^\infty \frac{45(v\chi)^2 + 42v\chi + 20}{(2+3v\chi)^3} K_{\frac{2}{3}}(v) dv$$

SFQEDtoolkit is loaded with the coefficients of

$$Ch[\tilde{W}_{rad}(\chi_e)]$$

over the range

$$0 \le \chi_e \le 2000$$



$$-\tilde{W}_{rad}(\chi_e)$$

$$\int_0^{700} \frac{45(v\chi)^2 + 42v\chi + 20}{(2+3v\chi)^3} K_{\frac{2}{3}}(v) dv$$

$$\bar{\varepsilon} = \text{inverse} \bigg[\int_0^{\bar{\varepsilon}} \frac{d^2 W_{pe}}{dt d\varepsilon_{\gamma}} (\varepsilon_e, \varepsilon_{\gamma}, \chi_e) d\varepsilon_{\gamma} - r \int_0^{\varepsilon_{tot}} \frac{d^2 W_{pe}}{dt d\varepsilon_{\gamma}} (\varepsilon_e, \varepsilon_{\gamma}, \chi_e) d\varepsilon_{\gamma} = 0 \bigg]$$

$$\bar{\varepsilon} = \text{inverse} \left[\int_0^{\bar{\varepsilon}} \frac{d^2 W_{pe}}{dt d\varepsilon_{\gamma}} (\varepsilon_e, \varepsilon_{\gamma}, \chi_e) d\varepsilon_{\gamma} - r \int_0^{\varepsilon_{tot}} \frac{d^2 W_{pe}}{dt d\varepsilon_{\gamma}} (\varepsilon_e, \varepsilon_{\gamma}, \chi_e) d\varepsilon_{\gamma} = 0 \right]$$

$$\bar{\varepsilon} = \mathtt{inverse} \bigg[\int_0^{\bar{\varepsilon}} \frac{d^2 W_{pe}}{dt d\varepsilon_{\gamma}} (\varepsilon_e, \varepsilon_{\gamma}, \chi_e) d\varepsilon_{\gamma} - r \int_0^{\varepsilon_{tot}} \frac{d^2 W_{pe}}{dt d\varepsilon_{\gamma}} (\varepsilon_e, \varepsilon_{\gamma}, \chi_e) d\varepsilon_{\gamma} = 0 \bigg]$$

$$I_{pe}(\bar{\varepsilon}, \varepsilon_e, \chi_e)$$

$$\bar{\varepsilon} = \mathtt{inverse} \left[\underbrace{\int_0^{\bar{\varepsilon}} \frac{d^2 W_{pe}}{dt d\varepsilon_{\gamma}} (\varepsilon_e, \varepsilon_{\gamma}, \chi_e) d\varepsilon_{\gamma}}_{} - r \int_0^{\varepsilon_{tot}} \frac{d^2 W_{pe}}{dt d\varepsilon_{\gamma}} (\varepsilon_e, \varepsilon_{\gamma}, \chi_e) d\varepsilon_{\gamma} = 0 \right]$$

$$I_{pe}(\bar{\varepsilon}, \varepsilon_e, \chi_e)$$

$$\varepsilon_{\gamma} \to w = \sqrt[3]{\frac{2\varepsilon_{\gamma}}{3(\varepsilon_e - \varepsilon_{\gamma})\chi_e}}$$

$$\bar{\varepsilon} = \mathtt{inverse} \left[\int_0^{\bar{\varepsilon}} \frac{d^2 W_{pe}}{dt d\varepsilon_{\gamma}} (\varepsilon_e, \varepsilon_{\gamma}, \chi_e) d\varepsilon_{\gamma} - r \int_0^{\varepsilon_{tot}} \frac{d^2 W_{pe}}{dt d\varepsilon_{\gamma}} (\varepsilon_e, \varepsilon_{\gamma}, \chi_e) d\varepsilon_{\gamma} = 0 \right]$$

$$I_{pe}(\bar{\varepsilon}, \varepsilon_e, \chi_e)$$

$$\varepsilon_{\gamma} \to w = \sqrt[3]{\frac{2\varepsilon_{\gamma}}{3(\varepsilon_e - \varepsilon_{\gamma})\chi_e}}$$

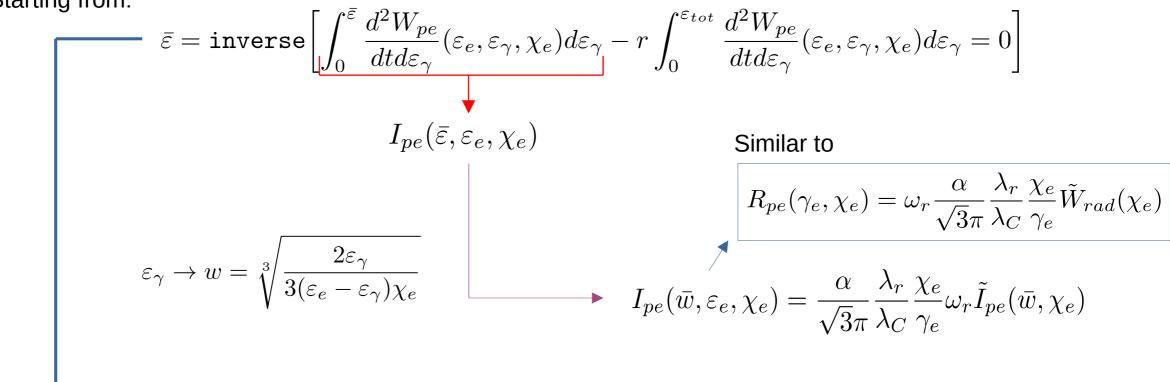
$$I_{pe}(\bar{w}, \varepsilon_e, \chi_e) = \frac{\alpha}{\sqrt{3\pi}} \frac{\lambda_r}{\lambda_C} \frac{\chi_e}{\gamma_e} \omega_r \tilde{I}_{pe}(\bar{w}, \chi_e)$$

$$\bar{\varepsilon} = \mathtt{inverse} \left[\int_0^{\bar{\varepsilon}} \frac{d^2 W_{pe}}{dt d\varepsilon_{\gamma}} (\varepsilon_e, \varepsilon_{\gamma}, \chi_e) d\varepsilon_{\gamma} - r \int_0^{\varepsilon_{tot}} \frac{d^2 W_{pe}}{dt d\varepsilon_{\gamma}} (\varepsilon_e, \varepsilon_{\gamma}, \chi_e) d\varepsilon_{\gamma} = 0 \right]$$

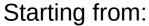
$$I_{pe}(\bar{\varepsilon}, \varepsilon_e, \chi_e) \qquad \qquad \mathbf{Similar to}$$

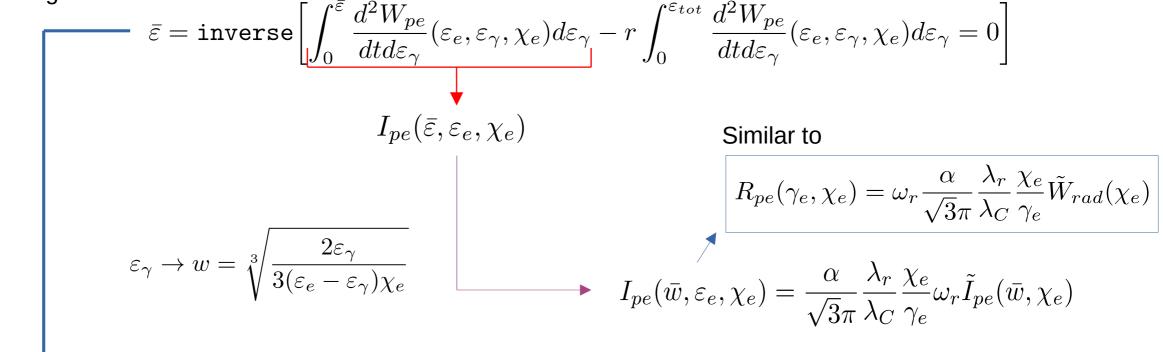
$$R_{pe}(\gamma_e, \chi_e) = \omega_r \frac{\alpha}{\sqrt{3}\pi} \frac{\lambda_r}{\lambda_C} \frac{\chi_e}{\gamma_e} \tilde{W}_{rad}(\chi_e)$$

$$\varepsilon_{\gamma} \to w = \sqrt[3]{\frac{2\varepsilon_{\gamma}}{3(\varepsilon_e - \varepsilon_{\gamma})\chi_e}} \qquad \qquad I_{pe}(\bar{w}, \varepsilon_e, \chi_e) = \frac{\alpha}{\sqrt{3}\pi} \frac{\lambda_r}{\lambda_C} \frac{\chi_e}{\gamma_e} \omega_r \tilde{I}_{pe}(\bar{w}, \chi_e)$$



$$ar{w} = G(\chi_e, r) \equiv \mathtt{inverse} igg[ilde{I}_{pe}(ar{w}, \chi_e) - r ilde{W}_{rad}(\chi_e) = 0 igg]$$





$$ar{w} = G(\chi_e, r) \equiv \mathtt{inverse} igg[ilde{I}_{pe}(ar{w}, \chi_e) - r ilde{W}_{rad}(\chi_e) = 0 igg]$$

Less coefficients for

$$Ch[G(\chi_e, r)]$$

$$ar{w} = G(\chi_e, r) \equiv \mathtt{inverse} igg[ilde{I}_{pe}(ar{w}, \chi_e) - r ilde{W}_{rad}(\chi_e) = 0 igg]$$

Is solved by using Clenshaw's recurrence upon the coefficients of $\,Ch[G(\chi_e,r)]\,$

$$ar{w} = G(\chi_e, r) \equiv \mathtt{inverse} igg[ilde{I}_{pe}(ar{w}, \chi_e) - r ilde{W}_{rad}(\chi_e) = 0 igg]$$

Is solved by using Clenshaw's recurrence upon the coefficients of $\,Ch[G(\chi_e,r)]\,$

$$\varepsilon_{\gamma} = \frac{3w^3 \varepsilon_e \chi_e}{2 + 3w^3 \chi_e}$$

$$ar{w} = G(\chi_e, r) \equiv \mathtt{inverse} igg[ilde{I}_{pe}(ar{w}, \chi_e) - r ilde{W}_{rad}(\chi_e) = 0 igg]$$

Is solved by using Clenshaw's recurrence upon the coefficients of $\,Ch[G(\chi_e,r)]\,$

$$\varepsilon_{\gamma} = \frac{3w^3 \varepsilon_e \chi_e}{2 + 3w^3 \chi_e}$$

Things get tricky when:

$$r \to 0 \ (r < 0.04)$$

$$ar{w} = G(\chi_e, r) \equiv \mathtt{inverse} igg[ilde{I}_{pe}(ar{w}, \chi_e) - r ilde{W}_{rad}(\chi_e) = 0 igg]$$

Is solved by using Clenshaw's recurrence upon the coefficients of $\,Ch[G(\chi_e,r)]\,$

$$\varepsilon_{\gamma} = \frac{3w^3 \varepsilon_e \chi_e}{2 + 3w^3 \chi_e}$$

Things get tricky when:

$$r \to 0 \ (r < 0.04)$$

Use:
$$\tilde{I}_{pe}(\bar{w},\chi_e) \xrightarrow{\bar{w} \to 0} \frac{9}{2^{1/3}} \Gamma\left(\frac{2}{3}\right) \bar{w}$$

$$ar{w}=G(\chi_e,r)\equiv {
m inverse}\left[ilde{I}_{pe}(ar{w},\chi_e)-r ilde{W}_{rad}(\chi_e)=0
ight]$$
 Is solved by using Clenshaw's recurrence upon the coefficients of $\ Ch[G(\chi_e,r)]$

$$\varepsilon_{\gamma} = \frac{3w^3 \varepsilon_e \chi_e}{2 + 3w^3 \chi_e}$$

Things get tricky when:

$$r \to 0 \ (r < 0.04)$$

Use:
$$\tilde{I}_{pe}(\bar{w},\chi_e) \xrightarrow{\bar{w} \to 0} \frac{9}{2^{1/3}} \Gamma\left(\frac{2}{3}\right) \bar{w}$$

$$\bar{w} = G(\chi_e, r) \equiv \text{inverse} \left[\tilde{I}_{pe}(\bar{w}, \chi_e) - r \tilde{W}_{rad}(\chi_e) = 0 \right]$$
 Is solved by using Clenshaw's recurrence upon the coefficients of $Ch[G(\chi_e, r)]$

$$\varepsilon_{\gamma} = \frac{3w^3 \varepsilon_e \chi_e}{2 + 3w^3 \chi_e}$$

Things get tricky when:

$$r \to 0 \ (r < 0.04)$$

Use:
$$\tilde{I}_{pe}(\bar{w},\chi_e) \xrightarrow{\bar{w} \to 0} \frac{9}{2^{1/3}} \Gamma\left(\frac{2}{3}\right) \bar{w}$$

<u>Analytically inverted</u> into:

$$\bar{w} = r\tilde{W}_{rad}(\chi_e) \left[\frac{9}{2^{1/3}} \Gamma\left(\frac{2}{3}\right) \right]^{-1}$$

$$ar{w} = \mathtt{inverse} igg[ilde{I}_{pe}(ar{w},\chi_e) - r ilde{W}_{rad}(\chi_e) = 0 igg]$$

$$r \to 1 \ (r > 0.99999)$$

$$ar{w} = \mathtt{inverse}igg[ilde{I}_{pe}(ar{w},\chi_e) - r ilde{W}_{rad}(\chi_e) = 0igg]$$

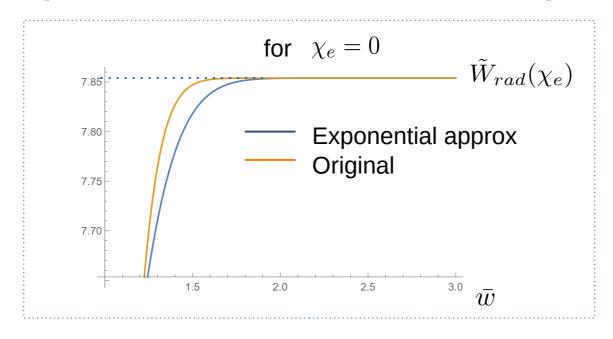
$$r \to 1 \ (r > 0.99999)$$

$$\tilde{I}_{pe}(\bar{w}, \chi_e) \approx \tilde{W}_{rad}(\chi_e)(1 - e^{-(\bar{w}^3 - w_0^3)}) + \tilde{I}_{pe}(w_0, \chi_e)e^{-(\bar{w}^3 - w_0^3)}$$

$$ar{w} = \mathtt{inverse}igg[ilde{I}_{pe}(ar{w},\chi_e) - r ilde{W}_{rad}(\chi_e) = 0igg]$$

$$r \to 1 \ (r > 0.99999)$$

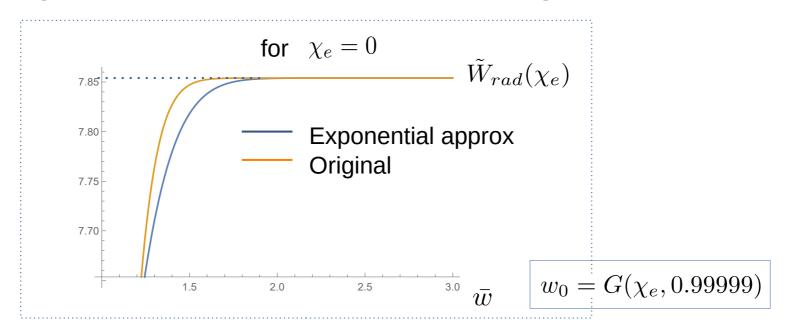
$$\tilde{I}_{pe}(\bar{w}, \chi_e) \approx \tilde{W}_{rad}(\chi_e)(1 - e^{-(\bar{w}^3 - w_0^3)}) + \tilde{I}_{pe}(w_0, \chi_e)e^{-(\bar{w}^3 - w_0^3)}$$



$$ar{w} = \mathtt{inverse}igg[ilde{I}_{pe}(ar{w},\chi_e) - r ilde{W}_{rad}(\chi_e) = 0igg]$$

$$r \to 1 \ (r > 0.99999)$$

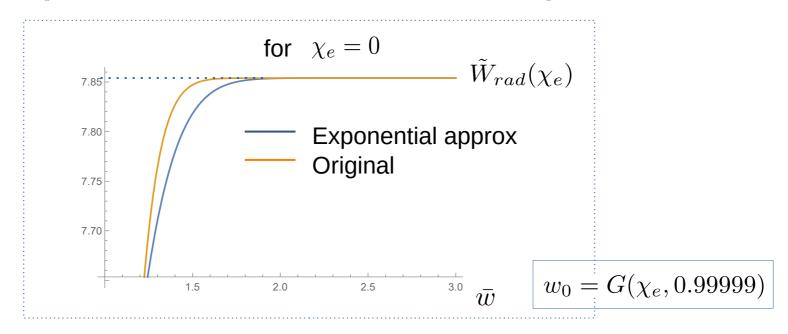
$$\tilde{I}_{pe}(\bar{w}, \chi_e) \approx \tilde{W}_{rad}(\chi_e)(1 - e^{-(\bar{w}^3 - w_0^3)}) + \tilde{I}_{pe}(w_0, \chi_e)e^{-(\bar{w}^3 - w_0^3)}$$



$$ar{w} = \mathtt{inverse}igg[ilde{I}_{pe}(ar{w},\chi_e) - r ilde{W}_{rad}(\chi_e) = 0igg]$$

$$r \to 1 \ (r > 0.99999)$$

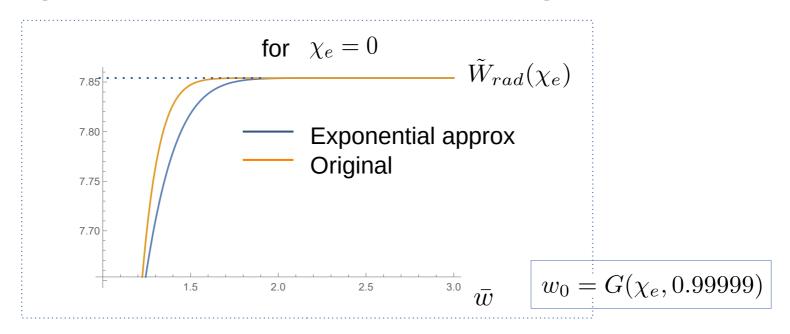
$$\tilde{I}_{pe}(\bar{w}, \chi_e) \approx \tilde{W}_{rad}(\chi_e)(1 - e^{-(\bar{w}^3 - w_0^3)}) + \tilde{I}_{pe}(w_0, \chi_e)e^{-(\bar{w}^3 - w_0^3)}$$



$$ar{w} = \mathtt{inverse}igg[ilde{I}_{pe}(ar{w},\chi_e) - r ilde{W}_{rad}(\chi_e) = 0igg]$$

$$r \to 1 \ (r > 0.99999)$$

$$\tilde{I}_{pe}(\bar{w}, \chi_e) \approx \tilde{W}_{rad}(\chi_e)(1 - e^{-(\bar{w}^3 - w_0^3)}) + \tilde{I}_{pe}(w_0, \chi_e)e^{-(\bar{w}^3 - w_0^3)}$$



Analytically inverted into:
$$\bar{w} = \sqrt[3]{w_0^3 - \log\left[\frac{\tilde{W}_{rad}(\chi_e)(1-r)}{\tilde{W}_{rad}(\chi_e) - \tilde{I}_{pe}(w_0, \chi_e)}\right]}$$

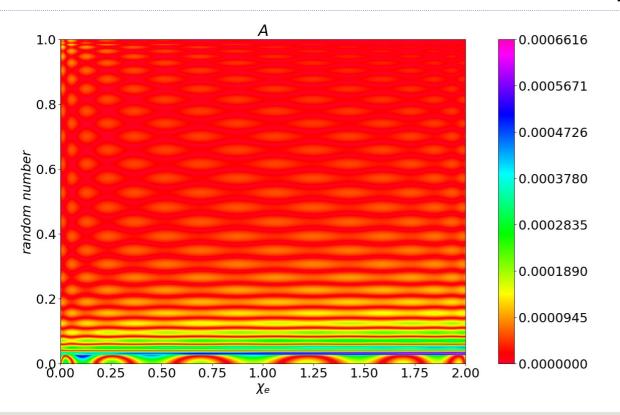
$$\Delta_r = \left| \frac{\varepsilon_{ITS} - \varepsilon_{tk}}{\varepsilon_{ITS}} \right|$$

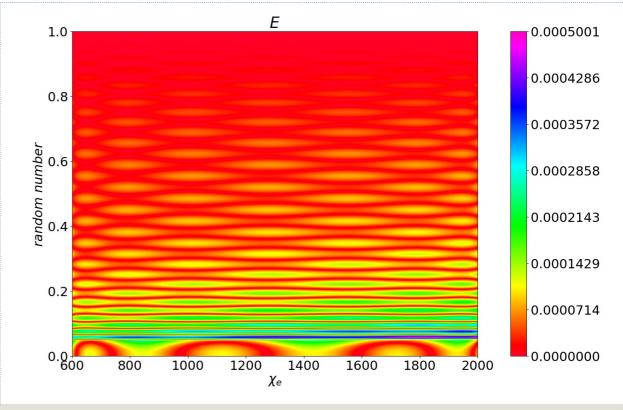
$$\Delta_r = \left| \frac{\varepsilon_{ITS} - \varepsilon_{tk}}{\varepsilon_{ITS}} \right|$$

$$\Delta_r = \left|\frac{\varepsilon_{ITS} - \varepsilon_{tk}}{\varepsilon_{ITS}}\right|$$
 Value returned by the toolkit
$$\nabla_r = \left|\frac{\varepsilon_{ITS} - \varepsilon_{tk}}{\varepsilon_{ITS}}\right|$$
 Value returned directly by the inverse transform sampling algorithm

Value returned by the toolkit

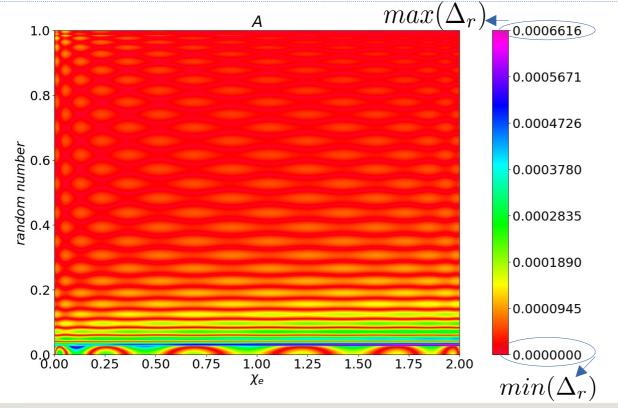
$$\Delta_r = \left| \frac{\varepsilon_{ITS} - \varepsilon_{tk}}{\varepsilon_{ITS}} \right|$$

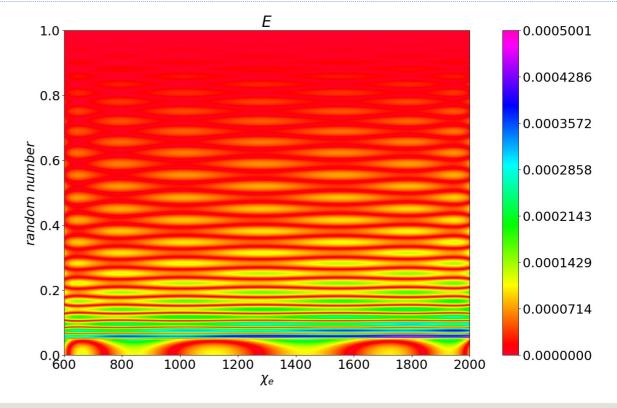




Value returned by the toolkit

$$\Delta_r = \left| \frac{\varepsilon_{ITS} - \varepsilon_{tk}}{\varepsilon_{ITS}} \right|$$

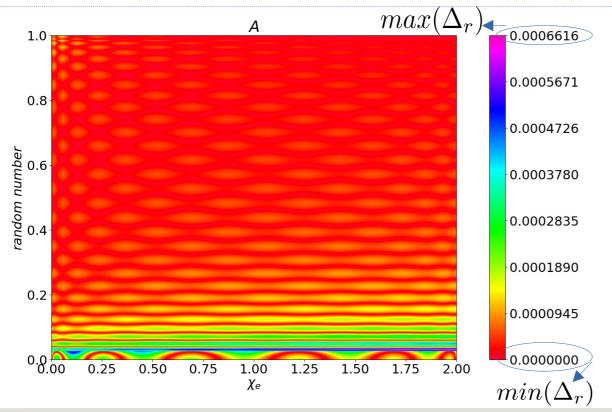


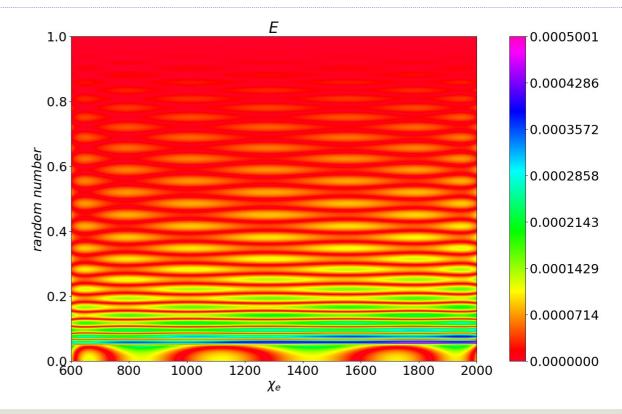


 $\left| arepsilon_{ITS} - arepsilon_{tk}
ight|$

Value returned by the toolkit

The percentage error $\Delta_r \cdot 100$ is well below 0.1%



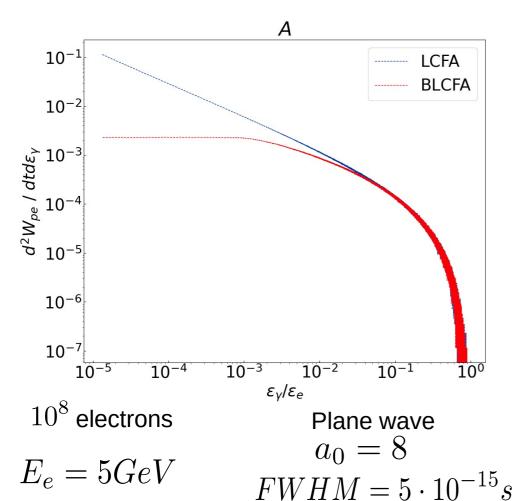


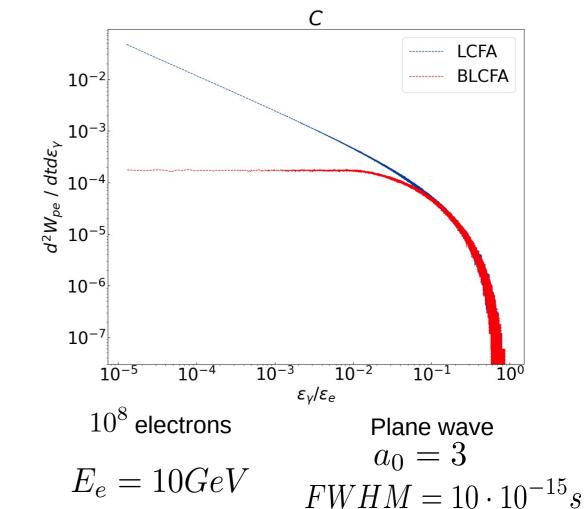
from

Beyond the LCFA

Improved local-constant-field approximation for strong-field QED codes, Di Piazza et al.

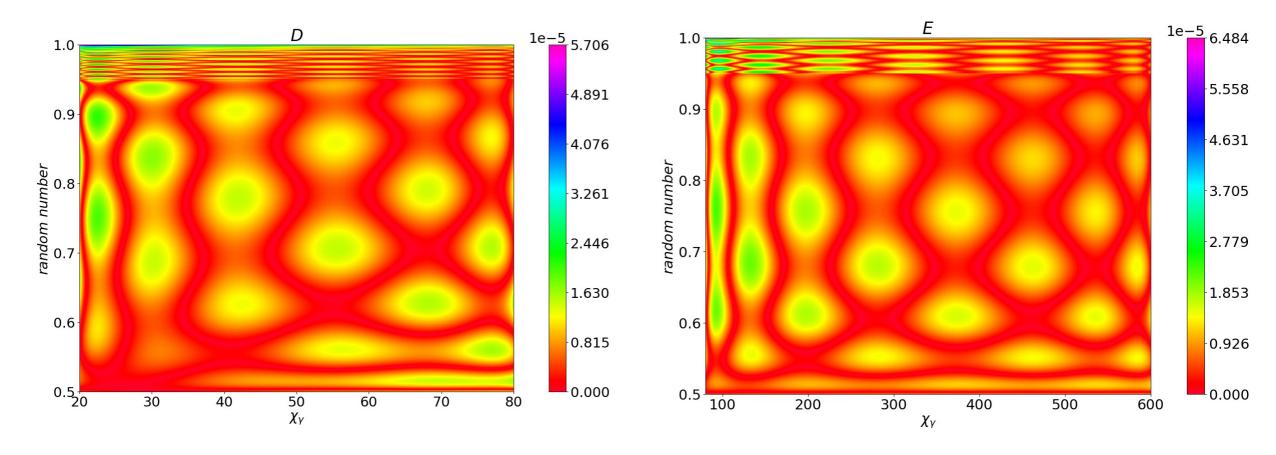
Fails at low energies!





Pair production precision

$$\Delta_r = \left| \frac{\varepsilon_{ITS} - \varepsilon_{tk}}{\varepsilon_{ITS}} \right|$$



Accurate

- Accurate
- Covers all SFQED processes' spectra

- Accurate
- Covers all SFQED processes' spectra
- Determines the energies of the emitted/created particles

- Accurate
- Covers all SFQED processes' spectra
- Determines the energies of the emitted/created particles
- Open source code (Soon Available on github at: https://github.com/QuantumPlasma/SFQEDtoolkit)

- Accurate
- Covers all SFQED processes' spectra
- Determines the energies of the emitted/created particles
- Open source code (Soon Available on github at: https://github.com/QuantumPlasma/SFQEDtoolkit)
- Finalizing Draft with details on the methodology and tests

- Accurate
- Covers all SFQED processes' spectra
- Determines the energies of the emitted/created particles
- Open source code (Soon Available on github at: https://github.com/QuantumPlasma/SFQEDtoolkit)
- Finalizing Draft with details on the methodology and tests

Outlook

Will account for the full angular distribution

- Accurate
- Covers all SFQED processes' spectra
- Determines the energies of the emitted/created particles
- Open source code (Soon Available on github at: https://github.com/QuantumPlasma/SFQEDtoolkit)
- Finalizing Draft with details on the methodology and tests

- Will account for the full angular distribution
- Will include spin and polarization effects

