Sm“e:) Workshop

Node-level optimization (20 min)

Ecole Polytechnique — March 2022
Mathieu Lobet

Focus on the node parallelism level

L

Node

Volatile memory (RAM)

Processor (CPU)

DO0Od

Volatile memory (RAM)

Processor (CPU)

OO0

Volatile memory (RAM)

Processor (CPU)

OO0OC

Smilei Workshop — Node-level optimization — 2

Sm“e‘) Workshop

[. Vectorization

Vectorization is a component of each core

Node » Vectorization is a parallel computation located at the

core level.
Volatile memory (RAM)

» [t is refered to as SIMD for Single Instruction Multiple
Processor (CPU) Data

Al
E.

Smilei Workshop — Node-level optimization — 4

Understand the vectorized treatment of data

We want to sum vector A with vector B

I
ot et (o | [t | (ot | oy | (ot | o oo |

Smilei Workshop — Node-level optimization — 5

Understand the vectorized treatment of data

» In a scalar loop, the core will perform each sum one by one...

Smilei Workshop — Node-level optimization — 6

Understand the vectorized treatment of data

» In a scalar loop, the core will perform each sum one by one...

|

’B[O] \ ’B[T] \

Smilei Workshop — Node-level optimization — 7

Understand the vectorized treatment of data

» In a scalar loop, the core will perform each sum one by one...

ﬁﬁﬁ

Smilei Workshop — Node-level optimization — 8

Understand the vectorized treatment of data

» In a scalar loop, the core will perform each sum one by one until the end
'AM \ 'A[2] \ 'A[3] \ 'A[4] \ 'A[S] \ 'A[6] \ 'A[7] \ 'A[S] \
+ i

600 || ert1 || ei21 || B3y || era1 || Brs) || ere) || ei7) || ers)

e) e)][) e | o [o

Smilei Workshop — Node-level optimization — 9

Understand the vectorized treatment of data

» The vectorized version performs the sum of all elements at once

"] con] ol o ol]]
|

600 || ert1 || ei21 || B3y || era1 || Brs) || ere) || ei7) || ers)

'C[O] "Cm \'C[Z] \'6[2] \'C[Z] \'C[Z] \'C[2] \'C[2] \'C[2] \

Smilei Workshop — Node-level optimization — 10

Understand the vectorized treatment of data

» Most modern processors perform both an addition and a multiplication in a single
vectorized cycle (referred o0 as FMA for Fused-Add-Multiply instruction)

- B) <

» If-branch can also be vectorized using masks
» Largest vectors are composed of 8 double-precision floats (AVX512 for instance)

Smilei Workshop — Node-level optimization — 11

Vectorization bottlenecks

Maxwell solver
(staggered grid)

Charge and

Field interpolation current projection

Particle pusher

@) ®) O

@)
@) @)
OX Of (@)
@)

[0} o © o o O
@) ®) o
© ® L e
O O @ O

O particle () particle O particle o Ex Jx, By

o grid node «— particle movement © grid node o By, Jy, Bx
«— interpolation of fields ~«— projection of particle current o Charge, Ez, Jz

at particle positions on the nearby nodes o Bz

Smilei Workshop — Node-level optimization — 13

Vectorization bottlenecks

Bottleneck: need adaptation Negligible in term of

Bottleneck: need adaptation CHficient vectorization for vectorization to avoid computational time
for efficient vectorization memory race (stencil problem so vectorizable)
o , . Charge and Maxwell solver
Field interpolation Particle pusher current projection (staggered grid)
O o o
@ O 0 @

O © @ © © o
@) @)
Oy O @ e o o @]
O\) f O 0] e ©¢ ©o e ©
@)
@)
© O o \ o X o

O O @ O
O particle () particle O particle o Ex Jx, By
o grid node «— particle movement © grid node o By, Jy, Bx
«— interpolation of fields ~«— projection of particle current o Charge, Ez, Jz
at particle positions on the nearby nodes o Bz

Smilei Workshop — Node-level optimization — 14

Vectorized versus scalar operator implementations

Thermal plasma 3D benchmark on a Skylake node (2 MPIs x 24 OMPs)

—e— \Vectorized o Scalar

J Lower is
better

Inversion point

Computation time
per particle per iteration (ns)

1074
: ® e — o
| . i
" ' . 1 r rrru] T T T T T T T r ' —] v
10° 10" 102 103

[] A. Beck, et al. , Adaptive SIMD optimizations in particle-in-cell codes with fine-grain particle p artic | es p er C el |
sorting, Computer Physics Communications 244, 246-263 (2019) arXiv:1810.03949

Smilei Workshop — Node-level optimization — 15

http://dx.doi.org/10.1016/j.cpc.2019.05.001
https://arxiv.org/abs/1810.03949

An adaptive method in time and space

Charge and

- N Field interpolation . rent projection
For many i o| o
O
operators — e
© o |0 -
- g N o Te
(N
O adaptation in L .
@) OO Scalar (classical) implementation fime F;n d space Vectorized |mplementat|on |
» more efficient for few particles at the patch > More efficient for many particles
per cell evel per cell
- J

Smilei Workshop — Node-level optimization — 16

An adaptive method in time and space

Thermal plasma 3D benchmark on a Skylake node (2 MPIs x 24 OMPs)

“«
= —e— Vectorized e Scalar —e— Adaptive
=
L o
— E eter
C o
o =
"5
= a 10"+ -
Q o] O ® ® - —@
£ 9
4+
O
Q - A @
-
@
D- L] I L] | L] L] L] L] L] II L] L] L] L] | L] L] II L] | | L] | L] LI I 3
10° 10 102 10

Particles per cell

Smilei Workshop — Node-level optimization — 17

Adaptive SIMD vectorization on large-scale simulations

Normalized
B, field

I 2.500e+00
2

Normalized electron
density (n./n.)

]

1.000e+01
8
6
4
2
1.000e-02

Computational state of
electron patches

I vectorized
Scalar

Midly-relativistic ~ collisionless
shock simulation case:

Mesh size: 2728 x 192 x
192 cells

 Patchsize: 8 x 8 x 8 cells

e Domain size: 300 x 28.5 x
28.5 (¢/w)?3

* Reconfiguration every 8
iterations

* 64 Intel Skylake processors
(1536 cores) on Irene
Joliot-Curie

Smilei Workshop — Node-level optimization — 18

Sm“e‘) Workshop

ITII. Adaptation to ARM-based processors

Many code adaptation to improve performance on ARM-based

DrOCESSOrS

« Code optimization (Fujitsu compiler, LLVM, GNU and ARM-clang) for the Fujitsu
AB4FX processor to fill the gap between the x86 processor efficiency

 Improved performance also on x86 processors especially with the GNU and
LLVM compilers

« Still room for performance improvement on the most recent processors

M. Lobet, et al , Simple adaptations to speed-up the Particle-In-Cell code Smilei on the ARM-based Fujitsu A64FX processor,
https://dl.acm.org/doi/pdf/10.1145/3503470.3503475

Smilei Workshop — Node-level optimization — 20

https://dl.acm.org/doi/pdf/10.1145/3503470.3503475

Skylake and A64FX runtime comparison

—eo— Skylake 8168 —o— AB64FX (Fujitsu Clang)
i —o— AB64FX (GNU) —e— vector
—e— A64FX (ARM) -®- scalar

Lower is
better

Socket time per macro-particle per iteration (ns)

I I l 1 1 1 1 1 1 I I l 1 1 1 1 I I 1 1 l 1 1 v
100 10! 102
Macro-particles per cell

= runtime (ns) / iterations / macro-particles per
socket

Smilei Workshop — Node-level optimization — 21

Sm“e‘) Workshop

ITI. Task-based programming
(prospective work)

Notion of asynchronism and task-based programming (work in

Drogress)

» An application can be divided

temporally and spatially into inter-
dependent tasks of different natures Task dependency graph
(computation, communication, 10)

~ Fat Skinny
cores cores

Compute A 88
» Using a smart runtime scheduler, -
tasks can then be run . l'
concurrently/asynchonously in Compute on boundary 4)
parallel on a large number of cores/ . Parallel load balanced
, Runtime .
on several architectures. > scheduler | — execution on
Compute B heterogeneous devices
» To use a task-based model can @@ @@ S N
speedup the code by overlapping IO G J
and communication with) Reduction/Output
computation.
@ Computation task g task dependencies p, [ACCEleratorS J
» Factor of performances: grain size @ Communication task
@ Diagnostic task @ 10 task

(fine, coarse), scheduler,
dependency graph

» OpenMP task, OMPSS, StarPU,
libKOMP, Eventify...

Smilei Workshop — Node-level optimization — 23

Profiling of the PIC iteration with and without tasks

Without task
(Master version)

4 MPI task + 4
OpenMP threads

thread
O =D W

thread thread
O =W

Q=N W

thread
O = DD W

MPI process 0

002 004 0.06

MPI process 1

0.08 0.10

0.00 002 004 0.06

MPT process 2

0.08 0.10

—— e
—
—

0.00 0.02 004 0.06

MPI process 3

0.08 0.10

0.00 002 004 006

I [nterpolation

Push mmBC

0.08 0.10

Projection

thread thread thread
(el = N WIL)

O W
L

thread
O =

MPI process 0

-I A| J :

— I J|] m-

With task

0.00

0.02 004 0.06

MPI process 1

O~ NoWw
L

il

i-| l-| [|

0.00

002 0.04 d.06

MPI process 2

0.08 0.10

: Mlll\ . LE_N

-|-|l IFI‘

0.00

002 004 0.06

MPIT process 3

0.08 0.10

fre s

i mll I W, I\“I |

0.00

I [nterpolation

0.04
Time|s]
Push mmBC
EE Density Reduction

0.02

Projection

Smilei Workshop — Node-level optimization — 24

Sm“e‘) Workshop

ITI. GPU computing (work in progress)

How to program on GPUS

» So far, A GPU always works as an accelerator and needs a CPU for system tasks (IO,
network communication...)

N\/EICI\iE or @ CUDA, OpenCL, OpenACC,
OpenMP, SYCL, Kokkos, RAJA
NVIDIA.
zl HIP, OpenCL, OpenACC,
> OpenMP, SYCL, Kokkos, RAJA
AMD
intel“) OneAPI, OpenCL, SYCL

Smilei Workshop — Node-level optimization — 26

How to program on GPUS

» So far, A GPU always works as an accelerator and needs a CPU for system tasks (IO,
network communication...)

NVLINK or
PCle

=
(=
=
=
=
S .
i
.
9
-
®
& el
f “
b) e
N
0

@ CUDA, OpenCL, OpenACC,
OpenMP, SYCL, Kokkos, RAJA
NVIDIA.

HIP, OpenCL, OpenACC,
OpenMP, SYCL, Kokkos, RAJA

OneAPI, OpenCL, SYCL

Smilei Workshop — Node-level optimization — 27

How to program on GPUS

» GPU version under construction, preliminary results

B CPU Intel Cascadelake 6230
Il GPU Nvidia V100

~J
o
1

(9))]
o
1

U
o
|

Lower is
better

N w
o o
] |

_n
o
1

Time per macro-particle per timestep (ns)
o

6.6 x 10° 5.2 x 108 4.2 x 107
Number of macro-particles

Smilei Workshop — Node-level optimization — 28

» Constant under-going efforts to adapt the code to most recent
architectures

» Next priority developments in term of HPC are GPU porting (working in
3D with basic operators) and ARM-based processor optimization

» Node-level efficiency is crucial for Exascale computing

Smilei Workshop — Node-level optimization — 29

Acknowledgement

Thank you for your attention

Smilei Workshop — High-Performance Computing — 30

