
Node-level optimization (20 min)

1

Ecole Polytechnique – March 2022
Mathieu Lobet



Focus on the node parallelism level

Smilei Workshop – Node-level optimization – 2

Volatile memory (RAM)

Processor (CPU)

Volatile memory (RAM)

Processor (CPU)

Volatile memory (RAM)

Processor (CPU)

Node



3

I. Vectorization
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Vectorization is a component of each core
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► Vectorization is a parallel computation located at the 
core level.

► It is refered to as SIMD for Single Instruction Multiple 
Data
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Understand the vectorized treatment of data
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A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

We want to sum vector A with vector B

+



Understand the vectorized treatment of data
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► In a scalar loop, the core will perform each sum one by one…

A[0]

B[0]

C[0]

=

+



Understand the vectorized treatment of data
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► In a scalar loop, the core will perform each sum one by one…

A[0] A[1]

B[0] B[1]

C[0] C[1]

=

+

=
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Understand the vectorized treatment of data
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► In a scalar loop, the core will perform each sum one by one…

A[0] A[1] A[2]

B[0] B[1] B[2]

C[0] C[1] C[2]

+ + +

= = =



Understand the vectorized treatment of data
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► In a scalar loop, the core will perform each sum one by one until the end

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

C[0] C[1] C[2] C[2] C[2] C[2] C[2] C[2] C[2]

+ + +

= = =
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=
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Understand the vectorized treatment of data
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► The vectorized version performs the sum of all elements at once

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

+

C[0] C[1]

=
C[2] C[2] C[2] C[2] C[2] C[2] C[2]



Understand the vectorized treatment of data
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A B C

► Most modern processors perform both an addition and a multiplication in a single 
vectorized cycle (referred o as FMA for Fused-Add-Multiply instruction) 

+ xD =

► If-branch can also be vectorized using masks
► Largest vectors are composed of 8 double-precision floats (AVX512 for instance)



Vectorization bottlenecks
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Bottleneck: need adaptation 

for efficient vectorization
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Bottleneck: need adaptation 

for vectorization to avoid 

memory race

Negligible in term of 

computational time

(stencil problem so vectorizable)
Efficient vectorization

Vectorization bottlenecks



Vectorized versus scalar operator implementations
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Thermal plasma 3D benchmark on a Skylake node (2 MPIs x 24 OMPs)

[1] A. Beck, et al. , Adaptive SIMD optimizations in particle-in-cell codes with fine-grain particle

sorting, Computer Physics Communications 244, 246-263 (2019) arXiv:1810.03949

Lower is

better

http://dx.doi.org/10.1016/j.cpc.2019.05.001
https://arxiv.org/abs/1810.03949


An adaptive method in time and space

For many

operators

adaptation in 

time and space

at the patch 

level

Scalar (classical) implementation

 more efficient for few particles

per cell

Vectorized implementation

 More efficient for many particles

per cell
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An adaptive method in time and space

Thermal plasma 3D benchmark on a Skylake node (2 MPIs x 24 OMPs)
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Lower is

better



Adaptive SIMD vectorization on large-scale simulations

Midly-relativistic collisionless
shock simulation case:

• Mesh size: 2728 x 192 x
192 cells

• Patch size: 8 x 8 x 8 cells

• Domain size: 300 x 28.5 x
28.5 Τ𝑐 𝜔 3

• Reconfiguration every 8
iterations

• 64 Intel Skylake processors
(1536 cores) on Irene
Joliot-Curie
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III. Adaptation to ARM-based processors

Smilei Workshop – Node-level optimization – 19



Many code adaptation to improve performance on ARM-based 
processors
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• Code optimization (Fujitsu compiler, LLVM, GNU and ARM-clang) for the Fujitsu
A64FX processor to fill the gap between the x86 processor efficiency

• Improved performance also on x86 processors especially with the GNU and
LLVM compilers

• Still room for performance improvement on the most recent processors

M. Lobet, et al. , Simple adaptations to speed-up the Particle-In-Cell code Smilei on the ARM-based Fujitsu A64FX processor, 

https://dl.acm.org/doi/pdf/10.1145/3503470.3503475

https://dl.acm.org/doi/pdf/10.1145/3503470.3503475


Skylake and A64FX runtime comparison
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= runtime (ns) / iterations / macro-particles per 

socket 

Lower is

better
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III. Task-based programming 
(prospective work)
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Notion of asynchronism and task-based programming (work in 
progress)
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► An application can be divided 
temporally and spatially into inter-
dependent tasks of different natures 
(computation, communication, IO)

► Using a smart runtime scheduler, 
tasks can then be run 
concurrently/asynchonously in 
parallel on a large number of cores/ 
on several architectures.

► To use a task-based model can 
speedup the code by overlapping IO 
and communication with 
computation.

► Factor of performances: grain size 
(fine, coarse), scheduler, 
dependency graph

► OpenMP task, OMPSS, StarPU, 
libKOMP, Eventify...



Profiling of the PIC iteration with and without tasks

Smilei Workshop – Node-level optimization – 24

Without task
(Master version)

4 MPI task + 4 
OpenMP threads

With task
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III. GPU computing (work in progress)
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How to program on GPUs
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► So far, A GPU always works as an accelerator and needs a CPU for system tasks (IO, 
network communication…) 

CUDA, OpenCL, OpenACC, 
OpenMP, SYCL, Kokkos, RAJA

NVLINK or 
PCIe

HIP, OpenCL, OpenACC, 
OpenMP, SYCL, Kokkos, RAJA

OneAPI, OpenCL, SYCL



How to program on GPUs
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CUDA, OpenCL, OpenACC, 
OpenMP, SYCL, Kokkos, RAJA

NVLINK or 
PCIe

HIP, OpenCL, OpenACC, 
OpenMP, SYCL, Kokkos, RAJA

OneAPI, OpenCL, SYCL

► So far, A GPU always works as an accelerator and needs a CPU for system tasks (IO, 
network communication…) 



How to program on GPUs
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► GPU version under construction, preliminary results

Lower is

better



Conclusion
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► Constant under-going efforts to adapt the code to most recent
architectures

► Next priority developments in term of HPC are GPU porting (working in
3D with basic operators) and ARM-based processor optimization

► Node-level efficiency is crucial for Exascale computing
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