A hybrid-dimensional compositional two-phase flow model in fractured porous media with phase transitions and Fickian diffusion

Joubine Aghili*, Jean-Raynald de Dreuzy**, Roland Masson⁺, Laurent Trenty[‡]

^{*}IRMA, Univ. Strasbourg, ^{**}Géosciences Rennes & Univ. Rennes, [†]LJAD, Univ. Côte d'Azur, [‡]Andra, Chatenay-Malabry.

25 Octobre 2021, Journée du GDR MaNu, 2021

Contexte

Cigéo project (Andra)

About Cigéo :

- Launched in the 90s
- Deep storage of HA¹ radioactive waste
- 1. highest radioactive waste

- Effective storage starts around 2025
- ► Operating time before closure ≈ 100 years

Contexte

About COx & galeries :

- Ventilation to ensure air quality
- COx has very low permeability : 10^{-20} to $10^{-22}m^2$

 \blacktriangleright \rightarrow very low conductivity of water

Porous media

Figure – Porous media with a fracture (left); two-phase flow in a porous media (right)

Saturation s^{α} is

$$s^{\alpha} := rac{ ext{volume occupied by the phase inside the pores}}{ ext{vol. pores}} \quad \alpha \in \{\ell, g\},$$

Porosity is denoted $\phi := \frac{\text{vol. pore}}{\text{total vol.}}$

Equi-dimensional model

Notations :

phase : $\alpha = \ell, g$

- p^{α} : phase pressure
- Λ_i : absolute permeability
- k^{α} : relative permeability
- ϕ_i : porosity
- $\mu^{\alpha}:$ fluid viscosity

Darcy velocities

• $\boldsymbol{q}_{m}^{\alpha} := -\frac{k_{m}^{\alpha}(s_{m}^{\alpha})}{\mu^{\alpha}} \boldsymbol{\Lambda}_{m}(\nabla p_{m}^{\alpha} - \rho^{\alpha} \boldsymbol{g})$ • $\boldsymbol{q}_{f}^{\alpha} := -\frac{k_{f}^{\alpha}(s_{f}^{\alpha})}{\mu^{\alpha}} \boldsymbol{\Lambda}_{f}(\nabla p_{f}^{\alpha} - \rho^{\alpha} \boldsymbol{g})$

Reduced model

Dimensional hybridizing¹

The Darcy flux in the fracture is integrated along the cross section of the fracture width.

Darcy velocities $q_m^{\alpha} := -k_m^{\alpha}(s_m^{\alpha}) \mathbf{\Lambda}_m(\nabla p_m^{\alpha} - \rho^{\alpha} g)$ $q_f^{\alpha} := -\frac{d_f}{d_f} k_f^{\alpha}(s_f^{\alpha}) \mathbf{\Lambda}_{f,\tau}(\nabla_{\tau} p_f^{\alpha} - \rho^{\alpha} g_{\tau})$

Volume conservation equations $\phi_m \partial_t s_m^{\alpha} + \operatorname{div}(\boldsymbol{q}_m^{\alpha}) = 0$ $\phi_f \frac{d_f}{d_f} \partial_t s_f^{\alpha} + \operatorname{div}_{\tau}(\boldsymbol{q}_f^{\alpha}) - \frac{\gamma_{n^+} \boldsymbol{q}_m^{\alpha} - \gamma_{n^-} \boldsymbol{q}_m^{\alpha}}{\gamma_{m^-} \boldsymbol{q}_m^{\alpha}} = 0$

1. [Granet *et al.* 2001], [Jaffré *et al.* 2002,2005], [Bogdanov *et al.* 2003], [Faille *et al.* 2003], [Karimi-Fard 2004]

The immiscible two-phase DFM

The immiscible two-phase DFM

Immiscible model :

 $\begin{aligned} 1. \ \phi_m \partial_t s_m^{\alpha} + \operatorname{div}(\boldsymbol{q}_m^{\alpha}) &= 0, \\ 2. \ \phi_f d_f \partial_t s_f^{\alpha} + \operatorname{div}_{\tau}(d_f \boldsymbol{q}_f^{\alpha}) + [\![\boldsymbol{q}_m^{\alpha}]\!] &= 0, \\ 3. \ s_v^{\mathrm{g}} + s_v^{\ell} &= 1, \\ 4. \ p_v^{\mathrm{g}} - p_v^{\ell} &= \operatorname{Pc}_v(s_v^{\mathrm{g}}), \\ 5. \ \gamma_n(\boldsymbol{q}_m^{\alpha}) + q_f &= 0 \end{aligned}$

$\alpha \in \{ \mathsf{g}, \ell \} \quad \nu \in \{ m, f \}$

Transmission conditions :

The immiscible two-phase DFM

Immiscible model :

Transmission conditions :

upwind vs continuous vs discontinuous

COx has vey low permeability : $\approx 10^{-20}$ to $10^{-22}m^2$

COx has vey low permeability : $\approx 10^{-20}$ to $10^{-22}m^2$ \rightarrow on must also take account for molecular diffusion, ie Fick flux

$$\boldsymbol{J}=-\mathcal{D}\nabla c_{i}^{\alpha},$$

for every chemical component c_i^{α}

COx has vey low permeability : $\approx 10^{-20}$ to $10^{-22}m^2$ \rightarrow on must also take account for molecular diffusion, ie Fick flux

$$J = -\mathcal{D}\nabla c_i^{\alpha},$$

for every chemical component c_i^{α}

 \rightarrow compositional model,

COx has vey low permeability : $\approx 10^{-20}$ to $10^{-22}m^2$ \rightarrow on must also take account for molecular diffusion, ie Fick flux

$$\boldsymbol{J}=-\boldsymbol{\mathcal{D}}\nabla c_{i}^{\alpha}\,,$$

for every chemical component c_i^{α}

- \rightarrow compositional model,
- \rightarrow barrier effect?

Compositional model I

• Based on the model [Beaude et al. '18], unknowns are

pressure p^{α} , saturation s^{α} , molar fractions c_i^{α} .

• Conservation of moles \mathfrak{n}_i for each comp. $i \in C$ (*mat*) - $\phi_m \partial_t \mathfrak{n}_{i,m}$ + div $\mathbf{q}_{i,m} = 0$, (*frac*) - $\phi_f d_f \partial_t \mathfrak{n}_{i,f}$ + div $_\tau (d_f \mathbf{q}_{i,f}) - \llbracket \mathbf{q}_{i,m} \rrbracket = 0$.

with the component molar flux def. as

$$\mathbf{q}_{i,\nu} = \sum_{\alpha \in \mathcal{P}} (c^{\alpha}_{i,\nu} \mathbf{V}^{\alpha}_{\nu} + \mathbf{F}^{\alpha}_{i,\nu}), \quad \nu \in \{m, f\}, \qquad \mathfrak{n}_i := \sum_{\alpha \in \mathcal{P}} \zeta^{\alpha} s^{\alpha} c^{\alpha}_i$$

Darcy and Fick fluxes are defined as

$$- \mathbf{V}_{\nu}^{\alpha} = -\frac{\zeta^{\alpha}(p_{\nu}^{\alpha}, c_{\nu}^{\alpha})k_{\nu}^{\alpha}(s_{\nu}^{\alpha})}{\mu^{\alpha}(p_{\nu}^{\alpha}, c_{\nu}^{\alpha})} \mathbf{\Lambda}_{\nu} \nabla_{\nu} (p_{\nu}^{\alpha} - \rho^{\alpha}(p_{\nu}^{\alpha}, c_{\nu}^{\alpha})\mathbf{g}_{\nu})$$
$$- \mathbf{F}_{i,\nu}^{\alpha} = -\phi_{\nu} s_{\nu}^{\alpha} \zeta^{\alpha}(p_{\nu}^{\alpha}, c_{\nu}^{\alpha}) \frac{\mathcal{D}^{\alpha}}{\mathcal{T}_{\nu}^{2}} \nabla_{\nu} c_{i,\nu}^{\alpha}.$$

Compositional model II

- Capillary relation $- p_{\nu}^{g} - p_{\nu}^{\ell} = Pc_{\nu}(s_{\nu}^{g}),$ $- s_{\nu}^{g} + s_{\nu}^{\ell} = 1, \quad \nu \in \{m, f\}$ • Thermodynamical equilibri
- Thermodynamical equilibrium $- f_i^g(\gamma^a p_m^g, \gamma^a c_m^g) = f_i^\ell(\gamma^a p_m^\ell, \gamma^a c_m^\ell), \quad i \in C,$ $- \min\left(1 - \sum_{i \in C} \gamma^a c_{i,m}^g, \tau^a - \tau_0\right) = 0,$ $- \min\left(1 - \sum_{i \in C} \gamma^a c_{i,m}^\ell, \tau_1 - \tau^a\right) = 0,$
- Transmission conditions : continuity of $q^{\alpha} \cdot n$ at *mf* interface :

$$\gamma_n^{\mathfrak{a}} \mathbf{q}_{i,m} + q_{i,f}^{\mathfrak{a}} = 0,$$

where γ_n^a the normal trace operator. Two-point approximation inside fracture :

$$q_{if}^{\mathfrak{a}} = \sum_{\alpha \in \mathcal{P}} (V_{if}^{\alpha,\mathfrak{a}} + F_{if}^{\alpha,\mathfrak{a}}),$$

Compositional model III

Fick flux in the fracture :

$$F_{if}^{\alpha,\alpha} = \frac{\zeta^{\alpha}(p_{f}^{\alpha},c_{f}^{\alpha}) + \zeta^{\alpha}(\gamma^{\alpha}p_{m}^{\alpha},\gamma^{\alpha}c_{m}^{\alpha})}{2} \left(\frac{2s_{f}^{\alpha}\mathcal{S}_{f}^{\alpha}(\tau^{\alpha})}{s_{f}^{\alpha} + \mathcal{S}_{f}^{\alpha}(\tau^{\alpha})}\right) \frac{\phi_{f}\mathcal{D}^{\alpha}}{\mathcal{T}_{f}^{2}} \frac{(c_{if}^{\alpha} - \gamma^{\alpha}c_{i,m}^{\alpha})}{d_{f}/2}.$$

 \longrightarrow Harmoning averaging to take account for vanishing saturation

Darcy flux :

$$V_{if}^{\alpha,\mathfrak{a}} = c_{if}^{\alpha} \frac{\zeta^{\alpha}}{\mu^{\alpha}} (p_{f}^{\alpha}, c_{f}^{\alpha}) k_{rf}^{\alpha} (s_{f}^{\alpha}) (V_{f}^{\alpha,\mathfrak{a}})^{+} - \gamma^{\mathfrak{a}} c_{i,m}^{\alpha} \frac{\zeta^{\alpha}}{\mu^{\alpha}} (\gamma^{\mathfrak{a}} p_{m}^{\alpha}, \gamma^{\mathfrak{a}} c_{m}^{\alpha}) k_{rf}^{\alpha} (\mathcal{S}_{f}^{\alpha}(\tau^{\mathfrak{a}})) (V_{f}^{\alpha,\mathfrak{a}})^{-}$$

with

$$V_f^{\alpha,\mathfrak{a}} = \lambda_{f,n} \left(\frac{(p_f^{\alpha} - \gamma^{\mathfrak{a}} p_m^{\alpha})}{d_f/2} + \frac{\rho^{\alpha}(p_f^{\alpha}, c_f^{\alpha}) + \rho^{\alpha}(\gamma^{\mathfrak{a}} p_m^{\alpha}, \gamma^{\mathfrak{a}} c_m^{\alpha})}{2} \mathbf{g}_f \cdot \mathbf{n}^{\mathfrak{a}} \right),$$

Discrete model I

Degrees of freedom :

- gaz pressure p_{κ}^{g} ,
- saturation s_{κ}^{g} ,
- molar fraction c_{κ}^{α} ,
- interface variable τ_{κ} .

Remarks :

- Interfaces unknowns provides physically consistent approximations of *mf* fluxes; Regularized harmonic mean in the discrete Fick flux;
- Adding porous volume at interfaces for robustness on nonlinear solver;
- parametrization of pc curves using a switch parameter τ [Brenner *et al.* '17] :

 $\tau > 1$: matrix side $\tau < 1$: fracture side

Discrete model II

Molar fraction conservation eqns :

$$\begin{array}{l} \text{(cells)} \quad \frac{\mathfrak{n}_{i,K}^{n} - \mathfrak{n}_{i,K}^{n-1}}{\Delta t^{n}} + \sum_{\sigma \in \mathcal{F}_{K} \setminus \mathcal{F}_{\Gamma}} q_{i,K,\sigma}^{n} + \sum_{\sigma \in \mathcal{F}_{K} \cap \mathcal{F}_{\Gamma}} q_{i,K,K\sigma}^{n} = 0, \\ \text{(frac)} \quad \frac{\mathfrak{n}_{i,\sigma}^{n} - \mathfrak{n}_{i,\sigma}^{n-1}}{\Delta t^{n}} + \sum_{e \in \mathcal{E}_{\sigma}} q_{i,\sigma,e}^{n} + \sum_{K \in \mathcal{M}_{\sigma}} q_{i,\sigma,K\sigma}^{n} = 0, \\ \text{(edges)} \quad \frac{\mathfrak{n}_{i,e}^{n} - \mathfrak{n}_{i,e}^{n-1}}{\Delta t^{n}} - \sum_{\sigma \in \mathcal{F}_{e} \cap \mathcal{F}_{\Gamma}} q_{i,\sigma,e}^{n} = 0, \\ \text{(intf)} \quad \frac{\mathfrak{n}_{i,K\sigma}^{n} - \mathfrak{n}_{i,K\sigma}^{n-1}}{\Delta t^{n}} - q_{i,K,K\sigma}^{n} - q_{i,\sigma,K\sigma}^{n} = 0. \end{array}$$

+ min constraints and thermodynamical equilibrium.

Remarks

TPFA for every fluxes; **Fully implicit** Scheme; Solver : using **Newton-min** algorithm [Kraütle '11, Ben Gharbia & Jaffré '13];

Simplified suction case : description

Desatuwration by suction :

- *m*,*f* initially saturated by pure water liquid phase,
- boundary conditions :
 - **bottom** thermo. eq. with $p^{\rm g} = p^{\ell} = 10^5 \,\text{Pa}$, $H_r = 0.5$
 - top pure water,
 - lateral zero flux (impervious).
- Permeabilities : $\Lambda_m = 10^{-4}$ Darcy, $\Lambda_f = 10^6 \Lambda_m$
- Porosities : $\phi_m = 0.15, \phi_f = 0.4,$
- Simulation time : 200 years,
- Brooks- Corey laws,
- Rel. mob. : $k_{r,f}(s^{\alpha}) = s^{\alpha}$; $k_{r,m}(s^{\ell}) = (s^{\ell})^2$; $k_{r,m}(s^{g}) = (s^{g})^2$,

 $(0, 20m) \times (0, 100m)$ 2 × 128 grid

Simplified suction case : description

Desatuwration by suction :

- *m*,*f* initially saturated by pure water liquid phase,
- boundary conditions :
 - **bottom** thermo. eq. with $p^{g} = p^{\ell} = 10^{5} \text{ Pa}$, $H_{r} = 0.5$
 - top pure water,
 - lateral zero flux (impervious).
- Permeabilities : $\Lambda_m = 10^{-4}$ Darcy, $\Lambda_f = 10^6 \Lambda_m$
- Porosities : $\phi_m = 0.15, \phi_f = 0.4,$
- Simulation time : 200 years,
- Brooks- Corey laws,

• Rel. mob. : $k_{r,f}(s^{\alpha}) = s^{\alpha}$; $k_{r,m}(s^{\ell}) = (s^{\ell})^2$; $k_{r,m}(s^{g}) = (s^{g})^2$,

Comparison of three settings :

- No fick fluxes : $\mathcal{D}^{\alpha} = 0$ (nofick);
- Only on gas phase : $\mathcal{D}^g > 0$ and $\mathcal{D}^\ell = 0$ (partialfick);
- With Fick fluxes $\mathcal{D}^g > 0$ and $\mathcal{D}^\ell > 0$ (fick);

 $\begin{array}{c} (0,20m)\times(0,100m)\\ 2\times128 \ {\rm grid} \end{array}$

Interplay of Darcy and Fick fluxes

1. Air component is transported from fracture (\Box) to interface (\blacksquare)

Interplay of Darcy and Fick fluxes

 Air component is transported from fracture (□) to interface (■) → gas appearance at interface on matrix side (τ > 1).

Interplay of Darcy and Fick fluxes

- 1. Air component is transported from fracture (□) to interface (■) → gas appearance at interface on matrix side (*τ* > 1).
- 2. Gas is then transported to the upper cell (�) by Darcy flux.

Application : domain

Desaturation by suction of a Callovo-Oxfordian argilite rock

Application : settings

• Relative humidity $H_r = 0.6$ • Fractures sizes - obliques $d_f = 1$ mm, - horizontal $d_f = 0.01$ mm, • $\Lambda_m = 5 \cdot 10^{-8}$ Darcy, $\Lambda_f = \frac{d_f^2}{12}$ • $\phi_m = 0.15, \phi_f = 1,$ • Van Genuchten CP laws *n* = 1.49, $m = 1 - \frac{1}{n}$ • Fick diffusion coefficients : - $\mathcal{D}^{g} = 2.5 \cdot 10^{-5} \,\mathrm{m}^{2}.s^{-1}$ - $\mathcal{D}^{\ell} = 3 \cdot 10^{-9} \,\mathrm{m}^2 \,\mathrm{s}^{-1}$

Application : results I

Fick diff.	Nb Cells	Cpu Time [s]	$N_{\Delta t}$	N _{Chop}	N _{Newton}
with	11549	403.08	384	34	7.18
without	11549	259.6	280	6	5.62

Application : results II

Solution at final time : cuts along (2.7, 0) to (2.7, 5)

Conclusion

In brief :

- A new hybrid dimensional compositional two-phase model accounting for
 - Fickian diffusion,
 - phase transitions.
- Transmission conditions are designed to be physically consistent
- Takes account saturation jumps thanks to graph representation of capillary pressures.
- Same accuracy than equi-dimensional models.

Perspectives : Extend to general meshes, permeability anisotropy tensor using a face based approach.

Thank you for your attention!