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Tensor networks

Tensor networks are prominent tools for the representation or approximation of
multivariate functions or multidimensional arrays.

@ A long history in quantum physics. A zoo of tools exploiting separation of variables
(MPS, PEPS, MERA...)

@ Tree tensor networks (Hierarchical Tucker tensors) appeared independently in
numerical analysis and numerical linear algebra, as an extension of low-rank
decompositions to high-order tensors [Hackbusch and Kuhn, Grasedyck, Oseledets
and Tyrtyshnikov].

@ Growing use in statistics, data science and probabilistic modelling.
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Tensor product of functions

Let V,, C R*” be a space of functions defined on X,.
X, can be (a subset of) N, R, C, or a set of vectors, sequences, graphs, images...
The tensor product of functions v(*) € V,, denoted

v = v(1)®...®v(d),
is a multivariate function defined on X = A7 x ... x Xy and such that

v(xt,...,X4) = v(l)(X1) e V(d)(Xd)
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Tensor product of functions

The algebraic tensor product of spaces V, is defined as
Viw...® Vd:span{v(l)®...®v(d) v e V,,1<v<d}

which is the space of multivariate functions v which can be written as a finite linear
combination of elementary (separated functions), i.e.

r

v(xt, ..., xq) = Z v,El)(xl) .. V,Ed)(xd).

k=1
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Rank of multivariate functions and canonical format

The canonical rank of a multivariate function f(xi,...,xq) is the minimal integer such
that f has a representation

r

f(x) = Z vi(x1) ... v (xd)

k=1

Given a finite-dimensional tensor space V = V; ® ... ® Vg4 of multivariate functions we
define a canonical tensor format in V' as a set of functions

RA(V)={f € V:rank(f) < r}

From the practical point of view, it is not a nice format. In particular, R,(V) is not
closed for d > 3 and r > 2.

For any continuous parametrization R,(V) = {v = R(p) : p € P}, and for any tensor of
v € R/(V)\ R:(V) of border rank r, the quantity

(v, €) = inf{lpl| : lv = R(p)I| < €}
diverges as ¢ — 0 [Hackbusch 2021].
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a-ranks of multivariate functions

A multivariate function f(xy,...,xq), for any set « C {1,...,d}, can be identified with a
bivariate function f(xa, Xac) of two complementary subsets of variables.

The rank of the bivariate function f(Xa, Xac) is the a-rank of f, denoted rankq (f).

A function with a-rank bounded by r, admits a representation

Fo

F(x) = D Vit (xa) Vi (xae)

k=1

or using tensor diagram notations

where a connection between two tensors represents a contraction along one mode of each
tensor.
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a-rank

Example
o u(x) = u'(x1)...u%(xs) can be written u(x) = u*(xa)u® (Xac), with

u“(xa) = [[,cq u”(x). Therefore, for any «, rankq(u) = 1.

o u(x) =1, up(x1) ... uf(x4) can be written 31, uf(xa)uf (Xac) with
Ul (xa) = [1,cq Uk (xv). Therefore, for any o, ranka(u) < r, with equality if the
functions {ug(xa)} and the functions {u (xac)} are linearity independent.

We deduce the following relation between a-ranks and canonical rank:
ranko (u) < rank(u), for any o

o u(x) = u(x1) + ... 4 u¥(x4) can be written u(x) = u®(xa) + U* (Xac), with
u*(Xa) = >, ca U”(xv). Therefore, rankq(u) < 2.
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Low-rank tensor format

Given
@ a finite-dimensional tensor space V = V4 ® ... ® V4 of multivariate functions
@ a collection T of subsets in {1,...,d},
@ a tuple of ranks r = (ra)acT,

we define a low-rank tensor format in V' as a set of functions
T,7(V)={f € V :ranka(f) < ra,a € T}

with representation

/N
F) =3 > Cliyesia)d )i - 0% (xa)iy = s
ieh i€y
X1 X2 Xd

where ¢V is a feature map associated with V” and C € R"**! is 3 rank-structured
algebraic tensor.
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Tensor train format

With
T ={{1},{1,2},..,{1,...,d}},

T,7(V) coincides with the tensor train format.

A function f in 7,7 (V) has coefficients

fd—1

C(il,..,, Z Z C (Il,kl kl,lz,kg) Cd(kd_l,id).

k=1 kgy_,1=1

ko kd—2 kd—1

Cl C2 ,,,,,, Cd—l { Cd
i I Ig—1 iq
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Hierarchical Tucker format (Tree tensor networks)

If T is a dimension partition tree, 7,7 (V) is a tree-based (or hierarchical) tensor format
and a function in 7,7 (V) admits a multilinear parametrization with a collection of
parameters {C“ : a € T} forming a tree tensor network.

{1,2,3,4,5}

{1,2,3} {4,5}

{1} {4+ {5}
{2+ {3}

Dimension tree T

Tree tensor network

Anthony Nouy Centrale Nantes 11



Tree tensor networks as a compositional function network

By identifying a tensor C(®) @ R™X-XMsXra with a R™-valued multilinear function
FR™ x . x R™ — R™,

a function v in 7,7 (V) admits a representation as a tree-structured composition of
multilinear functions {f(“)}aer, e.g.

v(x) = F(FR23(F (01 (), F2(F2 (07 (%)), F(° (1)), FH2(FH (9% (), £ (8°(35))))
£1.2345

£1,2,3 £4.5

fl

f2 f3
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Tree tensor networks as a compositional function network

A multilinear map f® can also be written
fz,...,2z5) = A% (z1,...,24), zx € R™,

with a matrix
A e RN N=n.. . n

and a fixed multilinear function

U(zl,...,zs):vec(21®...®zs)€]RN
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Tree tensor networks as feed-forward neural networks

It corresponds to a sum-product feed forward neural network with a sparse architecture
(given by T), a number of hidden layers equal to depth(T) + 1 (including a featuring
layer), and width at level ¢ related to the a-ranks of the nodes « of level .

dog0 do009

X1 X2 X3 X4 X5 Xe X7 X8

Figure: Tree tensor network and corresponding feed-forward sum-product neural network with 10
features per variable x, (right)

Anthony Nouy Centrale Nantes 14



Approximation tools based on tree tensor networks

For the approximation of a function, a first approach is to introduce subspaces Vy  of
finite dimension (e.g. polynomials, splines, wavelets, RKHS...) and consider tree tensor
networks f € T, (Vi) where

W= Vi ®@...0 Vi,

with variable N and r.

Spaces Vjy have to be well chosen, e.g. polynomials for analytic functions, splines with a
degree adapted to the regularity of the function...
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Approximation tools based on tree tensor networks

An approximation tool ® = (®,)nen is then defined by
®,={f 7, (W):NeN reN" compl(f) < n}.

The dimensions N and the ranks r are free parameters, and compl(-) is some complexity
measure.

An alternative approach is to rely on tensorization of functions (specific featuring step).
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Tensorization of univariate functions

Consider a function f € R defined on the interval [0, 1).

For b, L € N, we subdivide uniformly the interval [0, 1) into b" intervals. Any

)
x € [0,1) can be written
x=b"ti+y), ief0,...,b"—1}, ye[0,1).
b=ty
B —
0 0 1 2 x 3
@ The integer i admits a representation in base b
L
i=Y b =i ils, k€{0,...,b—1}
k=1
10 11

i
0 00 01

o f is thus identified with a multivariate function (tensor of order L + 1)

fe®RY®EQROY  such that  f(x) = F(ir,...,iLy)

Centrale Nantes
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Tensorization of univariate functions

Examples of rank one functions f(x) = v*(i1)...v-(i.)v*"(y) (b = 2)

o R — —
0 0125 025 0375 05 0625 075 0875 1 0 o125 025 0375 05 0625 075 0875 1

(2) do(i3) (b) 81(i1)d0(i3)d0(i7)
(c) do(i2)sin(my) (L = 4) (d) o(is)y? (L =5)
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Tensorization of multivariate functions

A function f(xi,...,xq) defined on [0,1)? can be similarly identified with a tensor of
order (L+1)d
f e (Rb)®Ld ® (R[O’l))®d

such that
f(x1,...,xq) = f(ill,...,ij,‘..,if,...,ié,yl,...,yd)
where
L
X =b"t O b ) =[0dy .. ifle + bty
k=1
or equivalently, using a different ordering of variables,
F(xty ooy xa) = F(ity oo iV ooy ey iy ya)

The map T, which associates to a function f its tensorization f is a linear isometry
from LP([0,1)) to LP({0,...,b— 1} x [0,1)9) for any 0 < p < oo.
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Approximation tools based on tree tensor networks

We consider functions whose tensorization at resolution L are in the tensor space
V. = (R")®H g 587

with § € RI%Y some subspace of univariate functions, invariant through b-adic dilation.

IfS=P, V.= Tl;l(VL) is identified with the space of multivariate splines of degree m
over a uniform partition with b elements, i.e.

Vi=Vy ®...0 Vy,

with Nj = ... = Ny = b* and Vv, a space of univariate splines of degree m over a
uniform partition with N, = bt intervals.
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Approximation tools based on tree tensor networks

Then as an approximation tool, we consider functions f whose tensorization is a tensor
network in 7,7t(V,), with T, a dimension tree over {1,...,Ld + d}.

Using the tensor train format, the corresponding function f(xi, ..., x4) has the

representation

Yd

with ¢s the feature map associated with S. This is closely related to the quantized
tensor train (QTT) format [Kazeev, Khoromskij, Oseledets, Schwab, ...]

Later on, we consider S = P, and ¢s(y) = (1,y,...,y™"*) or any other polynomial basis.
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Approximation tools based on tree tensor networks

An approximation tool ® = (®,)nen is then defined by
®,={fed,7,,:LeNyreN" compl(f) < n}

with ®; 7, . the functions whose tensorization at resolution L is in T,H(VL).

The resolution L and ranks r are free parameters, and compl(-) is some complexity
measure.
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Complexity measures and corresponding approximation tools

The complexity compl(f) of f is defined as the complexity of the associated tensor
network {C*}acr.

@ Number of parameters (full tensor network)

complz(f) = Z number_of_entries(C®)

«@

o Number of non-zero parameters (sparse tensor network)
compls(F) = 3 1€l
Complexity measures complr and complg yield two different approximation tools
&7 and ¢S

such that
F S F
¢, C P, C P e
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Approximation theory of tree tensor networks

Given a function f from a Banach space X, the best approximation error of f by an
element of &, is

E(f,® = inf ||f —
(f,®n)x glen¢,, I gllx
Fundamental questions are:

o does E(f,®,)x converge to 0 for any f 7
(universality)

@ does a best approximation exist ?
(proximinality)

@ how fast does it converge for functions from classical function classes ?
(expressivity)

@ what are the functions for which E(f, ®,)x converges with some given rate ?
(characterization of approximation classes)

Anthony Nouy Centrale Nantes
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Universality

First note that for any algebraic feature tensor space V, and any tree T,
Ur'(v)=v.
r

so the question of universality of tree tensor networks boils down to conditions on the
tensor feature spaces.

@ Consider the first family of approximation tools with variable feature spaces Vy,
N € N

If UN Vi is dense in X, then the tools are universal for functions in X.

In particular, this is true for X = LP((0, l)d), p < 00, and for polynomial or splines
spaces V.

@ Consider the second family of approximation tools using tensorization.
If UL V., is dense in X, then the tools are universal for functions in X.

In particular, this is true for X = LP((0,1)?), p < oo, assuming that S contains the
function one.
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Proximinality

For any tree T, any T-rank r, and any finite dimensional tensor space V of X, 77T(V) is
a closed set in V.

®, is a finite union of such sets, all contained in a single finite dimensional space V™.
Then @, is a closed set of a finite dimensional space V* and is therefore proximinal in X.
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Expressivity

Different ways to analyse the expressivity of tree tensor networks

@ Exploit known results on other approximation tools and estimate the complexity to
encode these tools using tree tensor networks.

@ Directly encode a function using tree tensor networks (with controlled errors)

@ Analyse the convergence of bilinear approximations
U(Xery Xac) E ug (xa) uk (Xac)

or the approximability of partial evaluations u(:, xac) by linear approximation spaces
of dimension ry.
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Encoding polynomials and splines

Polynomials

The tensorization of a polynomial of degree p has all ranks bounded by p + 1.

Trigonometric polynomials

The tensorization of the function cos(wx + ¢) has all ranks equal to 2.

Then the tensorization of a trigonometric polynomial of degree p has all ranks bounded
by 2p + 1.

Free knot splines

A spline ¢ of degree p over N b-adic intervals forming a partition of [0,1) is such that

p+N, 1<v<U/.

rank ” <
13 () < {p+1’ t<v<lL

where b~¢ is the minimal length of intervals.
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Encoding polynomials and splines

Ranks of interpolants

For a function f and its interpolation f; onto V|, the space of piecewise polynomials of
degree m on a uniform partition of b" intervals, it holds

ranka (f1) < rankq(f)

— f(x
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Encoding multi-resolution analysis

For a function 9 : R — R supported on [0, 1], we define its level ¢ b-adic dilation, shifted
by j=0,...,b"—1,
Y4 .
Ve j(x) = (b'x — j)
Its tensorization at level £ is an elementary (rank-one) tensor
Toethej=6€,®...6€, @Y
with j = [j1,...,Jje]» and e the canonical basis vectors in R”.

Its tensorization at level L > [ is
Torthej =€ ®. .., @ (ThL-e1)

The (approximate) encoding of ¢ boils down to the (approximate) encoding of the
mother function 1 with tensor networks.

In particular, if ¢ is a (piecewise) polynomial, 1) ; is encoded at precision ¢ using
tensorization at level L = £ + O(log(¢™?)).

This yields a very efficient encoding of piecewise polynomial MRAs (B-spline wavelets).
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Approximation of functions from Besov spaces B (LP)

From results on spline approximation and their encoding with tensor networks, we obtain

Theorem
Let f € By (LP) with @ > 0 and 0 < p,q < co. Then

E(f, CD',,F)LP < Cnia/d|f|3go(l_p)

@ Tensor networks achieve optimal rates for any Besov regularity order (measured in
LP norm).

@ They perform as well as optimal linear approximation tools (e.g. splines), without
requiring to adapt the tool to the regularity order a.

@ The depth (resolution L) of the network is crucial to capture extra regularity
(a>m+1).
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Approximation of functions from Besov spaces By (L")

Now consider the harder problem of approximating functions from Besov spaces Bg' (L")
where regularity is measured in a L"-norm weaker than LP-norm.

From results on best n-term approximation using dilated splines, we obtain

Theorem

Let f € BY(L™) withaa>0,0<g<7<p<oo,1<p<ooand

>

ale
A=

0
p.
Then B -

E(f, ¢§)Lp S Cnia/d|f|351(u)7 E(f, ¢Z:)LP S Cnia/(Zd)|f|Béx(Lr),

for arbitrary & < «.

@ Sparse tensor networks achieve arbitrarily close to optimal rates in O(nfa/d) for

functions with any Besov smoothness o (measured in L™ norm), without the need to
adapt the tool to the regularity order a.

@ Here depth and sparsity are crucial for obtaining near to optimal performance.

o Full tensor networks have slightly lower performance in O(n~®/9).
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High-dimensional approximation

@ For Besov spaces B (L"), tensor networks achieve (near to) optimal rate in
O(nfo‘/d) which deteriorates with d, that is the curse of dimensionality.

@ For Besov spaces with mixed smoothness MBg' (L") , sparse tensor networks achieve
near to optimal performance in O(n™“ log(n)?). But still the curse of dimensionality.

@ For Besov spaces with anisotropic smoothness ABZ*(LP), sparse tensor networks also
achieve near to optimal rates in O(n_s(o‘)/d) with

s(@)/d = (a7 +...+ag)"

the aggregated smoothness. Curse of dimensionality can be circumvented with
sufficient anisotropy.

o Curse of dimensionality can be circumvented for non usual function classes such as
compositions of smooth functions
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Compositional functions

Consider a tree-structured composition of smooth functions {f. : « € T}, see [Mhaskar,

Liao, Poggio 2016] for deep neural networks, and [Bachmayr, Nouy and Schneider 2021]
for tree tensor networks.

{1,2,3,4}

{1,2} {3,4}
fl.2,3,4 (fl,z (fl(Xl)a f2(X2)) s f3,4 (f3(X3)7 f4(X4)))

1 {2 {3 {4

Assuming that the functions £, € W% with ||| <1 and ||fa||yk.e < B, the
complexity to achieve an accuracy €

n(e) S 6_3/k(L+ 1)3B3Ld1+3/2k

with L = log,(d) for a balanced tree and L 4+ 1 = d for a linear tree.
@ Bad influence of the depth through the norm B of functions f, (roughness).
@ For a balanced tree, complexity scales polynomially in d: no curse of dimensionality !

@ For B <1 (and even for 1-Lipschitz functions), the complexity only scales
polynomially in d whatever the tree: no curse of dimensionality !
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More regularity, analytic functions

For function f : [0, 1] with analytic extension on an open complex domain
. p—1
D, ={z € C: dist(z,[0,1]) < T}, p>1,
we obtain an exponential convergence

E(f, o7 )i~ < Cy ",

with v = min{p, b(™*1)/b}

The proof relies on the approximation of analytic functions with polynomials and the
encoding of polynomials with tree tensor networks: a chebychev polynomial p of deree m
is such that

—m

2
If = plle < ﬁHfHL‘X’(Dp)P

A polynomial of degree m can be approximated by ¢ in ®; , » with an error in
O(b~Hm 1)) 'so that
If = @lleee S p~™ 4 b~

We obtain the result by choosing M ~ n*/3 and L ~ b~*n'/3, so that complr(p) < n.
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Analytic functions with singularities

Consider the approximation of u(x) = x%, 0 < a <1, in L.
@ Piecewise constant linear approximation.

ue BL(L®), u¢BL(L™) for B> a,

and a piecewise constant approximation on a uniform mesh with n elements gives a
convergence in O(n™?) in L*°,

@ Piecewise constant nonlinear approximation.
141
u€ BV C By(L),

and a piecewise constant approximation on an optimal mesh with n elements gives a
convergence in O(n~') in L™,

@ Piecewise constant approximation and tensor networks.
A piecewise constant approximation on a uniform mesh with 2L elements exploiting
low-rank structures gives an exponential convergence

E(f,®7)< Ccp™"

Achieves almost the performance of h-p methods [Kazeev and Schwab].
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Beyond smoothness

Consider the Weierstrass function, continuous but nowhere differentiable

f(x) = Za_o‘k cos(a*mx), a>0, 0<a<l,
k=0

Figure: Weierstrass function fora =1/2,a=2

We have an exponential convergence in L°°-norm
F _1/3
E(f,®; Yo SB7"

An error € is achieved with resolution L ~ log(e™!), ranks ~ log(e™!) and complexity
n ~ log(e™1)?
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Discontinuous functions: the power of tensorization

Consider the problem of approximating the bivariate function on (—1,1)?

(x, ) 1 ifx+t<0
u(x,t) = )
0 ifx+t>0

The manifold K = {u(-,t) : t € (—1,1)} contains the indicator functions 1;_; ,;j(x),
x; = —1 + 2i/m. Therefore the balanced convex hull of K contains the orthogonal
system S = {1)i(x) = 3L(,41(x) : 1 < i < m} with [[¢i]|,2 = (2m)~*/? and by taking
m = 2n, we deduce

da(K)2 > 1/(2V2)n" /2,
so that the best rank-n approximation

ur(x, 1) = > vi(x)wi(t)

i=1

does not converge better than ||u — u, ||z = n~Y/2.
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Discontinuous functions: the power of tensorization

A piecewise constant interpolant u® on a uniform grid with mesh size 2% is such that
lu— ut||2 = meas({(x,t) : u# u"})/? < 2'/2271/2
Using a tensorization d@“(ii, ..., if, if, ..., i), we have
L L
rankgy, . 3 (d°) = rankug ~ 2

that means an encoding complexity in tensor train format compl(ii*) > 2%, which yields
an approximation error > n~/4,

However, the tensorization u"(iy, if, ..., i¥, if) of u'(x, t) satisfies
rankgy, 4 (u") <3
for all v. Therefore, using tensor train format, compl(u*) < 36L and

E(u, ®7) < 2'/2277/72,
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Canonical versus tree-based format

Consider a finite dimensional tensor space V = V! ® ... ® V¢ with dim(V,) = RV,
which is identified with RV*--*N_ Denote by R, = {v : rank(v) < r} and
7,7 ={v:ranka(v) < r,a € T}

@ From canonical format to tree-based format.
For any v in V and any a C D, the a-rank is bounded by the canonical rank:

ranka(v) < rank(v).

Therefore, for any tree T,
R, C T,

so that an element in R, with storage complexity O(dNr) admits a representation in
7,7 with a storage complexity O(dNr + dr°*') where s is the arity of the tree T.

@ From tree-based format to canonical format. For a balanced or linear binary tree,
the subset
S={veT :rank(v)<q’?}, q=min{N,r},

is of Lebesgue measure 0.

Then a typical element v € 7,7 with storage complexity of order dNr + dr® admits a
representation in canonical format with a storage complexity of order dNg?/?.
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Influence of the tree

@ For some functions, the choice of tree is not crucial. For example, an additive
function

n(x)+ ...+ va(xa)
has a-ranks equal to 2 whatever o C D.

o But usually, different trees lead to different complexities of representations.

{1,2,3,4}

{1,2} {3,4} (@}

{3}
{1+ {2} {3+ {4

B {1+ {2}
T" (Balanced tree)

T! (Linear tree)

® If rank . (u) < r then rankys(u) < r?
® If rankye(u) < r then ranky.(u) < roe2(?)/2
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Influence of the tree

Given a tree T and a permutation o of D = {1,...,d}, we define a tree T,
To ={o(a) € T}

having the same structure as T but different nodes.

{1,2,3,4} {1,2,3,4}
{1,2} {3,4} {1,3} {2,4}
o @ D! 3 {1 2 @
T T, with o = (3,1,2,4)

If rank7(u) < r then rankr, (u) typically depends on d.

Anthony Nouy Centrale Nantes
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Influence of the tree

@ Consider the Henon-Heiles potential

d d—l 0 22 d—1

Using a linear tree T = {{1},{2},...,{d},{1,2},{1,2,3},...,{1,...,d — 1}, D},
rankr(u) < 4, storage(u) = O(d)
but for the permutation
c=(1,3,...,d —1,2,4,...,d) )
and the corresponding linear tree T,,
rankr, (u) < 2d + 1, storage(u) = O(d*).

o For a typical tensor in 7,” with T a binary tree, its representation in tree based
format with tree T, with o as in (%), has a complexity scaling exponentially with d.

@ As an example, consider the function u(x,t) = l.itr<oidentified (through
tensorization) with tensors u(if, ..., i, y*, i{,...,if,y") and
u(i, i, .. i i, y*, ¥"). Huge impact of the ordering !
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Influence of the tree

@ Consider the probability distribution f(x) = P(X = x) of a Markov chain
X = (Xi,...,Xq) given by

f(x) = Alx) o (elxt) . . . fag—1(xalxa-1)
where bivariate functions f;;_; have a rank r.

® With the linear tree T containing interior nodes
{1,2},{1,2,3},...,{1,...,d — 1}, f admits a representation in tree-based
format with storage complexity in r*.

® The canonical rank of f is exponential in d.

® But when considering the linear tree T, obtained by applying permutation
oc=(1,3,...,d —1,2,4,...,d) to the tree T, the storage complexity in
tree-based format is also exponential in d.
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How to choose a good tree ?

A combinatorial problem...

{5} {4}
{7} {8}
{2+ {3} {1y {6}

{5}
{3} {7t {6}
{1} {4}{2} {8}

Anthony Nouy

{4} {6}
{8} {1} {5} {3}

{23 {7}

{3t {2H4 {sH{er {1}

{7H{5}
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Properties of tree tensor networks

We here consider approximation tools ($,),>1 based on tensorization and tensor train
format (with or without sparsity).
They satisfy

(P1) o ={0},0€ ¢,

(P2) a®, = &, for any a € R\ {0} (cone)

(P3) &, C ®,41 (nestedness)
)

(P4) &, + &, C ., for some constant ¢ (not too nonlinear)

For X = LP, they further satisfy
(P5) U, ®, is dense in LP for 0 < p < oo (universality),

(P6) for each f € LP for 0 < p < oo, there exists a best approximation in ®, (proximinal
sets).
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Approximation classes

For an approximation tool ® = (®,)ncn, we define for any a > 0 the approximation class
AS(LP) = A% (L%, @)

of functions f € LP such that
E(f, &) < Cn~®

o Properties (P1)-(P4) of ® imply that A3 (L") is a quasi-Banach space with
quasi-semi-norm
[flag, :=sup n®E(f,®,)1e

n>1

o Full and sparse complexity measures yield two different approximation spaces
FL(LP) = AL(LP,07),  S(LP) = AL(LP, %)

such that
Fo(LP) = S&(LP) — F2(L7)
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Direct embeddings

From results on the approximation properties for Besov spaces, we have the following
results.

o (Linear approximation) For a« > 0 and 0 < p < oo,
By (L”) = F/4(L7),
MBg (L") — S5 (L),
ABZ(LP) < SL4(LP)
with s(a) :==d(ag ' + ... +a;")"h

@ (Nonlinear approximation) For « >0, 1 < p <00, 0< g <7< p < oo and
1

5>1-1
B3 (L7) = /(L7 F/LEI(LP),
MBS (L7) < S&(LP)— F&/*(LP)
for arbitrary & < «, and
ABZ(LT) = SY(LP)— F/CI(LP)
for arbitrary & < s(a).
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Interpolation family

The properties of ®, allow to apply classical results from approximation theory, in
particular to deduce from embedding results on A3, (L?) embedding results on
interpolation spaces

AZ(LP) = (LP, A% (L") g /ey O0<B<a, 0<g<oo

that are quasi-Banach spaces with quasi-norm

00 1/q
[Fllag = Ifllee + |flag, [flag = (Z n_l(naE(ﬂ‘Dn)x)q)
n=1

(functions with faster convergence than those of A% (LP)).
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No inverse embedding

For any a > 0, g < o0, and any f3,
Fo(LP) 5 BF(LP).

That means that approximation classes contain functions that have no smoothness in a
classical sense.

Tree tensor networks may be useful for the approximation of functions beyond standard
smoothness classes.
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No inverse embedding

This is proved by contradiction by considering the sawtooth function ¢, with 2- teeth
such that ¢, € &, with n ~ L.

1]

From properties (P1)-(P6), F¢'(LP) satisfies the Berstein inequality, that is

lellFgwey S nllelle Vo € @n.

Moreover, |[¢¢|r ~ 1 and H(’OL”BE(LP) > 2°LIf the embedding were true, we would have

25” S ||90LHB§(LP) 5 ||SOLH]:§‘(U’) S naz

a contradiction.
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The role of depth

Consider the approximation with restricted resolution
Oy = {f € &, : L(f) < L(n)}
where L(f) is the minimal resolution L such that f € V{, and £ some growth function.
Since L(f) < nfor f € &, dL = ¢, for L = n.
In dimension d = 1, for £(n) = rlog,(n) + c, the following Bernstein inequality holds
[Flgpigry S [Flle b mtD

with 7 the Sobolev embedding number, and m the local polynomial degree. This implies
the inverse embedding of the corresponding approximation class

AL(L; (07) < B/ ML)

Hence the importance of depth L for going beyond standard regularity classes.
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Some open questions

@ What are the properties of the approximation tool with free tree T over
{1,...,(L+1)d}

®,={fed 7, m: LNy, T 2t e N#T compl(f) < n} ?

o
Pl N /0/ Ng—
% Yo’ oo ‘oedwe -
O/ \O X7 X8 o/ \° X2 X7 Xg X1 X5 X3
X2 X3 X1 X6

@ What about approximation classes of more general tensor networks ?

o><4
B
o//\o\

Anthony Nouy Centrale Nantes 56

X1



Some open questions

@ Algorithms to practically compute approximations achieving a certain precision with
almost optimal complexity, using available information on the function (model
equations, point samples...)

o Computational complexity of (deterministic or randomized) algorithms based on
point samples for functions from approximation classes of tensor networks ?

@ Theory to practice gap ?

Anthony Nouy Centrale Nantes 57



References |

Introduction to tensors and tensor networks
@ W. Hackbusch.

Tensor spaces and numerical tensor calculus, volume 42 of Springer series in computational mathematics.
Springer, Heidelberg, 2012.

@ A. Nouy.

Low-rank methods for high-dimensional approximation and model order reduction.

In P. Benner, A. Cohen, M. Ohlberger, and K. Willcox (eds.), Model Reduction and Approximation:
Theory and Algorithms. SIAM, Philadelphia, PA, 2016.

@ R. Orus.

A practical introduction to tensor networks: Matrix product states and projected entangled pair states.
Annals of Physics, 349:117 — 158, 2014.

@ A. Falcé, W. Hackbusch, and A. Nouy.
Tree-based tensor formats.
SeMA Journal, Oct 2018.

B W. Hackbusch.

Minimal divergence for border rank-2 tensor approximation.
Linear and Multilinear Algebra, pages 1-17, 2021.

Approximation theory of tensor networks

Anthony Nouy Centrale Nantes 58



References |

@ R. Schneider and A. Uschmajew.
Approximation rates for the hierarchical tensor format in periodic sobolev spaces.
Journal of Complexity, 30(2):56 — 71, 2014.
Dagstuhl 2012.

@ M. Ali and A. Nouy.

Approximation with tensor networks. part i: Approximation spaces.
ArXiv, abs/2007.00118, 2020.

@ M. Ali and A. Nouy.
Approximation with tensor networks. part ii: Approximation rates for smoothness classes.
ArXiv, abs/2007.00128, 2020.

@ M. Ali and A. Nouy.
Approximation with tensor networks. part iii: Multivariate approximation.
ArXiv, abs/2007.00128, 2020.

@ M. Bachmayr, A. Nouy and R. Schneider.
Approximation power of tree tensor networks for compositional functions.

In preparation.

Anthony Nouy Centrale Nantes 59



References IlI

B N. Cohen, O. Sharir, and A. Shashua.
On the expressive power of deep learning: A tensor analysis.
In Conference on Learning Theory, pages 698-728, 2016.
ﬁ Valentin Khrulkov, Alexander Novikov, and Ivan Oseledets.
Expressive power of recurrent neural networks.

In International Conference on Learning Representations, 2018.

ﬁ Vladimir Kazeev and Christoph Schwab.
Approximation of singularities by quantized-tensor fem.
PAMM, 15(1):743-746, 2015.
B Vladimir Kazeev, Ivan Oseledets, Maxim Rakhuba, and Christoph Schwab.
Qtt-finite-element approximation for multiscale problems i: model problems in one dimension.
Advances in Computational Mathematics, 43(2):411-442, Apr 2017.
Learning with tensor networks

ﬁ B. Michel and A. Nouy.

Learning with tree tensor networks: complexity estimates and model selection.
arXiv e-prints, page arXiv:2007.01165, July 2020.

ﬁ E. M. Stoudenmire and D. J. Schwab.

Supervised learning with quantum-inspired tensor networks, 2017.

Anthony Nouy Centrale Nantes

60



References IV

ﬁ E. Grelier, A. Nouy, M. Chevreuil.

Learning with tree-based tensor formats.
Arxiv eprints, Nov. 2018.

B E. Grelier, A. Nouy, and R. Lebrun.

Learning high-dimensional probability distributions using tree tensor networks.
arXiv preprint arXiv:1912.07913, 2019.

B A. Nouy.

Higher-order principal component analysis for the approximation of tensors in tree-based low-rank
formats.

Numerische Mathematik, 141(3):743-789, Mar 2019.

ﬁ C. Haberstich, A. Nouy, and G. Perrin.

Active learning of tree tensor networks using optimal least-squares.
arXiv preprint arXiv:2104.13436, 2021.

B I. Oseledets and E. Tyrtyshnikov.

TT-cross approximation for multidimensional arrays.
Linear Algebra And Its Applications, 432(1):70-88, JAN 1 2010.

B L. Grasedyck and S. Kramer.

Stable als approximation in the tt-format for rank-adaptive tensor completion.
Numerische Mathematik, 143(4):855-904, 2019.

Anthony Nouy Centrale Nantes

61



References V

Software
ﬁ Nouy Anthony, Grelier Erwan and Giraldi Loic. (2020, February 7). ApproximationToolbox. Zenodo.
http://doi.org/10.5281 /zenodo.3653970

ﬁ Anthony Nouy, & Erwan Grelier. (2020, June 15). anthony-nouy/tensap. Zenodo.
http://doi.org/10.5281/zenodo.3894378

Anthony Nouy Centrale Nantes

62



	Approximation tools based on tree tensor networks
	Universality, Proximinality and Expressivity
	Choice of tensor format
	Approximation classes of tree tensor networks

