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High dimensional problems

Many problems of computational science, statistics and probability require the
approximation, integration or optimization of functions of many variables

u(x1, . . . , xd)

High dimensional PDEs (Boltzmann, Schrödinger, Black-Scholes...)

Multiscale problems

Parameter-dependent or stochastic equations

Statistical learning (density estimation, classification, regression)

Probabilistic modelling

...
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Approximation

The goal of approximation is to replace a target function u by a simpler function (easy to
evaluate and to operate with).

An approximation is searched in a set of functions Xn, where n is related to some
complexity measure, typically the number of parameters.
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Approximation

We distinguish

linear approximation when Xn is a finite-dimensional linear space (polynomials,
trigonometric polynomials, fixed knot splines...)

Xn = {
n∑

i=1

aiϕi : ai ∈ R}

where the ϕi form a basis of Xn.

nonlinear approximation when Xn is a nonlinear set (rational functions, free knot
splines, n-term approximation, neural networks, tensor networks...), e.g.

Xn = {
n∑

i=1

aiϕi : ai ∈ R, ϕi ∈ D}

for n-term approximation from a dictionary of functions D, or

Xn = {g(a) : a ∈ Rn}

with some given nonlinear map g from Rn to X .
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Error of best approximation

For a given function u from a normed vector space X and a given subset Xn, the error of
best approximation

en(u)X := E(u,Xn)X = inf
v∈Xn

‖u − v‖X

quantifies the best we can expect from Xn.
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Fundamental problems in approximation

For a sequence (Xn)n≥1 of sets of growing complexity, called an approximation tool, we
would like to address the following questions.

(universality) Does en(u)X converge to 0 for all functions u in X ?

(expressivity) For a certain class of functions in X , determine how fast en(u)X
converges to 0, or determine the complexity n = n(ε, u) such that en(u) ≤ ε.
Typically,

en(u)X ≤ Mγ(n)−1

where γ is a strictly increasing function (growth function), and

n(ε, u) ≥ γ−1(ε/M)

(approximation classes) Characterize the class of functions for which a certain
convergence type is achieved, e.g.

Aγ(X , (Xn)n≥1) =

{
u : sup

n≥1
γ(n)en(u)X < +∞

}
for some growth function γ.

Anthony Nouy Centrale Nantes 7



Fundamental problems in approximation

(proximinality) Determine if for all u ∈ X , there exists an element of best
approximation un ∈ Xn such that

‖u − un‖X = en(u)X .

(algorithm) Construct an approximation un ∈ Xn such that

‖u − un‖X ≤ Cen(u)X

with C independent of n or C(n)en(u)→ 0 as n→∞.

Algorithms depend on the available information, e.g. given by linear functionals such
as point evaluations (interpolation, discrete least-squares), or equations satisfied by
the function (variational methods).
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Optimal approximation for a model class

If we know that the function u belongs to some model class of functions K , we would like
to find an approximation tool Xn presenting a good performance, or even the optimal
performance.

A fundamental problem is to quantify the best we can expect.

For that, we rely on different measures of complexity of K depending on the type of
approximation (linear or nonlinear) and possibly on the properties of the approximation
process (type of information, stability...)
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Optimal linear approximation: Kolmogorov widths

For a compact subset K of a normed vector space X and a n-dimensional space Xn in X ,
we define the worst-case error

dist(K ,Xn)X = sup
u∈K

inf
v∈Xn

‖u − v‖X
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Optimal linear approximation: Kolmogorov widths

Then the Kolmogorov n-width of K is defined as

dn(K)X = inf
dim(Xn)=n

dist(K ,Xn)X

where the infimum is taken over all linear subspaces Xn of dimension n.

dn(K)X measures how well the set K can be approximated (uniformly) by a
n-dimensional space. It measures the ideal performance that we can expect from linear
approximation methods.
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Optimal linear approximation: weighted Kolmogorov widths

If K is equipped with a probability measure µ, a weighted Kolmogorov n-width is defined
by

d (p,µ)
n (K)X = inf

dim(Xn)=n

(∫
K

E(u,Xn)pXdµ(u)

)1/p

and is such that
d (p,µ)
n (K)X ≤ µ(K)1/pdn(K)X .

For X a Hilbert space, p = 2 and µ the push-forward measure of a K -valued random
variable U ∈ L2(Ω;X ), this is equivalent to

inf
dim(Xn)=n

E(‖U − PXnU‖
2
X )1/2

and an optimal space is given by Principal Component Analysis, that is a dominant
eigenspace of the operator v 7→ E((U, v)XU).
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Optimal linear approximation: linear width

Another measure of complexity taking into account the approximation process is the
linear width

an(K)X = inf
A

sup
v∈K
‖v − Av‖X

where the infimum is taken over all continuous linear maps A : K → X with rank at most
n.

Equivalently,
an(K)X = inf

g,a
sup
v∈K
‖v − g(a(v))‖X

where both a : K → Rn and g : Rn → X are linear maps.

For a general Banach space X ,

dn(K)X ≤ an(K)X ≤
√
ndn(K)X
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Optimal linear approximation: linear width

By restricting the information to pointwise evaluations, we obtain (linear) sampling
numbers

ρn(K)X = inf
g,x1,...,xn

sup
v∈K
‖v − g(v(x1), . . . , v(xn))‖X ≥ an(K)X ≥ dn(K)X

Recent results have been obtained for L2 approximation, comparing sampling numbers
with Kolmogorov widths [Temlyakov 2021 ; Nagel, Shafer and Ullrich 2021]: there exists
constants c and C such that

ρcn(K)L2 ≤ Cdn(K)L∞

or

ρcn(K)2
L2 ≤ C

log(n)

n

∑
k≥n

dk(K)2
L2

if we further assume that K is a ball of a reproducing kernel Hilbert space.

Sampling numbers ρrandn (K)L2 can also be defined using random samples and averaged
mean-squared error, and it holds [Dolbeault and Cohen 2021]

ρrandcn (K)L2 ≤ Cdn(K)L2

for some constants c and C .
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Bounds of Kolmogorov widths dn(K )X

Upper bounds for dn(K)X can be obtained by specific linear approximation methods.
Proofs are sometimes constructive.

Lower bounds for dn(K) can be obtained using different techniques.

Using diversity in K :
dn(K)X ≥ dn(S)X

with S some subset of K whose Kolmogorov width can be bounded from below.

Example: if X is a Hilbert space and K contains a set of orthogonal vectors
S = {u1, . . . , um} with norm ‖ui‖X = cm,

dn(K)X ≥ dn(S)X = dn(cmB(`1(Rm)))`2 = cm
√

1− n/m

where we used the fact that dn(S)X is equal to the n-width of the balanced convex
hull of S , which is isomorphic to cmB(`1(Rm)), and a result of Stechkin (1954).
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Bounds of Kolmogorov widths dn(K )X

Using Bernstein width

bn(K)X = sup
dim(Xn+1)=n+1

sup{r : rB(Xn+1) ⊂ K}

that is the largest r > 0 such that K contains the ball of radius r of some
(n + 1)-dimensional space

dn(K)X ≥ bn(K)X
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Bounds of Kolmogorov widths dn(K )X

Using covering number Nε(K)X (minimal number of balls of radius ε for covering K)
or entropy numbers

εn(K)X = inf{ε : K ⊂
2n⋃
i=1

B(ui , ε), ui ∈ K} = inf{ε : log2(Nε(K)X ) ≤ n}

that is the smallest ε such that K can be covered by 2n balls of radius ε. Any u ∈ K
can be encoded with n bits up to precision εn(K).

Carl’s inequality: for all s > 0,

(n + 1)sεn(K)X ≤ Cs sup
0≤m≤n

(m + 1)sdm(K)X

Therefore, if εn(K)X & n−s , then dn(K)X . n−r can not hold with r > s.
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Kolmogorov width of Sobolev balls

For X = Lp(X ), X = [0, 1]d , 1 ≤ p ≤ ∞, and K the unit ball of W k,p(X ), it holds

dn(K)X ∼ n−k/d

and optimal performance is obtained e.g. by fixed knot splines (with degree adapted to
the regularity).

We observe

the curse of dimensionality : deterioration of the rate of approximation when d
increases. Exponential growth with d of the complexity for reaching a given
accuracy.

the blessing of smoothness : improvement of the rate of approximation when k
increases.
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Kolmogorov width of mixed Sobolev balls

For X = Lp(X ), X = [0, 1]d , 1 ≤ p ≤ ∞, and K the unit ball of MW k,p(X ) (Sobolev
space with dominating mixed smoothness), that are functions u such that

max
|α|∞≤k

‖Dαu‖Lp ≤ 1.

we have
dn(K)X ∼ n−k log(n)k(d−1).

with optimal performance achieved by hyperbolic cross approximation (sparse expansion
on tensor product of dilated splines) [Dung et al 2016].

Curse of dimensionality is milder but still present.
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Optimal nonlinear approximation

For evaluating the ideal performance of nonlinear methods for the approximation of
functions from a class K , different notions of widths have been introduced.
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Nonlinear Kolmogorov width

A measure of complexity closely related to n-term approximation and relevant for
nonlinear model reduction is the nonlinear Kolmogorov width [Temlyakov 1998] or library
width

dn(K ,N)X = inf
#Ln=N

sup
u∈K

inf
Vn∈Ln

e(u,Vn)X

where the infimum is taken over all libraries Ln of N linear spaces of dimension n.

Choosing N = N(n), this yields a width only depending on n. Interesting regimes are
N(n) = bn or N(n) = nαn.
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Nonlinear Kolmogorov width

It clearly holds
d1(K , 2n)X ≤ εn(K)X

Also, we have a Carl’s type inequality: for all r > 0,

nr εn(K)X ≤ C(r , b) max
1≤k≤n

k rdk−1(K , bk)X .

Therefore if for some b > 0, dn−1(K , bn)X . n−r , then εn(K)X . n−r .

For unit balls K of Besov spaces Bαq (Lτ ) compactly embedding in Lp((0, 1)d), since

εn(K) & n−α/d , we deduce that dn(K , bn)X . n−β can not hold with β > α/d .
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Optimal nonlinear approximation: manifold approximation

Consider the approximation from a n-dimensional ”manifold”

Xn = {g(a) : a ∈ Rn}

parametrized by a nonlinear map g : Rn → X . We could consider the problem of finding
the best manifold of dimension n for approximating functions from K :

inf
g

sup
u∈K

inf
a∈Rn
‖u − g(a)‖X := ηn

where the infimum is taken among all maps g from Rn to X .

For any compact set K , ηn = 0 for all n ≥ 1. Indeed, K admits a countable dense subset
{ui}i∈N (space-filling manifold). For n = 1, letting g(a) = uk for a ∈ [k, k + 1), we
obtain η1 = 0.

We can even provide a continuous parametrization, by considering a dense subset {ui}i∈Z
and g(a) = (a− k)uk+1 + (k + 1− a)uk for a ∈ [k, k + 1].

In general, the map which associates to u ∈ K the coefficients a(u) of its best
approximation (if it exists) is not continuous, which makes the approximation process not
reasonable.
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Optimal nonlinear approximation: manifold width

The following definition of manifold width [DeVore, Howard, Michelli 1989] quantifies
how well the set K can be approximated by n-dimensional nonlinear manifolds having
continuous parametrization and a continuous parameter selection

δn(K)X = inf
g,a

sup
u∈K
‖u − g(a(u))‖X

where the infimum is taken over all continuous functions a from K to Rn and all
continuous functions g from Rn to K .

As for linear widths, the manifold width is lower bounded by the Bernstein width

δn(K)X ≥ bn(K)X .
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Manifold width of Sobolev balls

For X = Lp(X ), X = [0, 1]d , and K the unit ball of Sobolev spaces W s,q or Besov spaces
B s

q(Lτ ) which compactly embed in Lp

δn(K)X ∼ n−s/d

Rate O(n−s/d) is achieved for a larger class of functions than for linear methods
(functions with regularity measured in norms weaker than Lp) .

Optimal performance is achieved by free knot splines or best n-term approximation with a
dictionary of tensor products of dilated splines.

Again, we observe the curse of dimensionality, which can not be avoided by such
nonlinear methods.
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Could extra regularity help ?

Consider X = L∞(X ) with X = [0, 1]d and

K = {v ∈ C∞([0, 1]d) : sup
α
‖Dαu‖L∞ <∞},

It holds
K ⊂ B(W sd,∞) ∀s > 0,

so that for all s > 0
dn(K)L∞ . n−s .

However,
min{n : dn(K)L∞ ≤ 1/2} ≥ c2d/2.

The curse of dimensionality is still present.
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Could extra regularity help ?

Consider the information based complexity measure of K

δLn(K)L∞ = inf
g,a

sup
u∈K
‖u − g(a(u))‖L∞ ≤ an(L)L∞

where the infimum is taken over all linear maps a : K → Rn that extract n linear
information a1(u), . . . an(u) from a function u ∈ K (possibly selected adaptively) and over
all nonlinear maps g .

It holds [Novak and Wozniakowski 2009]

δLn(K)L∞ = 1 for all n = 0, 1, . . . , 2bd/2c − 1

or
min{n : δLn(K)L∞ < 1} ≥ 2bd/2c

Nonlinear methods can not help...

More assumptions of model classes K are needed...
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Parameter dependent PDEs

Consider a parameter-dependent equation

P(u(y); y) = 0, u(y) ∈ X

with y ∈ Y some parameter.

The objective is to approximate the solution manifold (model reduction methods)

K = {u(y) : y ∈ Y}

or to approximate explicitly the solution map y 7→ u(y).

As an example, consider the elliptic diffusion equation on a convex domain D ⊂ Rd

−div(a(y)∇u(y)) = f

with f ∈ H−1, 0 < a ≤ a(y) ≤ a <∞, and homogeneous Dirichlet boundary conditions.

The solutions
u(y) ∈ H1

0 := X .
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Parameter dependent PDEs

Assuming f ∈ L2, we know that K is in some ball of H2(D), so that

dn(K)H1 . n−1/d

with optimal performance achieved by splines (finite elements with uniform mesh).

If a(y) = a0 +
∑m

i=1 aiyi with (‖ai‖L∞)i≥1 ∈ `p for some p > 1, then

dn(K)H1 ≤ Cn−s , s = p−1 − 1

with constant C independent of d (no curse of dimensionality).

These rates are achieved by sparse polynomial expansions of y 7→ u(y), exploiting
anisotropic analyticity of the solution map.

More generally, letting A = {a(y) : y ∈ Y}, we have [Cohen and DeVore 2015]

sup
n≥1

nsdn(K)H1 . sup
n≥1

nrdn(A)L∞ , ∀s < r − 1.

Optimal spaces Xn are data-dependent. Almost optimal spaces can be constructed
using greedy algorithms (reduced basis methods) or sparse polynomial expansions.

Similar results between nonlinear widths δn(K)H1 and δn(A)Lq .
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How to beat the curse of dimensionality ?

No (reasonable) approximation tool is able to overcome the curse of dimensionality
for standard regularity classes.

The key is to make more assumptions on model classes of functions and to provide
ad-hoc approximation tools .

We would like flexible approximation tools that perform well for a wide range of
applications (i.e. with sufficiently rich approximation classes)
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Classical tools for high-dimensional approximation

Polynomial models ∑
α∈Λ

aαx
α

where Λ ⊂ Nd is a set of multi-indices, either fixed (linear approximation) or free
(nonlinear approximation).

More general expansions ∑
α∈Λ

aαψα(x)

with ψα(x) = ψα1 (x1) . . . ψαd (xd).
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Additive and multiplicative models

Additive models
u1(x1) + . . .+ ud(xd)

or more generally ∑
α⊂Λ

uα(xα)

where Λ ⊂ 2{1,...,d} is either fixed (linear approximation) or a free parameter
(nonlinear approximation).

Multiplicative models
u1(x1) . . . ud(xd)

or more generally ∏
α∈Λ

uα(xα)

where Λ ⊂ 2{1,...,d} is either a fixed or a free parameter.
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Separation of variables and tensor networks

Sum of multiplicative models (canonical tensor format)

r∑
k=1

v (1)(x1, k) . . . v (d)(xd , k)

that is a r -term approximation from the dictionary of separated functions.

Tensor train (Matrix Product State)

v(x) =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

v (1)(x1, k1)v (2)(k1, x2, k2) . . . v (d)(kd−1, xd).

v (1) v (2) v (d−1) v (d)

x1 x2 xd−1 xd

k1 k2 kd−1 kd

It is a particular case of tensor networks.
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Separation of variables and tensor networks

Tensor networks associated with general graphs

v (1)

x1

v (2)

x2

v (3)

x3

v (4)

x4

v (5)

k1,2

k3,4

k2,4

k1,5

k2,5

k1,3

k3,5
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Composition of functions

f (g(x))

with g : Rd → Rm and f : Rm → R.

g can be seen as a map that extracts m features g(x) (new variables) from an input x ,
that can be fixed (application-dependent) or free.

For linear maps g(x) = Ax , this corresponds to ridge approximation

f (Ax), A ∈ Rm×d

Different regimes

small m, g performs a dimension reduction and f is a low-dimensional function.

large m, g extracts many features and f is expected to be simple, e.g. linear or
additive.
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Neural networks

A shallow neural network (with one hidden layer of width m) is a ridge function

aTσ(Ax + b) =
m∑
i=1

aiσ(
d∑

j=1

Aijxj + bi )

where σ is a given function (activation function).

x1 x2 x3 x4
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Neural networks

Classical piecewise polynomial activation functions

ReLU function σ(t) = 〈t〉+ = max{0, t}
RePU(p) function σ(t) = 〈t〉p+ = max{0, t}p

ReLU and RePU networks produce a piecewise polynomial approximation (spline) on a
free partition of Rd determined by m hyperplanes

Hi = {x : wi
T x + bi = 0}, wi = (Aij)

d
j=1 ∈ Rd
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Deep neural networks

TL ◦ σ ◦ TL−1 ◦ . . . ◦ T1 ◦ σ ◦ T0(x)

with T` : Rm` → Rm`+1 an affine linear map

T`(x) = A`x + b`

and (m1, . . . ,mL) ∈ NL with m0 = d , mL+1 = 1.

For ReLU or RePU(p) activation function σ, the approximation is a piecewise polynomial
on a free partition with a number of domains growing exponentially with depth L.
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Approximation tools based on neural networks

Different approximation tools (Xn)n≥1 can be defined depending on which parameters are
free (possible architectures) and how complexity is measured.

Letting ΦL,m be the class of neural networks with depth L and widths m = (m1, . . . ,mL),
we define

Xn = {v ∈ ΦL,m : L ∈ L,m ∈ML, compl(v) ≤ n}

where compl is a complexity measure, L ⊂ N is the set of possible depths and ML ⊂ NL

the set of possible widths.

Two typical classes of architectures

Fixed depth L and free width:

L = {L}, ML = {(W , . . . ,W ) : W ∈ N}

Free depth and fixed width W :

L = N, ML = {(W , . . . ,W )}

Anthony Nouy Centrale Nantes 39



Approximation tools based on neural networks

For a function v in the class ΦL,m of neural networks with depth L and widths
m = (m1, . . . ,mL), different measures of complexity:

number of parameters (fully connected networks)

complF (v) =
L∑
`=0

m`m`+1 + m`+1 ∼W 2L for m` ∼W

number of non-zero parameters (sparsely connected networks)

complS(v) =
L∑
`=0

‖A`‖0 + ‖b`‖0

Fully connected networks (left) and Sparsely connected network (right).

Structured sparsity can be imposed (convolutional NN, recurrent NN...) or sparsity
pattern can be considered as a free parameter (a challenge on the algorithmic side).
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Deep neural networks approximation theory

Many recent results on the expressivity of deep neural networks for various model classes.

Approximation classes of deep neural networks (free depth and fixed width) are larger
than those of shallow networks (fixed depth and free width) [DeVore et al 2020].

Deep neural networks are (almost) as expressive as many classical approximation
tools (polynomials, splines, B-splines...).

They achieve (near to) optimal performance for functions from classical smoothness
classes (isotropic or anisotropic Sobolev, Besov, analytic functions...).

For functions u in W s,∞((0, 1)d), ReLU networks achieve

en(u)L∞ . n−d/s

with continuous parameter selection.

Approximation classes of deep ReLU networks are not embedded in standard
smoothness classes [Gribonval et al 2021]

They approximate efficiently functions beyond smoothness classes (discontinuous
functions, fractals, refinable functions...)
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Deep neural networks approximation theory

A few surprises

For functions u in the unit ball K of W s,∞((0, 1)d), ReLU networks with free depth
can achieve

en(u)L∞ . n−p for arbitrary p ≤ 2s/d .

However, since the manifold width δn(K)L∞ & n−s/d , a rate p > s/d can be
achieved only with discontinuous parameter selection. Also, it requires an encoding
of parameters with more than O(log2(ε−1)) bits to achieve accuracy ε.

Approximation classes of deep networks contain functions that could in principle be
approximated without the curse of dimensionality but require in practice an
exponential quantity of information. That is the theory to practice gap [Grohs and
Voigtlaender 2021].

Open problems

Characterize the functions that can be approximated stably with deep networks.

Characterize functions that can be estimated with partial information and near
optimal performance.

Provide algorithms that achieve near to optimal performance.
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