
On some recent developments on
necessary conditions in Optimal Control

Piernicola Bettiol

University of Brest - UBO

Sample Days

Brest

8-10 September 2021

P. Bettiol Necessary Conditions in Optimal Control



Outline of the talk

Optimal control problems modeled as a differential inclusion:
Clarke’s necessary conditions

Ioffe’s refinement: a new Weierstrass condition

An application: mixed constraint problems

Examples

Final remarks

P. Bettiol Necessary Conditions in Optimal Control



Consider the optimal control problem:

(P)


Minimize g(x(0), x(T ))
over x(.) ∈W 1,1 satisfying
ẋ(t) ∈ F (t , x(t)) a.e.t ∈ [0,T ]
(x(0), x(T )) ∈ C ,

Data:
g : Rn × Rn → R function - cost function
C ⊂ Rn × Rn closed set - end-point constraint
F : [0,T ]× Rn ; Rn multifunction - dynamic constraint

(An alternative formulation of the classical optimal control problem
associated with the Maximum Principle: a differential inclusion
replaces the underlying controlled differential equation.)
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(P)


Minimize g(x(0), x(T ))
over x(.) ∈W 1,1 satisfying
ẋ(t) ∈ F (t , x(t)) a.e.t ∈ [0,T ]
(x(0), x(T )) ∈ C ,

• x(.) Feasible state trajectory :
a W 1,1 function s.t. ẋ(t) ∈ F (t , x(t)) a.e. and (x(0), x(T )) ∈ C.

• x̄(.) is a W 1,1-local minimizer:
for some β > 0,

g(x(0), x(T )) ≥ g(x̄(0), x̄(T ))

for all feasible state trajectories x s.t.

||x − x̄ ||W 1,1 ≤ β .
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First order necessary conditions for problem (P)

A large literature:

- Clarke, Optimization and Nonsmooth Analysis, 1983.
- Loewen and Rockafellar, Optimal control of unbounded differential
inclusions, SICON 1994.
- Mordukhovich, Discrete approximations and refined
Euler-Lagrange conditions for non-convex differential inclusions,
SICON 1995.
- Ioffe, Euler-Lagrange and Hamiltonian formalisms in dynamic
optimization, SICON 1997.
- Vinter and Zheng, The extended Euler-Lagrange condition for
nonconvex variational problems, SICON 1997.
. . . .

- Clarke, Necessary Conditions in Dynamic Optimization. AMS
Memoirs 2005.
- Ioffe, On Generalized Bolza Problem and Its Application to Dynamic
Optimization, JOTA 2019.
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Some nonsmooth analysis constructs

C ⊂ Rn closed set, x̄ ∈ C,

The proximal normal cone of C at x̄ :

NP
C (x̄):={η ∈ Rn : ∃M > 0 s.t. η · (x − x̄) ≤ M|x − x̄ |2 for all x ∈ C}.

The (limiting) normal cone of C at x̄ :

NC(x̄) := {limi→∞ ηi : ηi ∈ NP
C (xi ) and xi ∈ C for all i ,and xi → x̄} .
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Some nonsmooth analysis constructs...

f : Rn → R ∪ {+∞} is a lower semicontinuous function, take a point x
s. t. f (x) < +∞
The proximal subdifferential of f (.) at x :

∂P f (x) := {ζ ∈ Rn : ∃ σ > 0, ε > 0 s. t.

f (y)− f (x) ≥ ζ · (y − x)− σ|y − x |2, ∀y ∈ x + εB} .

The (limiting) subdifferential of f at x :

∂f (x) := { lim
i→∞

ζi : ζi ∈ ∂P f (xi ), xi → x , f (xi )→ f (x)} .

The partial subdifferential ∂x f (x̄ , ȳ): the subdifferential of
x → f (x , ȳ) at x̄ .
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Mulifunctions - Lipschitz regularity

Take a multifunction F : Rk ; Rn and a point x̄ ∈ Rk .
F is (locally) Lipschitz continuous w.r.t. the Hausdorff metric: there
exist ε > 0 and k > 0 s. t.

dH(F (x),F (y)) ≤ k |x − y | for all x , y ∈ x̄ + εB

Here dH(A,B) is the Hausdorff distance function:

dH(A,B) := max

{
sup
a∈A

dB(a), sup
b∈B

dA(b).

}
An equivalent statement of the condition is: there exist ε > 0 and
k > 0 s. t.

F (y) ⊂ F (x) + k |y − x |B for all x , y ∈ x̄ + εB.

Rmk: this condition becomes overly restrictive for unbounded
differential inclusions...
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Example. Consider the multifunction F : R2 ; R2 defined by

F (x1, x2) :=
{

(v1, v2) ∈ R2 : v2 ≤ x1v1
}
.

F is NOT Lipschitz continuous

dH(F (x1, x2),F (y1, y2)) = +∞ for y1 6= x1,

𝑭(𝒚𝟏, 𝟎)

𝑭(𝟎, 𝟎)

𝒚𝟏 > 𝟎

Rmk: For two unbounded sets which are ‘close’ or ‘regular’ in an
intuitive sense, the Hausdorff distance between them can be very
large...
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Pseudo-Lipschitz Continuity - Aubin Regularity

Take a multifunction F : Rk ; Rn and a point (x̄ , v̄) ∈ Gr F . Take also
numbers ε > 0, R > 0 and k ≥ 0. We say that F is pseudo-Lipschitz
continuous near (x̄ , v̄) (with parameters ε, R and k ) if

F (y) ∩ (v̄ + R B) ⊂ F (x) + k |x − y |B
for all x , y ∈ x̄ + εB .

(Gr F is the graph of F )

Rmk: it allows to deal with unbounded velocity sets F .
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Example... Consider the multifunction F : R2 ; R2 defined by

F (x1, x2) :=
{

(v1, v2) ∈ R2 : v2 ≤ x1v1
}
.

F is pseudo-Lipschitz continuous near (x̄ = 0, v̄ = 0) (with
parameters ε = 1, R = 1 and k = 1)

𝑭(𝒚𝟏, 𝟎)

𝑭(𝟎, 𝟎)

𝒚𝟏 > 𝟎
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Standing assumptions

x̄ is a reference state trajectory.

(G1) g is Lipschitz continuous on a neighborhood of (x̄(0), x̄(T )) and
C is a closed set;

(G2) F (t , x) is nonempty for each (t , x) ∈ [0,T ]× Rn, Gr F (t , .) is a
closed set for each t ∈ [0,T ] and F is L × Bn measurable;

(G3) There exist ε > 0 and a measurable function
R : [0,T ]→ (0,∞) ∪ {+∞} (a ‘radius function’) such that the
following conditions are satisfied:

(a) (Pseudo-Lipschitz Continuity) There exists k ∈ L1 s.t.

F (t , x ′) ∩ ( ˙̄x(t) + R(t)B) ⊂ F (t , x) + k(t)|x ′ − x |B,
for all x , x ′ ∈ x̄(t) + εB, a.e. t ∈ [0,T ];

(b) (Tempered Growth) There exist r ∈ L1(0,T ), r0 > 0 and
γ ∈ (0,1) s.t. r0 ≤ r(t), γ−1r(t) ≤ R(t) a.e. and

F (t , x) ∩ ( ˙̄x(t) + r(t)B) 6= ∅ for all x ∈ x̄(t) + εB, a.e. t ∈ [0,T ].
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A simple consequence of Clarke’s 2005 Memoirs:

Thm. 1 (The Euler Lagrange Inclusion)
Let x̄ be a W 1,1 local minimizer for (P).
Then there exist an arc p ∈W 1,1([0,T ];Rn) and λ ≥ 0, satisfying the
following conditions:

(i) (λ,p) 6= (0,0),

(ii) ṗ(t) ∈ co{η : (η,p(t)) ∈ NGr F (t,.)(x̄(t), ˙̄x(t))} a.e. t ∈ [0,T ],

(iii) (p(0),−p(T )) ∈ λ∂g(x̄(0), x̄(T )) + NC(x̄(0), x̄(T )),

(iv) p(t) · ˙̄x(t) ≥ p(t) · v

for all v ∈ F (t , x̄(t)) ∩
(

˙̄x(t) + R(t)
◦
B
)

.

Weierstrass condition

Rmk: condition (iv) tells us that v → p(t) · v is maximized at the
optimal velocity ˙̄x(t), over the set

F (t , x̄(t)) ∩
(

˙̄x(t) + R(t)
◦
B
)

,

in which R is the radius function of hypothesis (G3)
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[Ioffe, JOTA 2019] provides a refinement of the Weierstrass
condition (iv) above:

Thm. 2
Under the hypotheses of Thm. 1, the assertions of the theorem
remain valid when (iv) is replaced by the stronger condition

(iv)
′

p(t) · ˙̄x(t) ≥ p(t) · v , for all v ∈ Ω0(t), a.e. t ∈ [0,T ]

The set of regular admissible velocities at x̄(t):

Ω0(t) := {e ∈ F (t , x̄(t)) : F (t , .) is pseudo-Lipschitz near (x̄(t),e)} .

Rmk: Under the pseudo-Lipschitz hypothesis (G3)(a) of Thm. 1, we
have

F (t , x̄(t)) ∩
(

˙̄x(t) + R(t)
◦
B
)
⊂ Ω0(t) .

So the Ioffe refinement asserts that the v → p(t) · v is maximized
over a larger set.
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Example 1.

(E1)


Minimize e · x(1)
over x ∈W 1,1([0,1];Rn) such that
ẋ(t) ∈ F (x(t)),
x(0) = 0,

in which e := (1,0, . . . ,0) and

F (x) := {0} ∪ {v : |v | ≥ 1 + |x |1/2} .

Take as nominal feasible F -trajectory x̄ ≡ 0.
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Prop. 1 Concerning problem (E1),

(a): x̄ is not a W 1,1 local minimizer.

(b): For any collection of radius function R(t), ε > 0 and integrable
Lipschitz bound k(t) such that the hypotheses of Thm. 1 are
satisfied,

1. Conditions (i)-(iii) and (iv) of Thm. 1 are satisfied.
2. Condition (iv)′ of Thm. 2 (Weierstrass condition with

refinement) is NOT satisfied.
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An application: Mixed Constraint Problems

(M)



Minimize g(x(0), x(T )) +
∫ T

0 L(t , x(t),u(t))dt

over x ∈W 1,1([0,T ];Rn) and meas.
u : [0,T ]→ Rm such that
ẋ(t) = f (t , x(t),u(t)), a.e. t ∈ [0,T ],
h(1)(t , x(t),u(t)) ≤ 0,h(2)(t , x(t),u(t)) = 0,

and u(t) ∈ U, a.e. t ∈ [0,T ],
(x(0), x(T )) ∈ C ,

Data:
g : Rn × Rn → R end-point cost
L : [0,T ]× Rn × Rm → R Lagrangian
C ⊂ Rn × Rn closed set - end-point constraint
f : [0,T ]× Rn × Rm → Rn - dynamic
h(1) : [0,T ]× Rn × Rm → Rκ1 , h(2) : [0,T ]× Rn × Rm → Rκ2 mixed
constraints
U ⊂ Rm control set
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First order necessary conditions for problem (M)

A large literature (and applications...):

- Hestenes, Calculus of Variations and Optimal Control Theory, 1966.
- Dubovitskii, Milyutin, Theory of the principle of the maximum,
Methods of the Theory of Extremal Problems in Economics, 1981.
- Dmitruk, Maximum principle for a general optimal control problem
with state and regular mixed constraints, Comput. Math. Model.,
1993.
. . . .
- Bonard, Faubourg, Launay, Trélat, Optimal control with state
constraints and the space shuttle reâentry problem, Journal of
Dynamical and Control Systems, 2003
. . . .

- Clarke, de Pinho, Optimal Control Problems with Mixed
Constraints, SICON, 2010.
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[Clarke and de Pinho, SICON 2010] derived new general optimality
conditions for mixed constraint optimal control problems.

Basic steps of their approach:

1. reduce the mixed constraint problem to a differential inclusion
problem

2. apply the generalized Euler-Lagrange conditions of Clarke’s AMS
Memoirs 2005 (Thm. 1)
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Admissible state-control pairs

Define

S(t) := {(x ,u) : h(1)(t , x ,u) ≤ 0, h(2)(t , x ,u) = 0,u ∈ U}

Ror given process (x̄ , ū) and parameters ε > 0 and R > 0:

Sε,R(t) := {(x ,u) ∈ S(t) : |x − x̄(t)| ≤ ε, |u − ū(t)| ≤ R}.

Define also the set of admissible controls at state x̄(t):

Ω(t) := {u ∈ Rm : (x̄(t),u) ∈ S(t)} .
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The ‘Mangasarian-Fromovitz’ condition:

given (t , x ,u) such that t ∈ [0,T ] and (x ,u) ∈ S(t)

(MF )t,x,u :


λ1 ∈ (R+)κ1 , λ2 ∈ Rκ2 ,

λ1 · h(1)(t , x ,u) = 0, η ∈ NU(u)

∇u(λ1 · h(1) + λ2 · h(2))(t , x ,u) + η = 0
=⇒ |(λ1, λ2)| = 0.
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Standing assumptions
(x̄ , ū) is a reference process.
Assume that, for some ε > 0 and positive measurable function
R ∈ L∞, strictly bounded away from 0,

(H1) g is Lipschitz cont. on a neighb. of (x̄(0), x̄(T ));

(H2) for each x ∈ Rn, f (., x , .), L(., x , .), h(1)(., x , .) and h(2)(., x , .) are
L × Bm measurable; there exist integrable functions k f ,L

x and k f ,L
u

such that, for a.e. t ∈ [0,T ],

|(f ,L)(t , x1,u1)−(f ,L)(t , x2,u2)| ≤ k f ,L
x (t)|x1−x2|+k f ,L

u (t)|u1−u2|

for all (x1,u1) and (x2,u2) in a neighborhood of Sε,R(t)(t);

(H3) For a.e. t ∈ [0,T ], h(1)(t , ., .) and h(2)(t , ., .) are continuously
differentiable; there exists kh > 0 s. t., for a.e. t ∈ [0,T ],
∀(x1,u1), (x2,u2) in a neighb. of Sε,R(t)(t);

|(h(1),h(2))(t , x1,u1)− (h(1),h(2))(t , x2,u2)| ≤
kh(|x1 − x2|+ |u1 − u2|)
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Standing assumptions...

(MF) (MF )t,x,u is satisfied, for every point (t , x ,u) in
closure {(t , x ,u) ∈ [0,T ]× Rn × Rm : (x ,u) ∈ Sε,R(t)(t)};

(H4) ū is essentially bounded.

(ū(t) is interpreted as some version of the equivalence class of
bounded, a.e. equal functions);
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Thm. 3 (Clarke-de Pinho, 2010)
Let (x̄ , ū) be a W 1,1 local minimizer for (M).
Then there exist p ∈W 1,1([0,T ],Rn), λ0 ≥ 0 and integrable functions
λ1 : [0,T ]→ (R+)κ1 and λ2 : [0,T ]→ Rκ2 such that

λ1(t) · h(1)(t , x̄(t), ū(t)) = 0, a.e. and

(i) (p, λ0) 6= 0 ,

(ii) (−ṗ(t),0) ∈ co ∂x,u{p(t) · f (t , x̄(t), ū(t))− λ0L(t , x̄(t), ū(t))}
−{0} × co NU(ū(t))

−λ1(t) · ∇x,uh(1)(t , x̄(t), ū(t))

−λ2(t) · ∇x,uh(2)(t , x̄(t), ū(t)) a.e.,

(iii) (p(0),−p(T )) ∈ λ0∂g(x̄(0), x̄(T )) + NC(x̄(0), x̄(T )),

(iv) p(t) · f (t , x̄(t), ū(t))− λ0L(t , x̄(t), ū(t)) ≥
p(t) · f (t , x̄(t),u)− λ0L(t , x̄(t),u)

for all u ∈ Ω(t) ∩
(

ū(t) + R(t)
◦
B
)
,a.e. t ∈ [0,T ] .
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Refined necessary conditions

What happens if we apply Ioffe’s refined condition of Thm. 2?

The notion of ‘regular admissible velocities’ of Thm. 2 gives rise in the
mixed constraint setting to

the set of regular admissible controls at state x̄(t): for each
t ∈ [0,T ]

Ω0(t) := {u ∈ Rm : (x̄(t),u) ∈ S(t) and there
exists ρ > 0 such that (MF )t,x′,u′ is
satisfied, for all (x ′,u′) in a neighborhood
of S(t) ∩

(
(x̄(t),u) + ρB× ρB

)
relative to S(t) } .
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Refined necessary conditions...

Thm. 4
Under the hypotheses of Thm. 3, the assertions of Thm. 3 remain
valid when the Weierstrass condition (iv) is replaced by the refined
Weierstrass condition:

(iv)
′

p(t) · f (t , x̄(t), ū(t))− λ0L(t , x̄(t), ū(t)) ≥
p(t) · f (t , x̄(t),u)− λ0L(t , x̄(t),u)

for all u ∈ Ω0(t), a.e. t ∈ [0,T ].

Rmk: Under the hypothesis (MF) of Thm. 4 we have

Ω(t) ∩ (ū(t) + R(t))
◦
B ⊂ Ω0(t) .

[P.B.-R. Vinter, IEEE CDC 2021]
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Example 2

(E2)



Minimize − x(T )−
∫ T

0 (0 ∨ (u(t)− π))2dt
over (x , y) ∈W 1,1([0,T ];R2)

and meas (u, v) : [0,T ]→ R2

such that,
(ẋ(t), ẏ(t)) = (sin(u(t)), v(t)), a.e. t ∈ [0,T ],
sin(u(t))− y(t) ≤ 0 and |v(t)| ≤ 1 a.e. t ∈ [0,T ],
x(0) = y(0) = 0.

Take as nominal state-control functions:

(x̄(t), ȳ(t)) ≡ (
1
2
× t2, t), for t ∈ [0, π/8]

(ū(t), v̄(t)) = (arcsin(t),1), for t ∈ [0, π/8].

The problem has one, time invariant, mixed inequality constraint

h(1)(y ,u) := sin(u)− y ≤ 0 .
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Prop. 2
Concerning problem (E2), For any radius function R(.) and parameter
ε > 0 such that the hypotheses of Thm. 3 are satisfied (with
((x̄ , ȳ), (ū, v̄))),

1. Conditions (i)-(iii) and (iv) of Thm. 3 are satisfied.

2. Condition (iv)′ of Thm. 4 (Weierstrass condition with refinement)
are NOT satisfied.

⇒ ((x̄ , ȳ), (ū, v̄)) is NOT a minimizer!
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Final remarks

1) Ioffe’s 2019 paper provides a refinement improving the
Weierstrass

2) We have provided an example of a optimal control problem for
differential inclusions, where the new information in the refined
Weierstrass condition is used to establish that a certain extremal
(a feasible trajectory satisfying the necessary conditions of
Thm.1) is not optimal.

3) We have shown that using the necessary conditions of Thm. 2
(that include the refined Weierstrass condition) we are able to
derive improved necessary conditions for the mixed constraint
problem.

4) We have provided an example of a mixed constraint optimal
control problem for controlled differential equations, where the
refined Weierstrass condition in Thm. 4 is used to establish that
a certain extremal is not optimal.
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