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Outline of the talk

@ Optimal control problems modeled as a differential inclusion:
Clarke’s necessary conditions

@ loffe’s refinement: a new Weierstrass condition
@ An application: mixed constraint problems
@ Examples

@ Final remarks
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Consider the optimal control problem:

Minimize g(x(0), x(T))

over x(.) € W' satisfying
x(t) € F(t,x(t)) ae.te[0,T]
(x(0),x(T)) e C,

(P)

Data:

g:R" x R" — R function - cost function

C C R" x R" closed set - end-point constraint

F : [0, T] x R" ~» R™ multifunction - dynamic constraint

(An alternative formulation of the classical optimal control problem

associated with the Maximum Principle: a differential inclusion
replaces the underlying controlled differential equation.)
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Minimize g(x(0), x(T))
p over x(.) € W' satisfying
(P) A x(1) e F(t,x(t) aet [0, T]
(x(0),x(T)) e C,

¢ x(.) Feasible state trajectory :
a W' function s.t. x(t) € F(t, x(t)) a.e. and (x(0), x(T)) € C.

e x(.) is a W''-local minimizer:
for some 5 > 0,

9(x(0), x(T)) = 9(x(0),x(T))
for all feasible state trajectories x s.t.

||X—)_(HW1,1 < B
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First order necessary conditions for problem (P)

A large literature:

- Clarke, Optimization and Nonsmooth Analysis, 1983.

- Loewen and Rockafellar, Optimal control of unbounded differential
inclusions, SICON 1994,

- Mordukhovich, Discrete approximations and refined
Euler-Lagrange conditions for non-convex differential inclusions,
SICON 1995.

- loffe, Euler-Lagrange and Hamiltonian formalisms in dynamic
optimization, SICON 1997.

- Vinter and Zheng, The extended Euler-Lagrange condition for
nonconvex variational problems, SICON 1997.

- Clarke, Necessary Conditions in Dynamic Optimization. AMS
Memoirs 2005.

- loffe, On Generalized Bolza Problem and Its Application to Dynamic
Optimization, JOTA 2019.
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Some nonsmooth analysis constructs

C c R" closed set, x c C,

The proximal normal cone of C at x:
NE(X):={neR":3IM >0 s.t.n-(x—X) < M|x—Xx|? forall x € C}.

The (limiting) normal cone of C at x:
Ne(X) == {limi_00ni : mi € NE(x;) and x; € C for all i, and x; — X} .
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Some nonsmooth analysis constructs...

f:R" — RU{+o0} is a lower semicontinuous function, take a point x
s. t. f(X) < +o0
The proximal subdifferential of f(.) at x:

Opf(x):={CeR":30>0,e>0 s. 1
f(y) = f(x) =2 C-(y —x)—oly — x>, Vy€x+eB}.

The (limiting) subdifferential of f at x:

of(x) := {il_i>m Gi: i€ Opf(Xi), xi = X, f(x;) — f(x)}.

The partial subdifferential 0xf(X, y): the subdifferential of
x — f(x,y) at X.
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Mulifunctions - Lipschitz regularity

Take a multifunction F : R ~» R” and a point X € RX.
F is (locally) Lipschitz continuous w.r.t. the Hausdorff metric: there
existe >0and k > 0s. t.

du(F(x),F(y)) <klx —y| forall x,y € X + B

Here dy(A, B) is the Hausdorff distance function:

du(A, B) := max {sup ds(a), sup d,q(b).}

acA beB

An equivalent statement of the condition is: there exist ¢ > 0 and
k>0s.t.

F(y) C F(x)+ kly —x|B forall x,y € x + €B.

Rmk: this condition becomes overly restrictive for unbounded
differential inclusions...
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Example. Consider the multifunction F : R? ~» R? defined by
F(X1,X2) = {(V1,V2)ER2 Ve < X1V1}.
F is NOT Lipschitz continuous

dn(F (X1, X2), F(y1,y2)) = +oo for y1 # xq,

Rmk: For two unbounded sets which are ‘close’ or ‘regular’ in an
intuitive sense, the Hausdorff distance between them can be very
large...
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Pseudo-Lipschitz Continuity - Aubin Regularity

Take a multifunction F : Rk ~» R™ and a point (x, v) € Gr F. Take also
numbers e > 0, R > 0 and k > 0. We say that F is pseudo-Lipschitz
continuous near (X, v) (with parameters ¢, R and k) if

F(y)n(v+ RB) C F(x)+ k|x —y|B
forall x,y e x+eB.

(Gr F is the graph of F)

Rmk: it allows to deal with unbounded velocity sets F.
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Example... Consider the multifunction F : R? ~» R? defined by
F(X1,X2) = {(V1, V2) eR? : Vo < Xq V1} .

F is pseudo-Lipschitz continuous near (x = 0, v = 0) (with
parameterse =1, R=1and k = 1)

F(y1,Q

F(0,0)
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Standing assumptions

X is a reference state trajectory.

(G1) g is Lipschitz continuous on a neighborhood of (x(0), X(T)) and
C is a closed set;

(G2) F(t,x)is nonempty for each (t,x) € [0, T] x R", Gr F(t,.)is a
closed set for each t € [0, T] and F is £ x B™ measurable;

(G3) There exist ¢ > 0 and a measurable function

R : [0, T] = (0,00) U {+oc} (a ‘radius function’) such that the
following conditions are satisfied:

(a) (Pseudo-Lipschitz Continuity) There exists k € L' s.t.
F(t,x") N (X(t) + R(t)B) C F(t,x) + k(t)|x' — x|B,
forall x,x" € X(t) + B, a.e. t € [0, T];

(b) (Tempered Growth) There existr € L'(0,T), o > 0 and
€ (0,1)s.t. o < r(t), v~ 'r(t) < R(t) a.e. and

(
F(t,x) N (x(t) + r(t)B) # 0 forall x € X(t) + B, a.e. t € [0, T].
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A simple consequence of Clarke’s 2005 Memoirs:

Thm. 1 (The Euler Lagrange Inclusion)

Let x be a W' local minimizer for (P).

Then there exist an arc p € W''([0, T]; R") and X > 0, satisfying the
following conditions:

() (Ap) #(0,0),
(i) p(t) € co{n : (n,p(t)) € Narrr, ) (X(), X(1)} ae. te0,T],
(iii) (p(0), —p(T)) € Ad9(X(0), X(T)) + Nc(x(0), X(T)),
(iv) p(t) - x(t) = p(t) - v
forall v e F(1,X(1)) N (X(t) + R(t)]ﬁa).
Weierstrass condition

Rmk: condition (iv) tells us that v — p(t) - v is maximized at the
optimal velocity x(t), over the set

F(t.x(1) N (%() + R(OB),
in which R is the radius function of hypothesis (G3)



[loffe, JOTA 2019] provides a refinement of the Weierstrass
condition (iv) above:

Thm. 2
Under the hypotheses of Thm. 1, the assertions of the theorem
remain valid when (iv) is replaced by the stronger condition

(iv) p(t)-x(t) > p(t) - v, forall v e Q(t), a.e. t € [0, T]

The set of regular admissible velocities at x(i):

Qo(t) := {e e F(t,x()) : F(t,.)is pseudo-Lipschitz near (x(t),e)}.

Rmk: Under the pseudo-Lipschitz hypothesis (G3)(a) of Thm. 1, we
have

F(t.%(0) N (X(t) + R(t)fé) c Q(t).
So the loffe refinement asserts that the v — p(t) - v is maximized
over a larger set.
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Example 1.

Minimize e - x(1)

over x € W'1([0, 1]; R") such that
x(t) € F(x(1)),

x(0) =0,

(E1)
in which e :=(1,0,...,0) and

F(x):={0}u{v : |v|>1+|x|"/?}.

Take as nominal feasible F-trajectory x = 0.
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Prop. 1 Concerning problem (E1),
(a): xis nota W' local minimizer.

(b): For any collection of radius function R(t), ¢ > 0 and integrable

Lipschitz bound k(t) such that the hypotheses of Thm. 1 are
satisfied,

1. Conditions (i)-(iii) and (iv) of Thm. 1 are satisfied.
2. Condition (iv)’ of Thm. 2 (Weierstrass condition with
refinement) is NOT satisfied.
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An application: Mixed Constraint Problems

Minimize g(x( )+ fo ,u(t))dt

over x € W1 ([O, T];R”) and meas.

u: [0, T] — R™ such that

(M) x(t) = f(t, (1), u(t)), ae. t€ [0, T],

h(1)(tv X(t)v U(t)) <0, h(z)(ta X(t)v U(t)) =0,
and u(f) e U, a.e. t € [0, T],

(x(0),x(T)) e C,

Data:

g:R" x R" — R end-point cost

L:]0,T] x R" x R™ — R Lagrangian

C C R" x R" closed set - end-point constraint

f:]0,T] x R” x R™ — R" - dynamic

A1 [0, T] x R” x R™ — R*, h®) 1 [0, T] x R” x R™ — R*2 mixed
constraints

U c R™ control set
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First order necessary conditions for problem (M)

A large literature (and applications...):

- Hestenes, Calculus of Variations and Optimal Control Theory, 1966.
- Dubovitskii, Milyutin, Theory of the principle of the maximum,
Methods of the Theory of Extremal Problems in Economics, 1981.

- Dmitruk, Maximum principle for a general optimal control problem
with state and regular mixed constraints, Comput. Math. Model.,
1993.

- Bonard, Faubourg, Launay, Trélat, Optimal control with state
constraints and the space shuttle redentry problem, Journal of
Dynamical and Control Systems, 2003

- Clarke, de Pinho, Optimal Control Problems with Mixed
Constraints, SICON, 2010.
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[Clarke and de Pinho, SICON 2010] derived new general optimality
conditions for mixed constraint optimal control problems.
Basic steps of their approach:

1. reduce the mixed constraint problem to a differential inclusion
problem

2. apply the generalized Euler-Lagrange conditions of Clarke’s AMS
Memoirs 2005 (Thm. 1)
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Admissible state-control pairs

Define

S(t) = {(x,u) : AD(t,x,u) <0, h3®(t,x,u)=0,uec U}

Ror given process (x, u) and parameters e > 0 and R > 0:

SA(t) .= {(x,u) € S(t) : |x —X(t)| < e |u—T(t) <R}

Define also the set of admissible controls at state x({):

Q(f) == {u e R™ : (X(t),u) € S(1)}.
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The ‘Mangasarian-Fromovitz’ condition:

given (t, x,u) such that t € [0, T] and (x, u) € S(t)
A € (R+)H‘,)\2 € Rr2,

(MF)txu: < M -hD(t x,u) = 0,1 € Ny(u)

VoA - A 4 xo- h)(t x,u) +7 =0
- |()\1,)\2)| =0.
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Standing assumptions

(x,u) is a reference process.

Assume that, for some ¢ > 0 and positive measurable function
R € L*°, strictly bounded away from 0,

(H1) gis Lipschitz cont. on a neighb. of (x(0), x(T));

(H2) for each x € R”, f(., x,.), L(.,x,.), ")(.,x,.) and h®)(., x,.) are
£ x B™ measurable; there exist integrable functions k" and k/;*
such that, fora.e. t € [0, T],

(£, L) (t, 1, un) — (F, L)(, xe, u2)| < k" (8|1 — xo| + ki (£) | us — e

for all (xq, u1) and (X2, U2) in a neighborhood of S&R0(t);

(H3) Fora.e. t € [0, T], h((t,.,.) and h®)(t, ., .) are continuously
differentiable; there exists k” > 0s. t., for a.e. t € [0, T],
V(X1 s U1), (Xg, U2) ina nelghb of SE’R(t)(t);

(KD, AR (t, x1, ur) — (HT), H®)(t, xo, )| <
KN = xa| + |us — u2))
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Standing assumptions...

(MF) (MF);x .y is satisfied, for every point (¢, x, u) in
closure {(t, x,u) € [0, T] x R" x R™ : (x, u) € S“FAO(1)};

(H4) u is essentially bounded.

(u(t) is interpreted as some version of the equivalence class of
bounded, a.e. equal functions);
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Thm. 3 (Clarke-de Pinho, 2010)

Let (X, U) be a W' local minimizer for (M).

Then there exist p € W'-1([0, T],R™), A\° > 0 and integrable functions
A0, T] — (RT)" and A2 : [0, T] — R"2 such that

(1) - A (8, x(t), L(t)) = 0, a.e. and

(i) (p,A%) #0,

(ii) (=p(1),0) € codeu{p(t) - f(t, X(1), U(1)) — AOL(t, X(1), (1))}
—{0} > co Ny(u(t))

=AN(1) - ViewhO(8, X(1), U(1))
—X3(t) - Viwh®) (8, X(1), U(1)) ae.,
(iii) (p(0), —p(T)) € X°0g(X(0),X(T)) + Nc(x(0), X(T)),
(iv) p(t) - f(t, x(1), (t )) NOL(t x(t), 0(t)) >
p(t) - f(t, (1), u) — (t (1), u)
forallu e ()ﬁ( O),a.e.te[O,T].
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Refined necessary conditions

What happens if we apply loffe’s refined condition of Thm. 27

The notion of ‘regular admissible velocities’ of Thm. 2 gives rise in the
mixed constraint setting to

the set of regular admissible controls at state x(t): for each
te[0,T]
Qo(t) :=={ueR™: (X(t),u) € S(t) and there

exists p > 0 such that (MF); x/ v is

satisfied, for all (x’, v’) in a neighborhood

of S(t) N (()‘((t), u) + pB x pB) relative to S(t) } .
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Refined necessary conditions...

Thm. 4

Under the hypotheses of Thm. 3, the assertions of Thm. 3 remain
valid when the Weierstrass condition (iv) is replaced by the refined
Weierstrass condition:

(iv)" p(t)- f(t, X(t), U(1)) = \OL(t, X(t), T(t)) >
p(t) - f(t, x(t), u) — AOL(t, x(t), u)
forallu e Qy(t), ae. te][0,T].

Rmk: Under the hypothesis (MF) of Thm. 4 we have

Q(t) N (@) + R(1)B (b |

[P.B.-R. Vinter, IEEE CDC 2021]
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Example 2

Minimize — x(T) — [} (0 v (u(t) — m))2dt
over (x,y) € W"([0, T]; R?)

and meas (u, v) : [0, T] — R?
(E2) { such that,
(x(1), (1)) = (sin(u(t)), v(t)), ae.tel0,T],
sin(u(t)) —y(t) <0and |v(t)| <1 ae. te][0,T],
x(0) =y(0)=0.

Take as nominal state-control functions:

(ﬂmﬂoﬁq%xﬁJmeemmm]

(a(t), v(t)) = (arcsin(t), 1), for t € [0, 7/8].

The problem has one, time invariant, mixed inequality constraint

hY(y, u) :==sin(u) —y <0.
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Prop. 2
Concerning problem (E2), For any radius function R(.) and parameter
e > 0 such that the hypotheses of Thm. 3 are satisfied (with

((%,y),(@,v))),
1. Conditions (i)-(iii) and (iv) of Thm. 3 are satisfied.

2. Condition (iv)’ of Thm. 4 (Weierstrass condition with refinement)
are NOT satisfied.

= ((X,¥),(u,v)) is NOT a minimizer!
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Final remarks

1) loffe’s 2019 paper provides a refinement improving the
Weierstrass

2) We have provided an example of a optimal control problem for
differential inclusions, where the new information in the refined
Weierstrass condition is used to establish that a certain extremal
(a feasible trajectory satisfying the necessary conditions of
Thm.1) is not optimal.

3) We have shown that using the necessary conditions of Thm. 2
(that include the refined Weierstrass condition) we are able to
derive improved necessary conditions for the mixed constraint
problem.

4) We have provided an example of a mixed constraint optimal
control problem for controlled differential equations, where the
refined Weierstrass condition in Thm. 4 is used to establish that
a certain extremal is not optimal.
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