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Objective

f : IR× IRn × IRm → IRn C0, and C1 wrt (x , u)

ẋ(t) = f (t , x(t), u(t)) u(t) ∈ U ⊂ IRm

T > 0, x0, x1 ∈ IRn

x1 is L∞U -reachable in time T from x0 if

∃u ∈ L∞([0,T ],U) s.t. xu(0) = x0 and xu(T ) = x1

Objective

Find a general sufficient condition under which reachability in fixed time T is robust
under control sampling.



Control sampling

Sampling the control u over [0,T ]: given a partition

T : 0 = t0 < t1 < . . . < tN−1 < tN = T

for some N ∈ IN∗, we define

PCT([0,T ],U) = {u : [0,T ]→ U piecewise constant on T}

Set ‖T‖ = max
i=0,...,N−1

|ti+1 − ti | “norm” of the partition.

x1 is PCT
U -reachable in time T from x0 if

∃u ∈ PCT([0,T ],U) s.t. xu(0) = x0 and xu(T ) = x1



Question

Let x1 ∈ IRn be L∞U -reachable in time T from x0.

Let T partition of [0,T ].

Is x1 also PCT
U -reachable in time T from x0?

In other words: how robust is reachability in fixed time under control sampling?



Question

Let x1 ∈ IRn be L∞U -reachable in time T from x0.

Let T partition of [0,T ].

Is x1 also PCT
U -reachable in time T from x0?

In other words: how robust is reachability in fixed time under control sampling?

– ‖T‖ should be sufficiently small.

– Without any specific assumption, even for small values of ‖T‖, x1 may fail to be
PCT

U -reachable in time T from x0:

T = n = m = 1, U = IR, f (x , u, t) = 1 + (u − t)2

x1 = 1 is L∞U -reachable in time T from x0 = 0 with the (unique) control u(t) = t .

∀T partition of [0,T ], x1 is not PCT
U -reachable in time T from x0.



Question

Let x1 ∈ IRn be L∞U -reachable in time T from x0.

Let T partition of [0,T ].

Is x1 also PCT
U -reachable in time T from x0?

In other words: how robust is reachability in fixed time under control sampling?

Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (' sharp):

U is convex;

x1 is L∞U -reachable in time T from x0 with a control u ∈ L∞([0,T ],U);

u is weakly U-regular.

Then

∃δ > 0 s.t. ∀T partition of [0,T ], ‖T‖ 6 δ, x1 is PCT
U -reachable in time T from x0

(stronger than: ∃T partition of [0,T ] s.t. x1 is PCT
U -reachable in time T from x0)



Recap on reachability results



End-point mapping

x0 ∈ IRn and T > 0 fixed.

End-point mapping (in time T from x0)

E : L∞([0,T ],U)→ IRn (C1 mapping) defined by

E(u) = xu(T )

where

ẋu(t) = f (t , xu(t), u(t)), xu(0) = x0

L∞U -reachable set (in time T from x0): E(L∞([0,T ],U))



Without control constraints

Definition

A control u is strongly regular if the Fréchet differential dE(u) : L∞([0,T ], IRm)→ IRn

is surjective.

A control u is weakly singular if it is not strongly regular.



Without control constraints

Definition

A control u is strongly regular if the Fréchet differential dE(u) : L∞([0,T ], IRm)→ IRn

is surjective.

A control u is weakly singular if it is not strongly regular.

Proposition

Assume that U = IRm.

u is strongly regular ⇒ xu(T ) belongs to the interior of the L∞IRm -reachable set.

(implicit function theorem⇒ E locally open)



Without control constraints

Proposition

u is weakly singular ⇔ (xu , u) admits a nontrivial weak extremal lift

i.e. (Pontryagin maximum principle), there exists p(·) : [0,T ]→ IRn \ {0} (adjoint
vector) such that

ẋ(t) = ∇pH(t , xu(t), p(t), u(t)), ṗ(t) = −∇x H(t , xu(t), p(t), u(t)),

∇uH(t , xu(t), p(t), u(t)) = 0

where H(t , x , p, u) = 〈p, f (t , x , u)〉.



With convex control constraints

Assume that U is convex.

Definition

u ∈ L∞([0,T ],U) is strongly U-regular if dE(u)(TL∞U
[u]) = IRn where

TL∞U
[u] = IR+(L∞([0,T ],U)− u) =

{
α(v − u) | α > 0, v ∈ L∞([0,T ],U)

}
is the (convex) tangent cone to L∞([0,T ],U) at u.

u is weakly U-singular when it is not strongly U-regular, i.e., when dE(u)(TL∞U
[u]) is a

proper convex subcone of IRn.

Proposition

u strongly U-regular ⇒ xu(T ) belongs to the interior of the L∞U -reachable set.

(conic implicit function theorem)



With convex control constraints

Assume that U is convex.

Definition

u ∈ L∞([0,T ],U) is strongly U-regular if dE(u)(TL∞U
[u]) = IRn where

TL∞U
[u] = IR+(L∞([0,T ],U)− u) =

{
α(v − u) | α > 0, v ∈ L∞([0,T ],U)

}
is the (convex) tangent cone to L∞([0,T ],U) at u.

u is weakly U-singular when it is not strongly U-regular, i.e., when dE(u)(TL∞U
[u]) is a

proper convex subcone of IRn.

Remark

strongly U-regular⇒ strongly regular.

The converse is wrong: T = n = m = 1, U = [−1, 1], f (x , u, t) = u
u ≡ 1 is strongly regular and weakly U-singular.



With convex control constraints

Proposition

u is weakly U-singular ⇔ (xu , u) admits a nontrivial weak U-extremal lift

i.e. (Pontryagin maximum principle), there exists p(·) : [0,T ]→ IRn \ {0} (adjoint
vector) such that

ẋ(t) = ∇pH(t , xu(t), p(t), u(t)), ṗ(t) = −∇x H(t , xu(t), p(t), u(t)),

∇uH(t , xu(t), p(t), u(t)) ∈ NU [u(t)] (normal cone)

where H(t , x , p, u) = 〈p, f (t , x , u)〉.



With general control constraints

Definition

u ∈ L∞([0,T ],U) is weakly U-regular if PontU [u] = IRn (Pontryagin cone).

u is strongly U-singular when it is not weakly U-regular, i.e., when PontU [u] is a proper
convex subcone of IRn.



With general control constraints

Definition

u ∈ L∞([0,T ],U) is weakly U-regular if PontU [u] = IRn (Pontryagin cone).

u is strongly U-singular when it is not weakly U-regular, i.e., when PontU [u] is a proper
convex subcone of IRn.

PontU [u] is the smallest convex cone containing all U-variation vectors wu
(τ,ω)

(T ).

Needle-like control variation uα
(τ,ω)

∈ L∞([0,T ],U) defined by

uα(τ,ω)(t) =

{
ω along [t , t + α)

u(t) elsewhere

for ω ∈ U and α > 0 small. Then

lim
α→0+

E(uα
(τ,ω)

)− E(u)

α
= wu

(τ,ω)(T )

where wu
(τ,ω)

is the unique solution on [τ,T ] of the variational system

ẇ(t) = ∇x f (t , xu(t), u(t)) w(t), w(τ) = f (τ, xu(τ), ω)− f (τ, xu(τ), u(τ)).



With general control constraints

Definition

u ∈ L∞([0,T ],U) is weakly U-regular if PontU [u] = IRn (Pontryagin cone).

u is strongly U-singular when it is not weakly U-regular, i.e., when PontU [u] is a proper
convex subcone of IRn.

Proposition

u weakly U-regular ⇒ xu(T ) belongs to the interior of the L∞U -reachable set.

(application of the conic implicit function theorem to the “end-point mapping restricted
to some needle-like variations”)

Remark

When U is convex: strongly U-regular ⇒ weakly U-regular (converse wrong).



With general control constraints

Proposition

u is strongly U-singular ⇔ (xu , u) admits a nontrivial strong U-extremal lift

i.e. (Pontryagin maximum principle), there exists p(·) : [0,T ]→ IRn \ {0} (adjoint
vector) such that

ẋ(t) = ∇pH(t , xu(t), p(t), u(t)), ṗ(t) = −∇x H(t , xu(t), p(t), u(t)),

u(t) ∈ argmax
ω∈U

H(t , xu(t), p(t), ω)

where H(t , x , p, u) = 〈p, f (t , x , u)〉.



Robustness of reachability
under control sampling



Theorem

Let x1 ∈ IRn be L∞U -reachable in time T from x0.

Let T partition of [0,T ].

Is x1 also PCT
U -reachable in time T from x0?

In other words: how robust is reachability in fixed time under control sampling?

Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (' sharp):

U is convex.

x1 ∈ IRn is L∞U -reachable in time T from x0 with a control u ∈ L∞([0,T ],U).

u is weakly U-regular (i.e., PontU [u] = IRn).

Then ∃δ > 0 ∀T partition of [0,T ] s.t. ‖T‖ 6 δ, xu(T ) ∈ E(PCT([0,T ],U)) (PCunif )



Theorem

Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (' sharp):

U is convex.

x1 ∈ IRn is L∞U -reachable in time T from x0 with a control u ∈ L∞([0,T ],U).

u is weakly U-regular (i.e., PontU [u] = IRn).

Then ∃δ > 0 ∀T partition of [0,T ] s.t. ‖T‖ 6 δ, xu(T ) ∈ E(PCT([0,T ],U)) (PCunif )

Remark

This is stronger than the property:
∀δ > 0 ∃T partition of [0,T ] s.t. ‖T‖ 6 δ, xu(T ) ∈ E(PCT([0,T ],U)) (PC)

We may have (PC) while (PCunif ) fails.



Theorem

Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (' sharp):

U is convex.

x1 ∈ IRn is L∞U -reachable in time T from x0 with a control u ∈ L∞([0,T ],U).

u is weakly U-regular (i.e., PontU [u] = IRn).

Then ∃δ > 0 ∀T partition of [0,T ] s.t. ‖T‖ 6 δ, xu(T ) ∈ E(PCT([0,T ],U)) (PCunif )

In the example: T = 4, n = m = 1, U = {0, 1}, f (x , u, t) = u
• u(t) = 1 for t ∈ [0, π] and u(t) = 0 for t ∈ [π, 4], is weakly U-regular
• x1 = π is L∞U -reachable in time T from x0 = 0
and:
– xu(T ) belongs to the interior of the L∞U -reachable set.
– (PC) is satisfied but not (PCunif ) (take partitions with rational sampling times: commensurability rigidity).
– U is not convex.



Theorem

Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (' sharp):

U is convex.

x1 ∈ IRn is L∞U -reachable in time T from x0 with a control u ∈ L∞([0,T ],U).

u is weakly U-regular (i.e., PontU [u] = IRn).

Then ∃δ > 0 ∀T partition of [0,T ] s.t. ‖T‖ 6 δ, xu(T ) ∈ E(PCT([0,T ],U)) (PCunif )

– Even with U convex, there exist examples where xu(T ) belongs to the interior of the
L∞U -reachable set but does not belong to the PCT

U -reachable set.

– Convexity can be slightly relaxed to “U is parameterizable by a convex set”.

The theorem fails in general if U is “strongly nonconnected”, i.e.,

U = U1 ∪ U2 where U1 6= ∅ and U2 6= ∅
∃Θ : IRm → IR C1 s.t. Θ|U1

= 0 and Θ|U2
= 1)



Comments on other existing results

Remarkable series of works by Sussmann, Sontag, Grasse in the 80’s and 90’s.
(in free final time)

Sussmann CDC 1987: focuses on (PC) (with no assumption on U), under an
assumption that is similar to weak U-regularity.

Initial idea: Sussmann JDE 1976, notion of normal reachability, i.e., reachability
under piecewise constant controls with a surjective differential end-point
mapping (← open mapping theorem). It is proved that:

global controllability ⇔ global normal controllability
(in free final time)

Sontag Sussmann 82-84-88: sampled-data controls on regular subdivisions.
Under Lie algebra rank condition:

global controllability ⇔ sampled-data global controllability
(in free final time)

Grasse, MCSS 1992: f C1, nontangency property at x0,
small-time local controllability at x0 ⇔ sampled-data STLC at x0

⇔ x0 is small-time normally self-reachable
(⇒ reachability by “nice controls”)



Convergence in sampled-data optimal control problems

This result of robustness of reachability in fixed time under control sampling is
instrumental for the following objective:

Optimal control problem

ẋ(t) = f (t , x(t), u(t))

x(0) = x0, x(T ) = x1

min C(x , u)
where
C(x , u) =

∫ T
0 f 0(t , x(t), u(t)) dt

↙ ↘
Permanent controls

u ∈ L∞U

- Optimal solution (x , u)

- PMP ⇒ adjoint p

Sampled-data controls

u ∈ PCT
U

- Optimal solution (xT, uT)

- PMPT ⇒ adjoint pT

(sampled-data PMP: Bourdin Trélat, MCRF 2016)

Objective: prove that xT C0
−→ x , pT C0

−→ p, C(xT, uT) −→ C(x , u) as ‖T‖ → 0.



Convergence in sampled-data optimal control problems

Theorem (Bourdin Trélat, ongoing)

This is true under the following assumptions:
1 U is compact and trajectories live in a (big) compact.
2 For all (t , x), the epigraph of the extended velocity set{(

f (t , x , u)
f 0(t , x , u) + γ

) ∣∣ γ > 0, u ∈ U
}

is convex.
3 Uniqueness of the optimal solution (x , u).
4 Unique normal extremal lift (x , p, u).

}

}

(1), (2): classical
assumptions
ensuring existence
of minimizers

(3), (4): “generic”
assumptions

(in the absence of uniqueness in (3) and/or (4): convergence of subsequences)

Key points of the proof:

Assumption (4) (normality)⇒ robustness of reachability under control sampling
⇒ existence of optimal solution (xT, uT)

Technical fact: convergence of Pontryagin cones of OCPT to OCP
(kind of grad-Γ-convergence)



Linear quadratic case

As a particular case:

- Linear system: f (t , x , u) = A(t)x + B(t)u + r(t)

- Quadratic cost: f 0(t , x , u) = (x − x̄(t))>Q(t)(x − x̄(t)) + (u − ū(t))>R(t)(u − ū(t))

In fixed finite horizon T :
sampled-data difference Riccati theory in [Bourdin Trélat, Automatica 2017]

In infinite horizon: f (t , x , u) = Ax + Bu, f 0(t , x , u) = x>Qx + u>Ru

We have proved in [Bourdin Trélat, SICON 2021] the commutation of the diagram:

sampled-data difference Riccati ET
T

T→+∞ //

‖T‖→0

��

ET
∞

‖T‖→0

��

sampled-data algebraic Riccati

(permanent) differential Riccati ET
T→+∞

// E∞ (permanent) algebraic Riccati



Long-term open issue

Optimal control problem

↙↘
Full discretization

Euler, Runge-Kutta, etc.

↓
Dualization

Kuhn-Tucker,
then Newton’s method

direct methods

Dualization

Pontryagin Maximum Principle

↓
Full discretization

Euler, Runge-Kutta, etc,
then Newton (shooting method)

indirect methods



Long-term open issue

Optimal control problem

↙↘
Full discretization

Euler, Runge-Kutta, etc.

↓
Dualization

Kuhn-Tucker,
then Newton’s method

direct methods

?←→

Dualization

Pontryagin Maximum Principle

↓
Discretization

Euler, Runge-Kutta, etc,
then Newton (shooting method)

indirect methods

No commutation in general.
Commutation for Runge-Kutta methods with positive coefficients (Hager, 2000).



Counterexample (Hager, 2000)

LQ optimal control problem

ẋ(t) =
1
2

x(t) + u(t), x(0) = 1, min
1
2

∫ 1

0
(2x(t)2 + u(t)2) dt



Counterexample (Hager, 2000)

LQ optimal control problem

ẋ(t) =
1
2

x(t) + u(t), x(0) = 1, min
1
2

∫ 1

0
(2x(t)2 + u(t)2) dt

The optimal solution is (differential Riccati)

x(t) =
2e3t + e3

e3t/2(2 + e3)
, u(t) =

2(e3t − e3)

e3t/2(2 + e3)
with optimal cost

2(−2 + e6 + e3)

4 + 4e3 + e6
' 1.728



Counterexample (Hager, 2000)

LQ optimal control problem

ẋ(t) =
1
2

x(t) + u(t), x(0) = 1, min
1
2

∫ 1

0
(2x(t)2 + u(t)2) dt

Full discretization with mid-point rule:

xk+1/2 = xk +
h
2

(
1
2

xk + uk

)
xk+1 = xk + h

(
1
2

xk+1/2 + uk+1/2

)
, x0 = 1

min
1
2

N−1∑
k=0

(
2x2

k+1/2 + u2
k+1/2

)



Counterexample (Hager, 2000)

LQ optimal control problem

ẋ(t) =
1
2

x(t) + u(t), x(0) = 1, min
1
2

∫ 1

0
(2x(t)2 + u(t)2) dt

Full discretization with mid-point rule:

xk+1/2 = xk +
h
2

(
1
2

xk + uk

)
xk+1 = xk + h

(
1
2

xk+1/2 + uk+1/2

)
, x0 = 1

min
1
2

N−1∑
k=0

(
2x2

k+1/2 + u2
k+1/2

)

The optimal solution is

uk = −
4 + h

2h
, uk+1/2 = 0, xk = 1, xk+1/2 = 0 with optimal cost 0



Counterexample (Hager, 2000)

LQ optimal control problem

ẋ(t) =
1
2

x(t) + u(t), x(0) = 1, min
1
2

∫ 1

0
(2x(t)2 + u(t)2) dt

Numerical simulation for N = 70:



Counterexample (Hager, 2000)

LQ optimal control problem

ẋ(t) =
1
2

x(t) + u(t), x(0) = 1, min
1
2

∫ 1

0
(2x(t)2 + u(t)2) dt

But if we discretize with Euler:

xk+1 = xk + h
(

1
2

xk + uk

)
, x0 = 1 min

1
2

N−1∑
k=0

(
2x2

k + u2
k

)

then everything is going fine:


