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f:RxR"xR" = R" C°and C' wrt (x, u)

x(t) = f(t, x(t), u(t))  u(t) e UC R

T>0 x%x'eR"

x'is Lge-reachable in time T from x© if
Ju e L2([0,T],U) st xu(0)=x° and xu(T) = x

Objective

Find a general sufficient condition under which reachability in fixed time T is robust
under control sampling.




Control sampling

Sampling the control u over [0, T]: given a partition

T: O=fHh<t<..<tn1<ty=T

for some N € N*, we define

PCT ([0, T], U) = {u : [0, T] — U piecewise constant on T}

Set ||T|| = L [ty — & “norm” of the partition.

x' is PC],-reachable in time T from xO if
Ju e PCT([0, T],U) st xu(0)=x° and xy(T)=x'




@ Letx! € R" be L§P-reachable in time T from x°.
@ Let T partition of [0, T].

Is x! also PCJ-reachable in time T from x°?

In other words: how robust is reachability in fixed time under control sampling?



@ Letx! € R" be L§P-reachable in time T from x°.
@ Let T partition of [0, T].

Is x! also PCJ-reachable in time T from x°?

In other words: how robust is reachability in fixed time under control sampling?

— ||T|| should be sufficiently small.

— Without any specific assumption, even for small values of ||T||, x! may fail to be
PCB-reachabIe in time T from x0:

@ T=n=m=1, U=R, f(x,u,t) =1+ (u—t)?
@ x' =1is L%-reachable in time T from x® = 0 with the (unique) control u(t) = t.
@ VT partition of [0, T], x' is not PC}-reachable in time T from x°.



Question

@ Letx! € R" be L§P-reachable in time T from x°.
@ Let T partition of [0, T].

Is x! also PCJ-reachable in time T from x°?

In other words: how robust is reachability in fixed time under control sampling?

Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (=~ sharp):
@ Uis convex;
@ x'is LpP-reachable in time T from x° with a control u € L°°([0, T], U);
@ uis weakly U-regular.

Then

35 >0 st VT partition of [0, T], ||T|| < 6, x" is PCY)-reachable in time T from X

0

v

(stronger than: 3T partition of [0, T] s.t. x'is PCjLTJ—reachable in time T from x©)



Recap on reachability results



End-point mapping

x% ¢ R"and T > 0 fixed.

e
End-point mapping (in time T from x°)
E : L°°([0, T], U) — R" (C" mapping) defined by 1(909) o 7T, 0)
E(u) = xu(T) s
Zo °
where
Xu(t) = f(t, xu(D), u(t)),  xu(0) = x° *

LZp-reachable set (in time T from x0): E(L=°([0, T], U)) J




Without control constraints

Definition
A control u is strongly regular if the Fréchet differential dE(u) : L>°([0, T], R™) — R”
is surjective.

A control u is weakly singular if it is not strongly regular.




Without control constraints

Definition

A control u is strongly regular if the Fréchet differential dE(u) : L>°([0, T], R™) — R”
is surjective.

A control u is weakly singular if it is not strongly regular.

| A

Proposition
Assume that U = R™.

u is strongly regular = x,(T) belongs to the interior of the Ly, -reachable set.

(implicit function theorem =- E locally open)



Without control constraints

Proposition

u is weakly singular < (xu, u) admits a nontrivial weak extremal lift

i.e. (Pontryagin maximum principle), there exists p(-) : [0, T] — R" \ {0} (adjoint
vector) such that

x(t) = VpH(t, xu(t), p(t), u(t)),  p(t) = =VxH(t, xu(1), p(1), u(1)),

VuH(t, xu(t), p(t), u(t)) =0
where H(t, x, p, u) = (p, f(t, x, u)).



With convex control constraints

Assume that U is convex.
Definition
u € L°°([0, T], U) is strongly U-regular if dE(u)(TLBo [u]) =R™ where

Tig Il = R(L=(0. TLU) —t) = {a(v—uv) | «>0, veL™(0T]U)}

is the (convex) tangent cone to L>°([0, T], U) at u.

u is weakly U-singular when it is not strongly U-regular, i.e., when dE(u)(TLD-o [u])is a
proper convex subcone of R”.

Proposition

u strongly U-regular = xy(T) belongs to the interior of the L{p-reachable set.

(conic implicit function theorem)



With convex control constraints

Assume that U is convex.
Definition

u € L°°([0, T], U) is strongly U-regular if dE(u)(TLEo [u]) =R™ where

Tig Il = R(L=(0. TLU) —t) = {a(v—uv) | «>0, veL™(0T]U)}

is the (convex) tangent cone to L>°([0, T], U) at u.

u is weakly U-singular when it is not strongly U-regular, i.e., when dE(u)(TLBo [u])is a
proper convex subcone of R”.

strongly U-regular = strongly regular.

The converseiswrong: T=n=m=1, U=[-1,1], f(x,u,t)=u
u = 1 is strongly regular and weakly U-singular.




With convex control constraints

Proposition
u is weakly U-singular < (xy, u) admits a nontrivial weak U-extremal lift

i.e. (Pontryagin maximum principle), there exists p(-) : [0, T] — R" \ {0} (adjoint
vector) such that

x(t) = VpH(t, xu(t), p(t), u(t)),  p(t) = =VxH(t, xu(1), p(1), u(1)),

VuH(t, xu(t), p(t), u(t)) € Ny[u(t)] (normal cone)
where H(t, x, p, u) = (p, f(t, x, u)).



With general control constraints

Definition

u € L*°([0, T], U) is weakly U-regular if Ponty[u] = R" (Pontryagin cone).

u is strongly U-singular when it is not weakly U-regular, i.e., when Ponty[u] is a proper
convex subcone of R”.




With general control constraints

Definition
u € L°°([0, T], U) is weakly U-regular if Ponty[u] = R" (Pontryagin cone).

u is strongly U-singular when it is not weakly U-regular, i.e., when Ponty[u] is a proper
convex subcone of R”.

Ponty[u] is the smallest convex cone containing all U-variation vectors w(“T w)(T).

Needle-like control variation u%

(7,

uF‘T’w)(t) =

w) € L>=([0, T], U) defined by
w along [t, t + «)
u(t) elsewhere

forw € Uand o > 0 small. Then

E(u> — E(u
lim ( (T,w)) ( ) _ W(UT’W)(T)

a—0t o

where w(”T ) is the unique solution on [r, T] of the variational system

)

w(t) = Vxf(t, xu(t), u(t)) w(t), w(r) = f(1, Xu(T),w) — f(T, xu(7), u(7)).



With general control constraints

Definition
u € L*°([0, T], U) is weakly U-regular if Ponty[u] = R" (Pontryagin cone).

u is strongly U-singular when it is not weakly U-regular, i.e., when Ponty[u] is a proper
convex subcone of R”.

Proposition
u weakly U-regular = xy(T) belongs to the interior of the L{p-reachable set.

(application of the conic implicit function theorem to the “end-point mapping restricted
to some needle-like variations”)

When U is convex: strongly U-regular = weakly U-regular (converse wrong). I




With general control constraints

Proposition

u is strongly U-singular < (xy, u) admits a nontrivial strong U-extremal lift

i.e. (Pontryagin maximum principle), there exists p(-) : [0, T] — R" \ {0} (adjoint
vector) such that

x(t) = VpH(t, xu(1), p(1), u(t)),  p(t) = =VxH(t, xu(t), p(t), u(t)),
u(t) € argmax H(t, xu(t), p(t),w)
wel

where H(t, x, p, u) = (p, f(t, x, u)).



Robustness of reachability
under control sampling



@ Letx' € R"be Lgp-reachable in time T from x0.
@ Let T partition of [0, T].
Is x™ also PC]-reachable in time T from x0?

In other words: how robust is reachability in fixed time under control sampling?

Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (=~ sharp):
@ Uis convex.
@ x'eR"is Lp-reachable in time T from x% with a control u € L>°(]0, T], U).
@ uis weakly U-regular (i.e., Ponty[u] = R").

Then 38 >0 VT partition of [0, T] s.t. || T|| < 8, xu(T) € E(PCT([0, T], U)) (PCyni)




Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (=~ sharp):
@ U is convex.
@ x' € R"is L -reachable in time T from x° with a control u € L°°([0, T], U).
@ uis weakly U-regular (i.e., Ponty[u] = R").

Then 36 >0 VT partition of [0, T] s.t. || T|| < 8, xu(T) € E(PCT([0, T], U)) (PCyni)

This is stronger than the property:
V& >0 3T partition of [0, T] s.t. ||T|| <3, xu(T) € E(PCT(]0, T], U)) (PC)

We may have (PC) while (PC ;) fails.



Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (=~ sharp):
@ U is convex.
@ x' € R"is L -reachable in time T from x° with a control u € L°°([0, T], U).
@ uis weakly U-regular (i.e., Ponty[u] = R").

Then 36 >0 VT partition of [0, T] s.t. || T|| < 8, xu(T) € E(PCT([0, T], U)) (PCyni)

Inthe example: T=4, n=m=1, U={0,1}, f(x,u,t)=u

o u(t)y=1forte[0,n] and wu(t)=0fort e [r,4], isweakly U-regular

o x'=1 s L¢p-reachable in time T from x0=0

and:

— xy(T) belongs to the interior of the LP-reachable set.

— (PC) is satisfied but not (PCjr) (take partitions with rational sampling times: commensurability rigidity).
— U is not convex.



Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (=~ sharp):
@ U is convex.
@ x' € R"is L -reachable in time T from x° with a control u € L°°([0, T], U).
@ uis weakly U-regular (i.e., Ponty[u] = R").

Then 36 >0 VT partition of [0, T] s.t. || T|| < 8, xu(T) € E(PCT([0, T], U)) (PCyni)

— Even with U convex, there exist examples where x,(T) belongs to the interior of the
Lge-reachable set but does not belong to the PCj-reachable set.

— Convexity can be slightly relaxed to “U is parameterizable by a convex set”.

The theorem fails in general if U is “strongly nonconnected”, i.e.,
U= U; UU, where Uy # 0 and Uy, # 0
30:R" - RC' st Oy, =0andoy, =1)



Comments on other existing results

Remarkable series of works by Sussmann, Sontag, Grasse in the 80’s and 90’s.
(in free final time)

@ Sussmann CDC 1987: focuses on (PC) (with no assumption on U), under an
assumption that is similar to weak U-regularity.

@ Initial idea: Sussmann JDE 1976, notion of normal reachability, i.e., reachability
under piecewise constant controls with a surjective differential end-point
mapping (< open mapping theorem). It is proved that:

global controllability < global normal controllability
(in free final time)

@ Sontag Sussmann 82-84-88: sampled-data controls on regular subdivisions.
Under Lie algebra rank condition:
global controllability < sampled-data global controllability
(in free final time)

@ Grasse, MCSS 1992: f C', nontangency property at x°,
small-time local controllability at xX° < sampled-data STLC at x°
< x9 is small-time normally self-reachable
(= reachability by “nice controls”)



Convergence in sampled-data optimal control problems

This result of robustness of reachability in fixed time under control sampling is
instrumental for the following objective:

Optimal control problem

x(t) = f(t, x(1), u(t))

x(0) = x%, x(T) = x’ where

min C(x, u) C(x,u) = [T 10(t, x(t), u(t)) at

Permanent controls Sampled-data controls
uelLy u € PC,

- Optimal solution (x, u) - Optimal solution (xT, uT)
- PMP = adjoint p - PMPT = adjoint pT

(sampled-data PMP: Bourdin Trélat, MCRF 2016)

0
Objective: prove that | xT -5 x, pf <5 p, C(xT,u") —s C(x,u) | as ||T|| — O.




Convergence in sampled-data optimal control problems

Theorem (Bourdin Trélat, ongoing)

This is true under the following assumptions:
0 U is compact and trajectories live in a (big) compact. (1), (2): classical
Q For all (t, x), the epigraph of the extended velocity set } aséumptions
ensuring existence
f(t, x, u) of minimizers
{(f‘)(t,x,u)ﬂ) | 720 ue U}
is convex.
© Uniqueness of the optimal solution (x, u). @), (4): “generic”
0 Unique normal extremal lift (x, p, u). assumptions

(in the absence of uniqueness in (3) and/or (4): convergence of subsequences)

Key points of the proof:
@ Assumption (4) (normality) = robustness of reachability under control sampling
= existence of optimal solution (xT, uT)

@ Technical fact: convergence of Pontryagin cones of OCPT to OCP
(kind of grad-I'-convergence)



Linear quadratic case

As a particular case:

- Linear system: f(t, x, u) = A(t)x + B(t)u + r(t)
- Quadratic cost: fO(t, x, u) = (x — X(1)) T Q(t)(x — X(1)) + (u — (1)) T R(t)(u — T(t))

In fixed finite horizon T:
sampled-data difference Riccati theory in [Bourdin Trélat, Automatica 2017]

In infinite horizon: f(t, x, u) = Ax + Bu, fO(t,x,u) = x" Qx +u" Ru

We have proved in [Bourdin Trélat, SICON 2021] the commutation of the diagram:

T T—+co T
sampled-data difference Riccati E. T Eoo sampled-data algebraic Riccati
[IT][—0 IT]|—0
(permanent) differential Riccati E T E. oo (permanent) algebraic Riccati
T—+oco




Long-term open issue

Optimal control problem )

Y

Full discretization Dualization

Euler, Runge-Kutta, etc. Pontryagin Maximum Principle

|
1

Dualization Full discretization
Kuhn-Tucker, Euler, Runge-Kutta, etc,
then Newton’s method then Newton (shooting method)

direct methods indirect methods



Long-term open issue

Optimal control problem )

Y

Full discretization Dualization

Euler, Runge-Kutta, etc. Pontryagin Maximum Principle

|
1

Dualization 2 Discretization

Kuhn-Tucker, ( ) ) Euler, Runge-Kutta, etc,

then Newton’s method then Newton (shooting method)
direct methods indirect methods

No commutation in general.
Commutation for Runge-Kutta methods with positive coefficients (Hager, 2000).



Counterexample (Hager, 2000)

LQ optimal control problem

. 1 1 n 5 2
() = X0 + U, x(0) =1, m.né/0 @x(1)? + u(t)?) dt




Counterexample (Hager, 2000)

LQ optimal control problem

. 1 1 n 5 2
() = X0 + U, x(0) =1, mlné/o @x(1)? + u(t)?) dt

The optimal solution is (differential Riccati)

x(t) = 35@74_637 u(t) = M with optimal cost 2(_2+766+63) ~1.728
e3t/2(2 + ed) e3t/2(2 + ed) 4+ 4¢3 + 68
1 x(t) o u(t)
0.95 -0.2
0.9 -0.4
0.85 -0.6
0.8 -0.8
0.75 -1
0.7 1.2
0.65 1.4
0.6 1.6
U= 0.2 0.4 0.6 0.8 1‘80 0.2 0.4 0.6 0.8 1



Counterexample (Hager, 2000)

LQ optimal control problem

. 1 1 n 5 2
() = X0 + U, x(0) =1, m.né/0 @x(1)? + u(t)?) dt

Full discretization with mid-point rule:

h /1
Xet1/2 = Xk + 5 (*Xk + Uk) N-1
2\2 . 2 2
1 min 5 > (2Xk+1/2 + Uk+1/2>
Xk +h X1zt Utz | Xo = 1 k=0

Xk+1



Counterexample (Hager, 2000)

LQ optimal control problem

. 1 1 n 5 2
() = X0 + U, x(0) =1, m.né/0 @x(1)? + u(t)?) dt

Full discretization with mid-point rule:

h /1
Xet1/2 = Xk + 5 (*Xk + Uk) N-1
2\2 . 2 2
1 min 5 > (2Xk+1/2 + Uk+1/2>
Xer1 = Xcth (§Xk+1/2 + Uk+1/2) , X =1 k=0

The optimal solution is

4+h
Uy = —

W, U172 = 0, X, =1, Xk4+1/2 = 0| with optimal cost O
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Counterexample (Hager, 2000)

LQ optimal control problem

. 1 1 n 5 2
() = X0 + U, x(0) =1, mlné/o @x(1)? + u(t)?) dt

But if we discretize with Euler:

1 1 > 5
Xk-41 :xk+h(§xk+uk> , Xo=1 mm5 <2xk +uk)

then everything is going fine:

. xtt) 0 utt)
0.95 -0.2
0.9 -0.4
0.85 -06
0.8 -08
0.75 1
0.7 1.2
0.65 1.4
0.6 1.6
0.55 1.8



