Robustness of controllability under control sampling

Emmanuel Trélat

Works with Loïc Bourdin

Objective

$$
f: \mathbb{R} \times \mathbf{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad C^{0}, \text { and } C^{1} \operatorname{wrt}(x, u)
$$

$$
\dot{x}(t)=f(t, x(t), u(t)) \quad u(t) \in U \subset \mathbb{R}^{m}
$$

$T>0, \quad x^{0}, x^{1} \in \mathbf{R}^{n}$
x^{1} is L_{U}^{∞}-reachable in time T from x^{0} if

$$
\exists u \in L^{\infty}([0, T], U) \quad \text { s.t. } \quad x_{u}(0)=x^{0} \quad \text { and } \quad x_{u}(T)=x^{1}
$$

Objective
Find a general sufficient condition under which reachability in fixed time T is robust under control sampling.

Control sampling

Sampling the control u over $[0, T]$: given a partition

$$
\mathbb{T}: \quad 0=t_{0}<t_{1}<\ldots<t_{N-1}<t_{N}=T
$$

for some $N \in \mathbf{N}^{*}$, we define

$$
\operatorname{PC}^{\mathbb{T}}([0, T], U)=\{u:[0, T] \rightarrow U \text { piecewise constant on } \mathbb{T}\}
$$

Set $\|\mathbb{T}\|=\max _{i=0, \ldots, N-1}\left|t_{i+1}-t_{i}\right| \quad$ "norm" of the partition.
x^{1} is $\mathrm{PC}_{U}^{\mathbb{T}}$-reachable in time T from x^{0} if

$$
\exists u \in \operatorname{PC}^{\mathbb{T}}([0, T], U) \quad \text { s.t. } \quad x_{u}(0)=x^{0} \quad \text { and } \quad x_{u}(T)=x^{1}
$$

Question

- Let $x^{1} \in \mathbb{R}^{n}$ be L_{\cup}^{∞}-reachable in time T from x^{0}.
- Let \mathbb{T} partition of $[0, T]$.

Is x^{1} also $\mathrm{PC}_{U}^{\mathbb{T}}$-reachable in time T from x^{0} ?
In other words: how robust is reachability in fixed time under control sampling?

- Let $x^{1} \in \mathbb{R}^{n}$ be L_{\bigcup}^{∞}-reachable in time T from x^{0}.
- Let \mathbb{T} partition of $[0, T]$.

Is x^{1} also $\mathrm{PC}_{U}^{\mathbb{T}}$-reachable in time T from x^{0} ?
In other words: how robust is reachability in fixed time under control sampling?

- ||T $\|$ should be sufficiently small.
- Without any specific assumption, even for small values of $\|\mathbb{T}\|, x^{1}$ may fail to be $\mathrm{PC}_{U}^{\mathbb{T}}$-reachable in time T from x^{0} :
- $T=n=m=1, \quad U=\mathbb{R}, \quad f(x, u, t)=1+(u-t)^{2}$
- $x^{1}=1$ is L_{U}^{∞}-reachable in time T from $x^{0}=0$ with the (unique) control $u(t)=t$.
- $\forall \mathbb{T}$ partition of $[0, T], \quad x^{1}$ is not $\mathrm{PC}_{\mathcal{U}}^{\mathbb{T}}$-reachable in time T from x^{0}.

Question

- Let $x^{1} \in \mathbb{R}^{n}$ be L_{u}^{∞}-reachable in time T from x^{0}.
- Let \mathbb{T} partition of $[0, T]$.

Is x^{1} also $\mathrm{PC}_{U}^{\mathrm{T}}$-reachable in time T from x^{0} ?
In other words: how robust is reachability in fixed time under control sampling?

Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (\simeq sharp):

- U is convex;
- x^{1} is L_{U}^{∞}-reachable in time T from x^{0} with a control $u \in L^{\infty}([0, T], U)$;
- u is weakly U-regular.

Then
$\exists \delta>0 \quad$ s.t. $\quad \forall \mathbb{T}$ partition of $[0, T],\|\mathbb{T}\| \leqslant \delta, \quad x^{1}$ is $\mathrm{PC}_{U}^{\mathbb{T}}$-reachable in time T from x^{0}
(stronger than: $\exists \mathbb{T}$ partition of $[0, T]$ s.t. x^{1} is $\mathrm{PC}_{U}^{\mathbb{T}}$-reachable in time T from x^{0})

Recap on reachability results

End-point mapping

$$
x^{0} \in \mathbf{R}^{n} \text { and } T>0 \text { fixed. }
$$

End-point mapping (in time T from x^{0})

$E: L^{\infty}([0, T], U) \rightarrow \mathbf{R}^{n}$ (C^{1} mapping) defined by

$$
E(u)=x_{u}(T)
$$

where

$$
\dot{x}_{u}(t)=f\left(t, x_{u}(t), u(t)\right), \quad x_{u}(0)=x^{0}
$$

L_{U}^{∞}-reachable set (in time T from $\left.x^{0}\right): \quad E\left(L^{\infty}([0, T], U)\right)$

Without control constraints

Definition

A control u is strongly regular if the Fréchet differential $d E(u): L^{\infty}\left([0, T], \mathbb{R}^{m}\right) \rightarrow \mathbf{R}^{n}$ is surjective.

A control u is weakly singular if it is not strongly regular.

Without control constraints

Definition

A control u is strongly regular if the Fréchet differential $d E(u): L^{\infty}\left([0, T], \mathbb{R}^{m}\right) \rightarrow \mathbf{R}^{n}$ is surjective.

A control u is weakly singular if it is not strongly regular.

Proposition

Assume that $U=\mathbf{R}^{m}$.
u is strongly regular $\Rightarrow x_{u}(T)$ belongs to the interior of the $L_{\mathrm{R}^{m}}^{\infty}$-reachable set.
(implicit function theorem $\Rightarrow E$ locally open)

Without control constraints

Proposition

u is weakly singular $\Leftrightarrow\left(x_{u}, u\right)$ admits a nontrivial weak extremal lift
i.e. (Pontryagin maximum principle), there exists $p(\cdot):[0, T] \rightarrow \mathbf{R}^{n} \backslash\{0\}$ (adjoint vector) such that

$$
\begin{gathered}
\dot{x}(t)=\nabla_{p} H\left(t, x_{u}(t), p(t), u(t)\right), \quad \dot{p}(t)=-\nabla_{x} H\left(t, x_{u}(t), p(t), u(t)\right), \\
\nabla_{u} H\left(t, x_{u}(t), p(t), u(t)\right)=0
\end{gathered}
$$

where $H(t, x, p, u)=\langle p, f(t, x, u)\rangle$.

With convex control constraints

Assume that U is convex.

Definition

$u \in L^{\infty}([0, T], U)$ is strongly U-regular if $\quad d E(u)\left(\mathcal{T}_{L_{U}^{\infty}}[u]\right)=\mathbb{R}^{n} \quad$ where

$$
\mathcal{T}_{L_{u}^{\infty}}[u]=\mathbf{R}_{+}\left(L^{\infty}([0, T], U)-u\right)=\left\{\alpha(v-u) \quad \mid \quad \alpha \geqslant 0, v \in L^{\infty}([0, T], U)\right\}
$$

is the (convex) tangent cone to $L^{\infty}([0, T], U)$ at u.
u is weakly U-singular when it is not strongly U-regular, i.e., when $d E(u)\left(\mathcal{T}_{L_{U}}[u]\right)$ is a proper convex subcone of \mathbb{R}^{n}.

Proposition

u strongly U-regular $\Rightarrow x_{u}(T)$ belongs to the interior of the L_{U}^{∞}-reachable set.
(conic implicit function theorem)

With convex control constraints

Assume that U is convex.

Definition

$u \in L^{\infty}([0, T], U)$ is strongly U-regular if $\quad d E(u)\left(\mathcal{T}_{L_{U}^{\infty}}[u]\right)=\mathbb{R}^{n} \quad$ where

$$
\mathcal{T}_{L_{u}^{\infty}}[u]=\mathbf{R}_{+}\left(L^{\infty}([0, T], U)-u\right)=\left\{\alpha(v-u) \quad \mid \quad \alpha \geqslant 0, v \in L^{\infty}([0, T], U)\right\}
$$

is the (convex) tangent cone to $L^{\infty}([0, T], U)$ at u.
u is weakly U-singular when it is not strongly U-regular, i.e., when $d E(u)\left(\mathcal{T}_{L_{U}}[u]\right)$ is a proper convex subcone of \mathbb{R}^{n}.

Remark

strongly U-regular \Rightarrow strongly regular.
The converse is wrong: $T=n=m=1, U=[-1,1], f(x, u, t)=u$
$u \equiv 1$ is strongly regular and weakly U-singular.

With convex control constraints

Proposition

u is weakly U-singular $\Leftrightarrow\left(x_{u}, u\right)$ admits a nontrivial weak U-extremal lift
i.e. (Pontryagin maximum principle), there exists $p(\cdot):[0, T] \rightarrow \mathbf{R}^{n} \backslash\{0\}$ (adjoint vector) such that

$$
\begin{gathered}
\dot{x}(t)=\nabla_{p} H\left(t, x_{u}(t), p(t), u(t)\right), \quad \dot{p}(t)=-\nabla_{x} H\left(t, x_{u}(t), p(t), u(t)\right), \\
\nabla_{u} H\left(t, x_{u}(t), p(t), u(t)\right) \in \mathcal{N}_{u}[u(t)] \quad \text { (normal cone) }
\end{gathered}
$$

where $H(t, x, p, u)=\langle p, f(t, x, u)\rangle$.

With general control constraints

Definition

$u \in L^{\infty}([0, T], U)$ is weakly U-regular if \quad Pont $t_{U}[u]=\mathbb{R}^{n} \quad$ (Pontryagin cone).
u is strongly U-singular when it is not weakly U-regular, i.e., when Pont $U[u]$ is a proper convex subcone of \mathbf{R}^{n}.

With general control constraints

Definition

$u \in L^{\infty}([0, T], U)$ is weakly U-regular if \quad Pont $t_{U}[u]=\mathbb{R}^{n} \quad$ (Pontryagin cone).
u is strongly U-singular when it is not weakly U-regular, i.e., when Pont ${ }_{U}[u]$ is a proper convex subcone of \mathbf{R}^{n}.

Pont $t_{U}[u]$ is the smallest convex cone containing all U-variation vectors $w_{(\tau, \omega)}^{u}(T)$.
Needle-like control variation $u_{(\tau, \omega)}^{\alpha} \in L^{\infty}([0, T], U)$ defined by

$$
u_{(\tau, \omega)}^{\alpha}(t)= \begin{cases}\omega & \text { along }[t, t+\alpha) \\ u(t) & \text { elsewhere }\end{cases}
$$

for $\omega \in U$ and $\alpha>0$ small. Then

$$
\lim _{\alpha \rightarrow 0^{+}} \frac{E\left(u_{(\tau, \omega)}^{\alpha}\right)-E(u)}{\alpha}=w_{(\tau, \omega)}^{u}(T)
$$

where $w_{(\tau, \omega)}^{u}$ is the unique solution on $[\tau, T]$ of the variational system

$$
\dot{w}(t)=\nabla_{x} f\left(t, x_{u}(t), u(t)\right) w(t), \quad w(\tau)=f\left(\tau, x_{u}(\tau), \omega\right)-f\left(\tau, x_{u}(\tau), u(\tau)\right) .
$$

With general control constraints

Definition

$u \in L^{\infty}([0, T], U)$ is weakly U-regular if \quad Pont $t_{U}[u]=\mathbb{R}^{n} \quad$ (Pontryagin cone).
u is strongly U-singular when it is not weakly U-regular, i.e., when Pont ${ }_{U}[u]$ is a proper convex subcone of \mathbf{R}^{n}.

Proposition

u weakly U-regular $\Rightarrow x_{U}(T)$ belongs to the interior of the L_{U}^{∞}-reachable set.
(application of the conic implicit function theorem to the "end-point mapping restricted to some needle-like variations")

Remark

When U is convex: strongly U-regular \Rightarrow weakly U-regular (converse wrong).

With general control constraints

Proposition

u is strongly U-singular $\Leftrightarrow\left(x_{u}, u\right)$ admits a nontrivial strong U-extremal lift
i.e. (Pontryagin maximum principle), there exists $p(\cdot):[0, T] \rightarrow \mathbf{R}^{n} \backslash\{0\}$ (adjoint vector) such that

$$
\begin{gathered}
\dot{x}(t)=\nabla_{p} H\left(t, x_{u}(t), p(t), u(t)\right), \quad \dot{p}(t)=-\nabla_{x} H\left(t, x_{u}(t), p(t), u(t)\right), \\
u(t) \in \underset{\omega \in U}{\operatorname{argmax}} H\left(t, x_{u}(t), p(t), \omega\right)
\end{gathered}
$$

where $H(t, x, p, u)=\langle p, f(t, x, u)\rangle$.

Robustness of reachability under control sampling

Theorem

- Let $x^{1} \in \mathbb{R}^{n}$ be L_{U}^{∞}-reachable in time T from x^{0}.
- Let \mathbb{T} partition of $[0, T]$.

Is x^{1} also $\mathrm{PC}_{U}^{\mathrm{T}}$-reachable in time T from x^{0} ?
In other words: how robust is reachability in fixed time under control sampling?

Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (\simeq sharp):

- U is convex.
- $x^{1} \in \mathbf{R}^{n}$ is L_{U}^{∞}-reachable in time T from x^{0} with a control $u \in L^{\infty}([0, T], U)$.
- u is weakly U-regular (i.e., Pontu $[u]=\mathbf{R}^{n}$).

Then $\exists \delta>0 \quad \forall \mathbb{T}$ partition of $[0, T]$ s.t. $\|\mathbb{T}\| \leqslant \delta, \quad x_{u}(T) \in E\left(\mathrm{PC}^{\mathbb{T}}([0, T], U)\right)\left(\mathrm{PC}_{\text {unif }}\right)$

Theorem

Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (\simeq sharp):

- U is convex.
- $x^{1} \in \mathbf{R}^{n}$ is L_{U}^{∞}-reachable in time T from x^{0} with a control $u \in L^{\infty}([0, T], U)$.
- u is weakly U-regular (i.e., Pont $[u]=\mathbf{R}^{n}$).

Then $\exists \delta>0 \quad \forall \mathbb{T}$ partition of $[0, T]$ s.t. $\|\mathbb{T}\| \leqslant \delta, \quad x_{u}(T) \in E\left(\mathrm{PC}^{\mathbb{T}}([0, T], U)\right)\left(\mathrm{PC}_{\text {unif }}\right)$

Remark

This is stronger than the property:

$$
\begin{equation*}
\forall \delta>0 \quad \exists \mathbb{T} \text { partition of }[0, T] \text { s.t. }\|\mathbb{T}\| \leqslant \delta, \quad x_{U}(T) \in E\left(\mathrm{PC}^{\mathbb{T}}([0, T], U)\right) \tag{PC}
\end{equation*}
$$

We may have (PC) while ($\mathrm{PC}_{\text {unif }}$) fails.

Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (\simeq sharp):

- U is convex.
- $x^{1} \in \mathbf{R}^{n}$ is L_{U}^{∞}-reachable in time T from x^{0} with a control $u \in L^{\infty}([0, T], U)$.
- u is weakly U-regular (i.e., Pont $[u]=\mathbf{R}^{n}$).

Then $\exists \delta>0 \quad \forall \mathbb{T}$ partition of $[0, T]$ s.t. $\|\mathbb{T}\| \leqslant \delta, \quad x_{u}(T) \in E\left(\mathrm{PC}^{\mathbb{T}}([0, T], U)\right) \quad\left(\mathrm{PC}_{u n i f}\right)$

In the example: $T=4, \quad n=m=1, \quad U=\{0,1\}, \quad f(x, u, t)=u$

- $u(t)=1$ for $t \in[0, \pi]$ and $u(t)=0$ for $t \in[\pi, 4]$, is weakly U-regular
- $x^{1}=\pi$ is L_{U}^{∞}-reachable in time T from $x^{0}=0$ and:
$-x_{U}(T)$ belongs to the interior of the L_{U}^{∞}-reachable set.
$-(\mathrm{PC})$ is satisfied but not ($\mathrm{PC}_{\text {unif }}$) (take partitions with rational sampling times: commensurability rigidity).
$-U$ is not convex.

Theorem

Theorem (Bourdin Trélat, MCSS 2021)

Assumptions (\simeq sharp):

- U is convex.
- $x^{1} \in \mathbf{R}^{n}$ is L_{U}^{∞}-reachable in time T from x^{0} with a control $u \in L^{\infty}([0, T], U)$.
- u is weakly U-regular (i.e., Pont $[u]=\mathbf{R}^{n}$).

Then $\exists \delta>0 \quad \forall \mathbb{T}$ partition of $[0, T]$ s.t. $\|\mathbb{T}\| \leqslant \delta, \quad x_{u}(T) \in E\left(\mathrm{PC}^{\mathbb{T}}([0, T], U)\right)\left(\mathrm{PC}_{\text {unif }}\right)$

- Even with U convex, there exist examples where $x_{u}(T)$ belongs to the interior of the L_{U}^{∞}-reachable set but does not belong to the PC_{U}^{T}-reachable set.
- Convexity can be slightly relaxed to " U is parameterizable by a convex set".

The theorem fails in general if U is "strongly nonconnected", i.e.,

$$
\begin{aligned}
& U=U_{1} \cup U_{2} \text { where } U_{1} \neq \emptyset \text { and } U_{2} \neq \emptyset \\
& \left.\exists \Theta: \mathbf{R}^{m} \rightarrow \mathbb{R} C^{1} \text { s.t. } \Theta_{\mid U_{1}}=0 \text { and } \Theta_{\mid U_{2}}=1\right)
\end{aligned}
$$

Comments on other existing results

Remarkable series of works by Sussmann, Sontag, Grasse in the 80's and 90's. (in free final time)

- Sussmann CDC 1987: focuses on (PC) (with no assumption on U), under an assumption that is similar to weak U-regularity.
- Initial idea: Sussmann JDE 1976, notion of normal reachability, i.e., reachability under piecewise constant controls with a surjective differential end-point mapping (\leftarrow open mapping theorem). It is proved that:
global controllability \Leftrightarrow global normal controllability (in free final time)
- Sontag Sussmann 82-84-88: sampled-data controls on regular subdivisions. Under Lie algebra rank condition:

$$
\text { global controllability } \Leftrightarrow \text { sampled-data global controllability }
$$ (in free final time)

- Grasse, MCSS 1992: $f C^{1}$, nontangency property at x^{0}, small-time local controllability at $x^{0} \Leftrightarrow$ sampled-data STLC at x^{0}
$\Leftrightarrow x^{0}$ is small-time normally self-reachable (\Rightarrow reachability by "nice controls")

Convergence in sampled-data optimal control problems

This result of robustness of reachability in fixed time under control sampling is instrumental for the following objective:

$$
\begin{aligned}
& \text { Optimal control problem } \\
& \dot{x}(t)=f(t, x(t), u(t)) \\
& x(0)=x^{0}, \quad x(T)=x^{1} \\
& \min C(x, u)
\end{aligned}
$$

Permanent controls

$$
u \in L_{U}^{\infty}
$$

- Optimal solution (x, u)
- PMP \Rightarrow adjoint p
where

Sampled-data controls

$$
u \in \mathrm{PC}_{U}^{\mathrm{T}}
$$

- Optimal solution $\left(x^{\mathbb{T}}, u^{\mathbb{T}}\right)$
- PMP ${ }^{\mathbb{T}} \Rightarrow$ adjoint $p^{\mathbb{T}}$
(sampled-data PMP: Bourdin Trélat, MCRF 2016)

Objective: prove that

$$
x^{\mathbb{T}} \xrightarrow{C^{0}} x, \quad p^{\mathbb{T}} \xrightarrow{C^{0}} p, \quad C\left(x^{\mathbb{T}}, u^{\mathbb{T}}\right) \longrightarrow C(x, u) \quad \text { as }\|\mathbb{T}\| \rightarrow 0 .
$$

Convergence in sampled-data optimal control problems

Theorem (Bourdin Trélat, ongoing)

This is true under the following assumptions:
(1) U is compact and trajectories live in a (big) compact.
(2) For all (t, x), the epigraph of the extended velocity set

$$
\left\{\left.\binom{f(t, x, u)}{f^{0}(t, x, u)+\gamma} \quad \right\rvert\, \quad \gamma \geqslant 0, u \in U\right\}
$$

(1), (2): classical assumptions ensuring existence of minimizers

(in the absence of uniqueness in (3) and/or (4): convergence of subsequences)

Key points of the proof:

- Assumption (4) (normality) \Rightarrow robustness of reachability under control sampling

$$
\Rightarrow \text { existence of optimal solution }\left(x^{\mathbb{T}}, u^{\mathbb{T}}\right)
$$

- Technical fact: convergence of Pontryagin cones of $O C P^{\mathbb{T}}$ to $O C P$
(kind of grad-Г-convergence)

Linear quadratic case

As a particular case:

- Linear system: $f(t, x, u)=A(t) x+B(t) u+r(t)$
- Quadratic cost: $f^{0}(t, x, u)=(x-\bar{x}(t))^{\top} Q(t)(x-\bar{x}(t))+(u-\bar{u}(t))^{\top} R(t)(u-\bar{u}(t))$ In fixed finite horizon T :
sampled-data difference Riccati theory in [Bourdin Trélat, Automatica 2017]
In infinite horizon: $f(t, x, u)=A x+B u, \quad f^{0}(t, x, u)=x^{\top} Q x+u^{\top} R u$
We have proved in [Bourdin Trélat, SICON 2021] the commutation of the diagram:

Long-term open issue

Optimal control problem

Full discretization
Euler, Runge-Kutta, etc.

Dualization

Kuhn-Tucker, then Newton's method

Dualization

Pontryagin Maximum Principle

Full discretization
Euler, Runge-Kutta, etc, then Newton (shooting method)

Long-term open issue

Optimal control problem

direct methods

Dualization

Pontryagin Maximum Principle

indirect methods

No commutation in general.
Commutation for Runge-Kutta methods with positive coefficients (Hager, 2000).

Counterexample (Hager, 2000)

LQ optimal control problem

$$
\dot{x}(t)=\frac{1}{2} x(t)+u(t), \quad x(0)=1, \quad \min \frac{1}{2} \int_{0}^{1}\left(2 x(t)^{2}+u(t)^{2}\right) d t
$$

Counterexample (Hager, 2000)

LQ optimal control problem

$$
\dot{x}(t)=\frac{1}{2} x(t)+u(t), \quad x(0)=1, \quad \min \frac{1}{2} \int_{0}^{1}\left(2 x(t)^{2}+u(t)^{2}\right) d t
$$

The optimal solution is (differential Riccati)

$$
x(t)=\frac{2 e^{3 t}+e^{3}}{e^{3 t / 2}\left(2+e^{3}\right)}, \quad u(t)=\frac{2\left(e^{3 t}-e^{3}\right)}{e^{3 t / 2}\left(2+e^{3}\right)} \quad \text { with optimal cost } \frac{2\left(-2+e^{6}+e^{3}\right)}{4+4 e^{3}+e^{6}} \simeq 1.728
$$

Counterexample (Hager, 2000)

LQ optimal control problem

$$
\dot{x}(t)=\frac{1}{2} x(t)+u(t), \quad x(0)=1, \quad \min \frac{1}{2} \int_{0}^{1}\left(2 x(t)^{2}+u(t)^{2}\right) d t
$$

Full discretization with mid-point rule:

$$
\begin{aligned}
x_{k+1 / 2} & =x_{k}+\frac{h}{2}\left(\frac{1}{2} x_{k}+u_{k}\right) \\
x_{k+1} & =x_{k}+h\left(\frac{1}{2} x_{k+1 / 2}+u_{k+1 / 2}\right), \quad x_{0}=1
\end{aligned} \quad \min \frac{1}{2} \sum_{k=0}^{N-1}\left(2 x_{k+1 / 2}^{2}+u_{k+1 / 2}^{2}\right)
$$

Counterexample (Hager, 2000)

LQ optimal control problem

$$
\dot{x}(t)=\frac{1}{2} x(t)+u(t), \quad x(0)=1, \quad \min \frac{1}{2} \int_{0}^{1}\left(2 x(t)^{2}+u(t)^{2}\right) d t
$$

Full discretization with mid-point rule:

$$
\begin{aligned}
x_{k+1 / 2} & =x_{k}+\frac{h}{2}\left(\frac{1}{2} x_{k}+u_{k}\right) \\
x_{k+1} & =x_{k}+h\left(\frac{1}{2} x_{k+1 / 2}+u_{k+1 / 2}\right), \quad x_{0}=1
\end{aligned} \quad \min \frac{1}{2} \sum_{k=0}^{N-1}\left(2 x_{k+1 / 2}^{2}+u_{k+1 / 2}^{2}\right)
$$

The optimal solution is

$$
u_{k}=-\frac{4+h}{2 h}, \quad u_{k+1 / 2}=0, \quad x_{k}=1, \quad x_{k+1 / 2}=0 \quad \text { with optimal cost } 0
$$

Counterexample (Hager, 2000)

LQ optimal control problem

$$
\dot{x}(t)=\frac{1}{2} x(t)+u(t), \quad x(0)=1, \quad \min \frac{1}{2} \int_{0}^{1}\left(2 x(t)^{2}+u(t)^{2}\right) d t
$$

Numerical simulation for $N=70$:

Counterexample (Hager, 2000)

LQ optimal control problem

$$
\dot{x}(t)=\frac{1}{2} x(t)+u(t), \quad x(0)=1, \quad \min \frac{1}{2} \int_{0}^{1}\left(2 x(t)^{2}+u(t)^{2}\right) d t
$$

But if we discretize with Euler:

$$
x_{k+1}=x_{k}+h\left(\frac{1}{2} x_{k}+u_{k}\right), \quad x_{0}=1 \quad \min \frac{1}{2} \sum_{k=0}^{N-1}\left(2 x_{k}^{2}+u_{k}^{2}\right)
$$

then everything is going fine:

