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COVID-19 mathematical model



Deterministic SAIRP mathematical model for the
transmission dynamics of SARS-CoV-2

Assume a homogeneous population subdivided into five
compartments:

I S , susceptible (uninfected and not immune);

I A, infected but asymptomatic (undetected);

I I , active infected (symptomatic and detected/confirmed);

I R, removed (recovered and deaths by COVID-19);

I P, protected/prevented (not infected, not immune, but that
are under protective measures).



SAIRP model: parameters

Parameter/ Description
β Infection transmission rate
θ Modification parameter
p Fraction of susceptible S transferred to protected class P
φ Transition rate of susceptible S to protected class P
ω = wm
w Transition rate of protected P to susceptible S
m Fraction of protected P transferred to susceptible S
ν = vq
v Transition rate of asymptomatic A to active infected I
q Fraction of asymptomatic A infected individuals
δ Transition rate from active infected I to removed R



SAIRP model with vital dynamics and constant parameters

Model:

Ṡ(t) = Λ− β(1− p) (θA(t)+I (t))
N(t) S(t)− φpS(t) + ωP(t)− µS(t),

Ȧ(t) = β(1− p) (θA(t)+I (t))
N(t) S(t)− νA(t)− µA(t),

İ (t) = νA(t)− δI (t)− µI (t),

Ṙ(t) = δI (t)− µR(t),

Ṗ(t) = φpS(t)− ωP(t)− µP(t).

Total population, N(t) = S(t) + A(t) + I (t) + R(t) + P(t), with
t ∈ [0,T ] representing the time (in days) and T > 0.

Λ - recruitment rate.
µ - natural death rate.



SAIRP model with vital dynamics and constant parameters

The equations of the SAIRP model with vital dynamics can be
rewritten as

ẋ(t) = f (x(t), α) , t > 0, (1)

with x = (S , A, I , R, P)T ∈ R5 and
α = (Λ, µ, β, p, θ, φ, ω, ν, δ)T ∈ R9, where the non-linear
operator f is defined in R5 × R9 by

f (x , α) =



Λ− β(1− p) (θA+I )
N − φpS + ωP − µS

β(1− p) (θA+I )
N S − νA− µA

νA− δI − µI

δI − µR

φpS − ωP − µP


. (2)



Existence, positivity and boundedness of solutions

Introduce the compact region Ω ⊂ R5 defined by

Ω =

{
x = (S , A, I , R, P)T ∈

(
R+
)5

; 0 < S + A + I + R + P ≤ Λ

µ

}
.

(3)

Theorem
For any x0 = (S0, A0, I0, R0, P0)T ∈ Ω, the Cauchy problem given
by (1) and x(0) = x0 admits a unique solution, denoted by
x(t, x0), defined on [0, ∞), whose components are non-negative.
Furthermore, the region Ω defined by (3) is positively invariant.



Equilibrium points and basic reproduction number
The model (1) has two equilibrium points:

I disease-free equilibrium, denoted by Σ0, given by

Σ0 = (S0,A0, I0,R0,P0) =

(
Λ (ω + µ)

µ (pφ+ µ+ ω)
, 0, 0, 0,

φ pΛ

µ (pφ+ µ+ ω)

)
;

I endemic equilibrium, Σ+, whenever R0 > 1, given by
Σ+ = (S+,A+, I+,R+,P+) with

S+ =
Λ(ω + µ)

(pφ+ µ+ ω)µ
R−1

0 , A+ =
Λ

ν + µ
R−1

0 (R0 − 1) ,

I+ =
Λν

(ν + µ)(δ + µ)
R−1

0 (R0 − 1) , R+ =
δΛν

(ν + µ)(δ + µ)µ
R−1

0 (R0 − 1) ,

P+ =
Λφp

(pφ+ µ+ ω)µ
R−1

0 ,

where the basic reproduction number, R0, is given by

R0 =
β (1− p) (δ θ + µ θ + ν) (ω + µ)

(δ + µ) (ν + µ) (pφ+ µ+ ω)
=
N
D
.



Local asymptotic stability of the disease-free equilibrium
(DFE)

Theorem
The disease-free equilibrium, Σ0, is locally asymptotically stable
whenever R0 < 1.

Sketch of the proof:
Jacobian matrix of system (1) evaluated at the DFE:

M (Σ0) =



−(φ p + µ) − θ β (µ+ω)(1−p)
φ p+µ+ω

− β (µ+ω)(1−p)
φ p+µ+ω

0 ω

0 − βθ(1−p)(µ+ω)+(µ+ν)(pφ+µ+ω)
φ p+µ+ω

β (µ+ω)(1−p)
φ p+µ+ω

0 0

0 ν −δ − µ 0 0

0 0 δ −µ 0

φ p 0 0 0 −(µ + ω)


.



Local asymptotic stability of the DFE - continuation of the
proof

The eigenvalues of the matrix M (Σ0): λ1 = λ2 = −µ, λ3 = −(φp +µ+ω) and
λ4, λ5 that are the roots of the polynomial

p(λ) = λ2 + Bλ+ C ,

where B = −βθ(1−p)(ω+µ)
(pφ+µ+ω)

+ δ + 2µ+ ν and C = D−N
pφ+µ+ω

.

Applying the Routh–Hurwitz criterion, we conclude that model (1) is locally
stable if, and only if, B > 0 and C > 0. It is easy to show that C > 0 whenever
R0 < 1. The coefficient B is positive when

βθ(1− p)(ω + µ) < (δ + 2µ+ ν)(pφ+ µ+ ω) ,

after some computations, we prove that B > 0 whenever R0 < 1.



Global stability of the disease-free equilibrium (DFE)

Theorem
If R0 < 1, then the disease-free equilibrium, Σ0, is globally
asymptotically stable in Ω.

Sketch of the proof:
Consider the following functional given by

L = S − S0 − S0 ln
S

S0

+ A + ζI + ξ

(
P − P0 − P0 ln

P

P0

)
+ χ

(
N − N0 − N0 ln

N

N0

)
,

where ζ and ξ are defined by

ζ =
k(1− η)(ν + µ)− β(1− p)θ

kν(1− η)
, ξ =

ωP0

φpS0

, (4)

and χ is a positive constant which will be determined below.
As constructed, L is a non-negative functional and we have

L = 0 ⇐⇒ (S, A, I , R, P) = Σ0.

Now we compute the derivative of L along the solutions of the SAIRP model (1) starting in Ω.



Global stability of the DFE - continuation of the proof

Now we compute the derivative of L along the solutions of the SAIRP model (1) starting in Ω.
We have

L̇ =

(
1−

S0

S

)
Ṡ + Ȧ + ζ İ + ξ

(
1−

P0

P

)
Ṗ + χ

(
1−

N0

N

)
Ṅ

=

(
1−

S0

S

)[
Λ− β(1− p)

θA + I

N
S − (pφ + µ)S + ωP

]
+

[
β(1− p)

θA + I

N
S − (ν + µ)A

]
+ ζ [νA− (δ + µ)I ]

+ ξ

(
1−

P0

P

)
[φpS − (ω + µ)P] + χ

(
1−

N0

N

)
(Λ− µN).

Now we use the relations
Λ = (pφ + µ)S0 − ωP0, pφS0 = (ω + µ)P0

to obtain

L̇ =

(
1−

S0

S

)[
−β(1− p)

θA + I

N
S − (pφ + µ)(S − S0) + ω(P − P0)

]
+

[
β(1− p)

θA + I

N
S − (ν + µ)A

]
+ ζ [νA− (δ + µ)I ]

+ ξ

(
1−

P0

P

)
[φp(S − S0)− (ω + µ)(P − P0)] + χ

(
1−

N0

N

)
(Λ− µN).

...



Global asymptotic stability of the DFE - end of the proof

After several simplifications, we obtain

L̇ ≤
[
β(1− p)θS0

2N0ε
− χ

2
µ

]
(N − N0)2

N
+

[
β(1− p)S0

2N0ε
− χ

2
µ

]
(N − N0)2

N

≤
[
β(1− p)S0

N0ε
− χµ

]
(N − N0)2

N
,

since θ ≤ 1. Finally, we choose χ > 0 sufficiently large so that

β(1− p)S0

N0ε
− χµ < 0,

which guarantees that L̇ ≤ 0. In other words, the functional L is a Lyapunov
function for the flow induced by the SAIRP model (1). The conclusion follows
from LaSalle’s invariance principle [1].

Joseph LaSalle, Some extensions of Liapunov’s second method, IRE
Transactions on circuit theory 7 (4), 520–527 (1960).



Global asymptotic stability of the EE
Theorem
The compact region Γ defined by

Γ =

{
x = (S , A, I , R, P)T ∈

(
R+
)5

;S + A + I + R + P =
Λ

µ

}
is positively invariant under the flow induced by system (11). It contains
the disease-free equilibrium, Σ0, and the endemic equilibrium, Σ+, if
R0 > 1. Furthermore, if R0 > 1, then the endemic equilibrium Σ+ is
globally asymptotically stable in Γ.
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Figure: Phase portraits in the (S , A, I ) space.(a) Global stability of the DFE
(R0 < 1). (b) Global stability of the EE (R0 > 1).



Remains to prove:

determine if the endemic equilibrium is globally asymptotically stable in
the whole region Ω:

Ω =

{
x = (S , A, I , R, P)T ∈

(
R+
)5

; 0 < S + A + I + R + P ≤ Λ

µ

}
.



Optimal control
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SAIRP model - fit the confirmed active infected cases in
Portugal
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I March 2, 2020 – first confirmed 2 infected cases were reported, in
Portugal;

I March 12, 2020 – declared State of Emergency;

I March 18, 2020 – teaching as well as non-teaching and classroom training
activities were suspended;

I May 2, 2020 – emergency status was canceled (duration of 45 days).



Hospitals and intensive care units occupancy beds by
COVID-19 (until July 29, 2020)
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Official real data, from March 02 to July 29, for the fraction
of hospitalized individuals and in ICU due to COVID-19, with
respect to the confirmed/active infected individuals.



Challenges:

I reopening of the economy while preserving the health of the
population without collapsing the public health system;

I keep the schools open (children under 10 years old are not
obliged to use a mask in Portugal) and prevent the economy
to sink;

I there is a minimum number of people that need to be
susceptible to infection;

I need to account that the population do not always follow the
rules imposed by governments;

Goals:

I Develop tools to quantify this effect and include it into the
equations.

I Investigate the use of optimal control theory to design
strategies for this phase of the disease.



Optimal control problem: main goal

Goal:

I maximize the number of people transferred from class P to
the class S (that helps keeping the economy alive) and,
simultaneously, minimize the number of active infected
individuals and, consequently, the number of hospitalized and
people needing ICU (in other words, ensuring that the health
system is never overloaded);

I impose that the number of active infected cases is always
below 2/3 or 60% of the maximum value observed up to July
29, 2020 (Imax). This condition warrants that the health
system does not collapse.



Sensitivity of class I with respect to parameter m

I Parameter m in model SAIRP: represents the fraction of
protected individuals P that is transferred to susceptible S ;

I the class of active infected individuals I is very sensitive to the
change of the parameter m.
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The dotted red line marks the level 0.75× Imax that represents
approximately 75% of the maximum fraction of active infected
cases observed in Portugal (up to July 29, 2020).
Consider the fixed parameters (β, p) = (1.464, 0.675) and all the other parameters from previous table.



Optimal control problem: control system
The parameter m in the SAIRP model, is replaced by a control
function u(·).
The control u(·) represents the fraction of individuals in class P of
protected that is transferred to the class S .
Control system:

Ṡ(t) = −β(1− p) (θA(t) + I (t))S(t)− φpS(t) + wu(t)P(t),

Ȧ(t) = β(1− p) (θA(t) + I (t))S(t)− νA(t),

İ (t) = νA(t)− δI (t),

Ṗ(t) = φpS(t)− wu(t)P(t).

(5)
Control constraints: 0 ≤ u(t) ≤ umax with umax ≤ 1. In other
words, the solutions of the problem must belong to the following
set of admissible control functions:

Θ =
{
u, u ∈ L1 ([0, tf ],R) | 0 ≤ u(t) ≤ umax ∀ t ∈ [0, tf ]

}
. (6)



Optimal control problem: cost functional and state
constraint

Mathematically, the main goal consists to minimize the cost
functional

J(u) =

∫ tf

0
k1I (t)− k2 u(t) dt , (7)

representing the fact that we want to minimize the fraction of
infected individuals I and, simultaneously, maximize the intensity
of letting people from class P go back to class S . The constants
ki , i = 1, 2, represent the weights associated to the class I and
control u.

State constraint: Moreover, the solutions of the optimal control
problem must satisfy:
I (t) ≤ ζ with ζ = 0.6× Imax and ζ = 2/3× Imax.



Optimal control problem: numerical simulations

For the numerical simulations, we considered:

I k1 = 100, k2 = 1;

I tf = 120 days;

I (β, δ) = (1.464, 1/30), m = 0.09, p = 0.675;

I all the other parameters from previous table.

Numerically, we:

I discretized the optimal control problem to a nonlinear
programming problem, using the Applied Modeling
Programming Language (AMPL);

I after, the AMPL problem was linked to the optimization
solver IPOPT;

I the discretization was performed with n = 1500 grid points
using the trapezoidal rule as the integration method.



Active infected individuals: comparison of the solution of
the SAIRP model with the optimal control problem
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Figure: Linear and quadratic fit for the time where there is no transfer
from P to S , in terms of umax ∈ [0.05; 0.95] under the constraints
I ≤ 0.60× Imax and I ≤ 2/3× Imax. (a) Fraction of active infected
individuals. (b) Control u satisfying the constraint I (t) ≤ 0.60× Imax. (c)
Linear fit for the time with no transfer from P to S for 0 < umax ≤ 0.5.
(d) Quadratic fit for the time with no transfer from P to S for
0 < umax ≤ 0.95.



Number of hospital beds occupation for the optimal
control solutions
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Figure: (a) Number of hospital beds for umax ∈ {0.05, 0.10, 0.15, 0.20}
subject to I (t) ≤ 0.60× Imax varying between 5% and 15% of the
number of infected individuals. (b) Number of hospital beds for
umax ∈ {0.05, 0.10, 0.15, 0.20, 0.25} under the state constraint
I (t) ≤ 0.60× Imax, representing between 5% and 15% of the number of
active infected individuals. (c) ICU hospital bed occupancy for
umax ∈ {0.05, 0.10, 0.15, 0.20, 0.25} under the state constraint
I (t) ≤ 0.60× Imax. The ICU beds occupation represents between 1.5%
and 3% of the number of active infected individuals.



ICU hospital bed occupancy for
umax ∈ {0.05, 0.10, 0.15, 0.20, 0.25} s.t. I (t) ≤ 0.60× Imax
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Figure: The ICU beds occupation represents between 1.5% and 3% of the
number of active infected individuals.



Difference between protected individuals obtained via the SAIRP model wit and

without control
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Figure: Consider the maximal value of the control
umax ∈ {0.05, 0.10, . . . , 0.45, 0.50} and the constraint I (t) ≤ 0.60× Imax.
The quadratic equation for fitting the difference between the number of
individuals in class P obtained via de SAIRP model without and with
control umax ∈ {0.05, 0.10, . . . , 0.45, 0.50} (that is the number of released
people from the protected class to the susceptible), respectively, is given
by y = −1984603.049 x2 + 4030952.677 x − 239897.361.
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SAIRP model with piecewise constant functions:
pseudo-periodic solutions and multiple epidemic waves
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SAIRP model with piecewise constant functions

Generalize the previous SAIRP model to a non constant population
model with piecewise constant parameters

�
allows to model the governmental and public health decisions of
political actors, which have a large influence on the behaviors of

individuals, which in turn can change the dynamics of the epidemic
�

also allows to mathematical model the human behavior in the
application of non-pharmaceutical interventions (NPI), such as,

physical distancing, limited size of indoor and outdoor gatherings,
teleworking, regular cleaning of frequently-touched surfaces and

appropriate ventilation of indoor spaces, mask use, avoiding close
contact and hand washing.



Model with piecewise constant parameters

The human behavior and the governmental public health decision
makers can change the dynamics of the SAIRP model.

Consider parameters determined by piecewise constant functions.

Subdivide the time line [0, +∞) into a finite number of n intervals

[T0, T1) ∪ [T1, T2) ∪ · · · ∪ [Tn, +∞),

with disjoint unions, and introduce a piecewise constant function α
defined on each time interval as

α(t) = αi , t ∈ [Ti , Ti+1), 0 ≤ i ≤ n,

with T0 = 0, Tn+1 = +∞ and αi ∈ R9.



Model with piecewise constant parameters: existence and
uniqueness of global solutions

Next, consider the sequence of Cauchy problems defined for each initial
condition x0 ∈ Ω by

x(0) = x0, ẋ(t) = f
(
x(t), α0

)
, T0 < t < T1,

x(Ti ) = lim
t→Ti

t∈(Ti−1,Ti )

x(t), ẋ(t) = f
(
x(t), αi

)
, Ti < t < Ti+1, 1 ≤ i ≤ n

(8)
We are now in a position to derive the existence and uniqueness result.

Proposition
For any initial condition x0 ∈ Ω, the sequence of Cauchy problems given
by (8) admits a unique global solution, denoted again by x(t, x0), whose
components are non-negative. Furthermore, the region Ω is positively
invariant.



Existence of pseudo-periodic solutions

I Piecewise constant parameters can lead to pseudo-periodic
solutions.

Theorem
Assume that the disease-free equilibrium, Σ0, admits a non-trivial basin
of attraction Ω0 ⊂ Ω if R0 < 1, and that the endemic equilibrium Σ+

admits a non-trivial basin of attraction Ω+ ⊂ Ω if R0 > 1. Let α0 and α+

denote two sets of parameters of system (11) such that R0(α0) < 1 and
R0(α+) > 1. Let x0 ∈ Ω0 and consider the sequence of Cauchy problems

x(T0) = x0, ẋ(t) = f
(
x(t), α0

)
, T0 < t < T1,

x(Ti ) = lim
t→Ti

t∈(Ti−1,Ti )

x(t), ẋ(t) = f
(
x(t), α+

)
, Ti < t < Ti+1, for i odd,

x(Ti ) = lim
t→Ti

t∈(Ti−1,Ti )

x(t), ẋ(t) = f
(
x(t), α0

)
, Ti < t < Ti+1, for i even,

(9)

for 1 ≤ i ≤ n, where Ti is such that x(Ti ) ∈ Ω+, for i odd, and
x(Ti ) ∈ Ω0, for i even. Then the solution x(t, x0), of the latter sequence
of Cauchy problems, exhibits pseudo-oscillations between a neighborhood
N0 of Σ0 and a neighborhood N + of Σ+ in Ω.



Existence of pseudo-periodic solutions: example
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I(t) ; p = 0.2

I(t) ; p = 0.95

Figure: Solution of the sequence of Cauchy problems (9) exhibiting
pseudo-oscillations between a neighborhood N0 of Σ0 and a
neighborhood N + of Σ+ in Ω. Here I denotes the number of active
infected individuals and p the fraction, 0 < p < 1, of susceptible
individuals S that is transferred to the protected class P.



Model fitting - Portuguese COVID-19 data

Constant parameters

Parameter Description Value

Λ Recruitment rate 0.19%×N0

365
µ Natural death rate 1

81×365

θ Modification parameter 1
v Transfer rate from A to I 1
q Fraction of asymptomatic A infected ind. 0.15
φ Transfer rate from S to P 1/12 day−1

δ Transfer rate from I to R 1/27 day−1

w Transfer rate from P to S 1/45 day−1



Piecewise constant parameters from 2 March, 2020 until
15 April, 2021

Divide the time interval [0, 410] days into 9
subintervals:

I 2 March – 13 May 2020

I 13 May – 30 May 2020

I 30 May – 9 July 2020

I 9 July – 11 August 2020

I 11 August – 17 September 2020

I 17 September – 9 November 2020

I 9 November – 30 December 2020

I 30 December 2020 - 24 January 2021

I 24 January – 15 April 2021

Some important dates:

I 2 March, 2020 - first
confirmed cases in Portugal

I 12 March, 2020 - first
emergency state (schools and
borders closed)

I 2 May, 2020 - cancel
emergency state

I 14 October, 2020 - Calamity
state

I 6 November, 2020 - emergency
state

I 21 January, 2021 - schools
were closed and borders closed

I 27 April, 2021 - end of
emergency state



Piecewise constant parameters from 2 March, 2020 until
15 April, 2021

Time sub-interval βi pi mi

(transmission rate) (transfer from S to P) (transfer from P to S)

[0, 73] β1 = 1.502 p1 = 0.675 m1 = 0.066
[73, 90] β2 = 0.600 p2 = 0.650 m2 = 0.090
[90, 130] β3 = 1.240 p3 = 0.580 m3 = 0.180
[130, 163] β4 = 0.936 p4 = 0.610 m4 = 0.160
[163, 200] β5 = 1.531 p5 = 0.580 m5 = 0.170
[200, 253] β6 = 0.886 p6 = 0.290 m6 = 0.140
[253, 304] β7 = 0.250 p7 = 0.370 m7 = 0.379
[304, 329] β8 = 0.793 p8 = 0.370 m8 = 0.090
[329, 410] β9 = 0.100 p9 = 0.550 m9 = 0.090

Estimated by Method of Least Squares.



Initial conditions - Portuguese COVID-19 data

Initial condition Value Reference
N = S0 + A0 + I0 + R0 + P0 10295907 INE
S0 10295894 DGS
I0 2 DGS
A0 2/0.15 DGS
R0 0 DGS
P0 0 DGS

Source: https://www.garda.com/crisis24/news-alerts/319326/

portugal-health-officials-confirm-first-covid-19-cases-march-2

https://www.garda.com/crisis24/news-alerts/319326/portugal-health-officials-confirm-first-covid-19-cases-march-2
https://www.garda.com/crisis24/news-alerts/319326/portugal-health-officials-confirm-first-covid-19-cases-march-2


SAIRP model - fitting active infected cases in Portugal -
02 March, 2020 - 15 April, 2021
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Dynamics of a complex network of non-identical SAIRP
models

I Mobilities play an important role on the dynamics of
epidemics.

Goal:

I study the propagation of the COVID-19 outbreak in Portugal
by modeling this country by a complex network in which the
six regions studied previously for the calibration of the SAIRP
model with piecewise constant parameters.
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6

Figure: Six regions of Portugal and some of their connections: (1) Norte;
(2) Centro; (3) Lisboa e Vale do Tejo; (4) Alentejo; (5) Algarve; (6)
Pinhal litoral.



Construction of the complex network

I Consider the six regions of Portugal: Norte (1), Centro (2),
Lisboa e Vale do Tejo (3), Alentejo (4), Algarve (5), Pinhal
Litoral (6).

I Those six regions are connected by a finite number of links
that define a graph G = (V , E ) made of a set V of 6 vertices,
which correspond to the six regions, and of a set E of edges,
which model the main connections between those 6 regions.

I Couple each vertex of the graph with one instance of the
model (8).

I Since each region has its own specificity, we consider that the
multiple instances of the model are non-identical, which
means that the values of the parameters can differ from one
region to another.



Construction of the complex network

Notations:

xi = (Si Ai , Ii , Ri , Pi )
T ∈ R5, 1 ≤ i ≤ 6,

X = (x1, . . . , x6)T ∈
(
R5
)6
,

HX = (Hx1, . . . , Hx6)T ∈
(
R5
)6
,

α(t) =
(
α1(t), . . . , α6(t)

)
∈
(
R9
)6
,

where H is the matrix of coupling strengths defined by

H =


σS 0 0 0 0
0 σA 0 0 0
0 0 σI 0 0
0 0 0 σR 0
0 0 0 0 σP

 ,
with non negative coefficients σS , σA, σI , σR and σP .



Construction of the complex network - matrix of
connectivity L

Define a matrix L of connectivity: for each edge (k , j) ∈ E , k 6= j , we set
Lj,k = εj,k > 0. If (k , j) /∈ E , k 6= j , we set Lj,k = 0. The diagonal
coefficients satisfy

Lj,j = −
n∑

k=1
k 6=j

εk,j ,

thus L is a matrix whose sum of coefficients in each column is null.

Example, the connectivity matrix of the graph corresponding to
Figure 7 is given by

L =


L11 ε12 0 0 0 ε16
ε21 L22 ε23 ε24 0 ε26

0 ε32 L33 ε34 0 ε36
0 ε42 ε43 L44 ε45 0
0 0 0 ε54 L55 0
ε61 ε62 ε63 0 0 L66

 , with

L11 = −(ε21 + ε61),

L22 = −(ε12 + ε32 + ε42 + ε62),

L33 = −(ε23 + ε43 + ε63),

L44 = −(ε24 + ε34 + ε54),

L55 = −ε45, L66 = −(ε16 + ε26 + ε36).
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Construction of the complex network - continuation

I an edge (k , j) ∈ E , k 6= j , models a connection between two regions
k and j , which corresponds to human displacements from region k
towards region j ;

I the parameter σS models the rate of susceptible individuals in region
k which migrate towards vertex j . The parameters σA, σI , σR and
σP are defined analogously.

I our model can take into account the situation where a part of the
population is not concerned with the migrations. For instance, it is
relevant to consider σI = σP = 0, while σS > 0 and σA > 0.

I The set of edges E and the coupling strengths stored in the matrix
H define what is usually called the topology of the complex network.



System of equations for each region

Equations that describe the state of region j ∈ {1, . . . , 6}:

Ṡj = Λj − βj(1− pj)
(θjAj+Ij )

Nj
Sj − φjpjSj + ωjPj − µjSj + σS

5∑
k=1

Lj,kSk ,

Ȧj = βj(1− pj)
(θjAj+Ij )

Nj
Sj − νjAj − µjAj + σA

5∑
k=1

Lj,kAk ,

İj = νjAj − δj Ij − µj Ij + σI

5∑
k=1

Lj,k Ik ,

Ṙj = δj Ij − µjRj + σR

5∑
k=1

Lj,kRk ,

Ṗj = φjpjSj − ωjPj − µjPj + σP

5∑
k=1

Lj,kPk ,

(10)
(time dependence is omitted, to lighten the notations).



Existence and uniqueness of global solutions to the
complex network problem

Introduce the minimum mortality rate µ0 defined by

µ0 = min
1≤j≤6

µj ,

the positive coefficient Λ0 defined by

Λ0 =
6∑

j=1

Λj ,

and the compact region

Θ =

(xj)1≤j≤30 ∈ (R+)30 ;
30∑
j=1

xj ≤
Λ0

µ0

 .

Theorem
For any X0 ∈ Θ, the Cauchy problem given by (10) and X (0) = X0

admits a unique solution denoted by X (t, X0), defined on [0, ∞), whose
components are non-negative. Furthermore, the region Θ is positively
invariant.



Model with piecewise constant parameters: fit COVID-19 data in 6 Portuguese

regions



Complex network model: numerical simulations for
COVID-19 in Portugal

Goal:
I investigate the effect of the topology on the dynamics of the

epidemics;
I analyze the existence of a topology which minimizes the

average number of active infected individuals, during a fixed
time interval;

I analyze if other topologies are likely to worsen the level of
infection.

Set:
I σS = σA > 0, to model the mobilities of susceptible and

asymptomatic individuals;
I fix σI = σR = σP = 0;
I test a sample of 1000 randomly generated topologies among

216 topologies (id est sets of edges), for σS = σA ∈ [0.01, 0.1];
I for each randomly generated topology, we perform a

numerical integration of the complex network problem (10),
with the same parameters α1, α2, . . . , α6.



Numerical simulations: active infected individuals
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Figure: Average number of active infected individuals, per day, f or
a sample of 1000 randomly generated topologies, for
σS = σA = 0.01. The black line shows the level of infection for the
empty topology. The green circle shows the optimum topology which
minimizes the level of infection, whereas the red circle shows the
topology which leads to the highest level of infection.



Numerical simulations: effect of coupling strengths
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Figure: Average number of active infected individuals, for each
topology, with respect to the coupling strengths σS = σA. Left:
optimum topology which minimizes the level of infection of the
epidemics. Right: two examples of topologies that can increase the level
of infection, compared to the empty topology, which corresponds to the
situation where individuals do not migrate from one region to another.
Topology (c) leads to a level of infection that overcomes the level of the
empty topology for only a weak coupling strength, whereas topology (d)
seems to permanently overcome the level of the empty topology.



Numerical simulations: effect of coupling strengths
I Existence of a certain number of topologies that decrease the level

of infection, compared to the empty topology, which corresponds to
the situation where individuals do not migrate from one region to
another.
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Figure: Four remarkable topologies. (a) Empty topology, which corresponds
to the situation where individuals do not migrate from one region to another.
(b) Topology that minimizes the level of infection. (c) Topology that leads to a
level of infection greater than the level of the empty topology for only a weak
coupling strength. (d) Topology that permanently overcomes the level of the
empty topology.
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Optimal control of a delayed HIV model with
state constraints



Motivation - antiretroviral (ART) drugs for HIV infection

I The most significant advance in medical management of HIV
infection has been the treatment of patients with antiretroviral
(ART) drugs, which can suppress HIV replication to undetectable
levels.

I HIV treatment with ART requires to take medicine every day!

Source: https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/21/52/

when-to-start-antiretroviral-therapy

https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/21/52/when-to-start-antiretroviral-therapy
https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/21/52/when-to-start-antiretroviral-therapy


Motivation - immunotherapy for HIV infection

I Immunotherapy of HIV infection, aimed at reducing inflammation,
preventing immune activation by HIV, or promoting effective
immune responses, is currently being investigated.

I The goal of immunotherapy is to eliminate the need of taking
medicine every day while simultaneously chipping away at the latent
reservoir of virus-infected cells.



HIV treatment and immunotherapy combination - challenge!

I The optimal treatment scheme for HIV-positive patients remains the
subject of intense debate.

Goal
Propose effective optimal control solutions for the combination of HIV
treatment and immunotherapy, ensuring a functional behavior of the
immune system.

Hence there is considerable interest in searching for therapy regimes that may
reduce virus load and restimulate immune responses, thereby turning the
balance between HIV and the immune system in favor of the immune system.

D. Wodarz, M. Nowak, Specific therapies could lead to long-term
immunological control of HIV , Proc. Natl. Acad. Sci. 96, 464–469 (1999)



The role of the immune response - HIV model by Culshaw et al. (2004)

Cytotoxic T lymphocytes (CTLs) play a critical role in antiviral defense
by attacking virus-infected cells.
When HIV invades the body, it targets the CD4+ T cells.
The CTLs are cells that set out to eliminate infection by killing infected
cells.

I x : uninfected CD4+ T cells;

I y : infected CD4+ T cells;

I z : CTL effectors (immune
response cells).


ẋ = µ− dx − βxy ,
ẏ = βxy − ay − pyz ,

ż = cxyz − hz .

(11)

Assume: viral load is proportional to levels of infected cells.

R. V. Culshaw, S. Ruan, R. J. Spiteri,
Optimal HIV treatment by maximizing immune response, J. Math.
Biol. 48, 545–562 (2004).



Delayed HIV model with incubation period

Introduce a discrete time-delay, τ > 0, into the model (11), which
represents the incubation period - the time between the new infection
of a CD4+ T cell and the time it becomes infectious.

ẋ(t) = µ− dx(t)− βx(t)y(t),

ẏ(t) = βx(t − τ)y(t − τ)− ay(t)− py(t)z(t),

ż(t) = cx(t)y(t)z(t)− hz(t).

(12)

Initial conditions:

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), z(θ) = ϕ3(θ), (13)

−τ ≤ θ ≤ 0, where ϕ = (ϕ1, ϕ2, ϕ3)T ∈ C with C the Banach space
C
(
[−τ, 0],R3

)
of continuous functions mapping the interval [−τ, 0] into

R3.



Introduce control u1: HIV treatment (ART) + pharmacological delay (ξ1)

I introduce drug therapy by assuming that treatment reduces the
rate of viral replication: (1− u1)βxy , 0 ≤ u1 ≤ 1;

I consider pharmacological delay in HIV treatment, represented by a
discrete time delay in the control variable u1, denoted by ξ1, that
is, u1(t − ξ1), which represents the delay that occurs between the
administration of drug and its appearance within cells, due to the
time required for drug absorption, distribution, and penetration into
the target cells. see e.g.

A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and
D. D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell
life-span, and viral generation time, Science, 271 (1996), 1582–1586.



Introduce control u2: immunotherapy + absorption delay (ξ2)

I introduce immunotherapy, represented by u2, with 0 ≤ u2 ≤ umax ;

I include delay in u2, denoted by ξ2, since the human immune system
takes some time to respond to the immune therapy, see e.g.

L. Göllmann and H. Maurer, Optimal control problems with time
delays: two cases studies in biomedicine, Mathematical Biosciences
and Engineering 15 (2018), no. 5, 1137–1154.

Delayed HIV model with combination of treatment and immunotherapy:
ẋ(t) = µ− dx(t)− (1− u1(t − ξ1))βx(t)y(t),

ẏ(t) = (1− u1(t − ξ1))βx(t − τ)y(t − τ)− ay(t)− py(t)z(t),

ż(t) = cx(t)y(t)z(t)− hz(t) + u2(t − ξ2).

(14)



Optimal control problem with state and control delays
Consider the delayed control system

ẋ(t) = µ− dx(t)− (1− u1(t − ξ1))βx(t)y(t),

ẏ(t) = (1− u1(t − ξ1))βx(t − τ)y(t − τ)− ay(t)− py(t)z(t),

ż(t) = cx(t)y(t)z(t)− hz(t) + u2(t − ξ2).

(15)

Determine an admissible control function u = (u1, u2) that maximizes
the objective functional

J(u1(·), u2(·)) =

∫ tf

0

[x(t) + z(t)− u1(t)− u2(t)] dt .

subject to the delayed dynamic system (15), initial conditions/functions

x(t) = x0 = 5, y(t) = y0 = 1, ∀ − τ ≤ t ≤ 0,

z(0) = z0 = 2,

u1(t) = 0 ∀ − ξ1 ≤ t < 0, u2(t) = 0 ∀ − ξ2 ≤ t < 0,

and control constraints

0 ≤ ui (t) ≤ ui,max ∀ t ∈ [0, tf ] (i = 1, 2).



Maximum Principle for Multiple Delayed Optimal Control Problems

First order optimality condition: Maximum Principle for Multiple
Delayed Optimal Control Problems.



Maximum Principle for Multiple Delayed Optimal Control Problems

Delayed state variables: X (t) = x(t − τ), Y (t) = y(t − τ).
Delayed control variables: v1(t) = u1(t − ξ1) and v2(t) = u2(t − ξ2).
Adjoint variables: λ = (λx , λy , λz) ∈ R3.
Hamiltonian:

H = x + z − u1 − u2 + λx (µ− dx − (1− v1)βxy)

+ λy ((1− v1)βXY − ay − pyz) + λz (cxyz − hz + v2) .

Adjoint equations:
λ̇x(t) = −Hx [t]− χ[0,tf−τ ]HX [t + τ ],

λ̇y (t) = −Hy [t]− χ[0,tf−τ ]HY [t + τ ],

λ̇z(t) = −Hz [t],

(the subscripts denote partial derivatives and χ[0,tf−τ ] is the
characteristic function on the interval [0, tf − τ ].)
Transversality conditions:

λ(tf ) = (0, 0, 0)

(since the terminal state is free (x(tf ), y(tf ), z(tf )) ∈ R3).



Maximum Principle for Multiple Delayed Optimal Control Problems

The maximizing controls are determined by the switching functions

φ1(t) = Hu1 [t] + χ[0,tf−ξ1]Hv1 [t + ξ1]

φ2(t) = Hu2 [t] + χ[0,tf−ξ2]Hv2 [t + ξ2]
(16)

according to the control law

ui (t) =


0 if φi (t) < 0,

ui,max if φi (t) > 0,

singular if φi (t) = 0 on Is ⊂ [0, tf ],

(17)

for i = 1, 2.



Numerical simulations - parameter values

Parameter Description Value

λ source rate of CD4 + T cells 1 cells/day
d decay rate of CD4 + T cells 0.1 cells/day
β rate CD4 + T cells become infected [0.00025, 0.5] cells/day
a death rate infected, not by CTL killing 0.2 cells/day
p rate at which infected cells are killed by CTLs 1/day
c immune response activation rate 0.1/day
h death rate of CTLs 0.1/day

Table: Parameter values (Culshaw et. al, 2004).

Control constraints:

0 ≤ u1(t) ≤ 1 ,

0 ≤ u2(t) ≤ 0.2 ∀ t ∈ [0, tf ].

Delays Description Value

τ incubation period 0.5 day
ξ1 pharmacological delay 0.1 day
ξ2 immunotherapy delay 0.2 day



Numerical simulations: non-delayed OCP (τ = ξ1 = ξ2 = 0)

The computations are done with N = 5000 grid points and the Implicit Euler
Scheme.

The simple Euler method would not detect bang-singular-bang control u1(t).



Numerical simulations: delayed OCP

Consider the delays τ = 0.5, ξ1 = 0.2, ξ2 = 0.2.
Now u1 and u2 and bang-bang controls with 3 and 1 switching times,

respectively.



Numerical simulations: non-delayed vs delayed OCP - uninfected CD4+T

cells

I x : uninfected CD4+ T cells;

Non-delayed (τ = ξ1 = ξ2 = 0)
Delayed

(τ = 0.5, ξ1 = 0.2, ξ2 = 0.2)



Numerical simulations: non-delayed vs delayed OCP - infected CD4+T

cells and CTL’s

I y : infected CD4+ T cells;

I z : CTL effectors (immune response cells).

Non-delayed (τ = ξ1 = ξ2 = 0) Delayed
(τ = 0.5, ξ1 = 0.2, ξ2 = 0.2)



Numerical simulations: non-delayed vs delayed OCP - control u1

I u1: ART drug therapy

Non-delayed (τ = ξ1 = ξ2 = 0)
bang-singular-bang

singular arc for 1.81 ≤ t ≤ 7.34

Delayed
(τ = 0.5, ξ1 = 0.2, ξ2 = 0.2)
bang-bang, with 3 switching times

tiny bang arc u1(t) = 0,

0.875 ≤ t ≤ 0.905



Numerical simulations: non-delayed vs delayed OCP - control u1

I u1: ART drug therapy

Non-delayed (τ = ξ1 = ξ2 = 0)
bang-singular-bang

singular arc for 1.81 ≤ t ≤ 7.34

Delayed
(τ = 0.5, ξ1 = 0.2, ξ2 = 0.2)
bang-bang, with 3 switching times

tiny bang arc u1(t) = 0,

0.875 ≤ t ≤ 0.905



Numerical simulations: non-delayed vs delayed OCP - control u2

I u2: immunotherapy

Non-delayed (τ = ξ1 = ξ2 = 0)
bang-bang

one switch at t = 9.05

Delayed
(τ = 0.5, ξ1 = 0.2, ξ2 = 0.2)
bang-bang, with 1 switching time

at t = 8.765



Numerical simulations: non-delayed vs delayed OCP - control u2

I u2: immunotherapy

Non-delayed (τ = ξ1 = ξ2 = 0)
bang-bang

one switch at t = 9.05

Delayed
(τ = 0.5, ξ1 = 0.2, ξ2 = 0.2)
bang-bang, with 1 switching time

at t = 8.765



Time-delayed optimal control problem with state constraints

Consider the pure state inequality constraint:

z(t) ≤ zmax ∀ t ∈ [0, tf ] .

with an appropriate value zmax that ensures a functional behavior
of the immune system.
Using the transformation technique in [Guinn, 1976], we can transform

the time-delayed problem to an augmented non-delayed optimal control

problem to which one may apply the necessary conditions in [Hartl et al.,

1995] and [Maurer, 1979].

T. Guinn, Reduction of delayed optimal control problems to nondelayed problems, J. of Optimization

Theory and Applications 18 (1976), pp. 371–377.

R.F. Hartl, S.P. Sethi, and R.G. Vickson, A survey of the maximum principles for optimal control problems

with state constraints, SIAM Review 37 (1995), pp. 181–218.

H. Maurer, On the minimum principle for optimal control problems with state constraints, Rechenzentrum

der Universität Münster, Report 41, Münster, 1979.



Write the state constraint in the form

s(z(t)) = zmax − z(t) ≥ 0 ∀ t ∈ [0, tf ].

The state constraint has order one, since the first total time derivative

s(1)(x , y , z , v2) =
d

dt
s(z) = cx(t)y(t)z(t)− hz(t) + u2(t − ξ2)

contains the control v2 explicitly and satisfies the regularity condition
∂s(1)/∂v2 = 1 6= 0.

⇓
The measure associated with the state constraint has a density η(t) on a
boundary arc with z(t) = zmax for t ∈ [t1, t2] ⊂ [0, tf ].

⇓
Augmented Hamiltonian: adjoin the state constraint to the Hamiltonian H by a
multiplier η:

H(x ,X , y ,Y , z , λ, η, u1, v1, u2, v2) = H(x ,X , y ,Y , z , λ, u1, v1, u2, v2)+η(zmax − z).



The adjoint equations are modified by replacing the standard
Hamiltonian H by the augmented H.
Only the adjoint equation for λz changes to

λ̇z(t) = −Hz [t]+η(t) = λy (t)py(t)− λz(t)(cx(t)y(t)− h)+η(t) .

We consider again the switching functions

φ1(t) = Hu1 [t] + χ[0,tf−ξ1]Hv1 [t + ξ1]

φ2(t) = Hu2 [t] + χ[0,tf−ξ2]Hv2 [t + ξ2]

On interior arcs with z(t) < zmax the usual control law is valid:

ui (t) =


0 if φi (t) < 0,

ui,max if φi (t) > 0,

singular if φi (t) = 0 on Is ⊂ [0, tf ],

i = 1, 2.



On a boundary arc z(t) = zmax , t ∈ [t1, t2], the boundary control is
determined by the equation ż(t) = 0 which yields

v2(t) = u2(t − ξ2) = −cx(t)y(t)zmax + hzmax .

We observe that boundary control behaves like a singular control:
0 < u2(t − ξ2) < u2,max holds for t1+ < t < t2−.

⇓

0 = φ2(t) = −1 + λz(t + ξ2) ∀ t1 < t < t2.

⇓
We are able to compute the multiplier η:

0 = λ̇z(t+ξ2) = λy (t+ξ2)py(t+ξ2)−λz(t+ξ2)(cx(t+ξ2)y(t+ξ2)−h)+η(t+ξ2),

which yields

η(t + ξ2) = (−λzpy + cxy − h)(t + ξ2) , ∀ t+
1 ≤ t ≤ t−2 .



The numerical computations will show that the multiplier satisfies the
complementarity condition η(t + ξ2) ≥ 0 on [t1, t2] and η(t) = 0
elsewhere.

Moreover, the adjoint variable λz(t + ξ2) may have jumps according to

λz((tk+ξ2)+) = λz((tk+ξ2)−)−νksz(tk+ξ2) = λz((tk+ξ2)−)+νk , νk ≥ 0,

k = 1, 2, provided that the control v2(t) = u(t − ξ2) is discontinuous at
tk .

Note: The result on junctions between interior nonsingular arcs and
boundary arcs proved in Theorem 5.1 in [Maurer, 1997] imply that the
adjoint variable λz(t + ξ2) is continuous at tk if the control
v2(t) = u2(t − ξ2) is discontinuous at tk , k = 1, 2.

H. Maurer, On optimal control problems with bounded state
variables and control appearing linearly, SIAM J. Control and
Optimization, 15 (1997), 345–362.



Numerical simulations: non-delayed solution with state constraint

We consider the control problem without delays, but with the state
constraint

z(t) ≤ 2.4 ∀ t ∈ [0, tf ].

Solution: boundary arc z(t) = 2.4 for 0.92 ≤ t ≤ 1.40.



Numerical simulations: non-delayed solution with state constraint

Boundary arc:
z(t) = 2.4, t1 = 0.932 ≤ t ≤ 1.402 = t2.

Boundary control:
u2(t) = −cx(t)y(t)zmax + h zmax ,
satisfies (behaves like a singular control)
0 < u2(t) < 0.2 for t1 < t < t2

which yields
φ2(t) = −1 + λz(t) = 0 for t1 < t < t2.



Numerical simulations: non-delayed solution with state constraint

The boundary control is discontinuous at the entry time t1 = 0.932 of the
boundary arc but is continuous at the exit time t2 = 1.40.

From Theorem 5.1 in [Maurer, 1997], the adjoint variable λz(t) and hence the
switching function φ2(t) is continuous at t1, while λz(t) and φ2(t) may have a
jump at t2. Our computations yield

λz(t2−) = 1, λz(t2+) = 7.3675.

H. Maurer, On optimal control problems with bounded state variables and
control appearing linearly, SIAM J. Control and Optimization, 15 (1997),
345–362.



Numerical simulations: non-delayed solution with state constraint

The multiplier for the state constraint is given by

η(t) = −λz(t)py(t) + cx(t)y(t)− h,

for the state constraint.

The multiplier η(t) satisfies the complementarity condition:

η(t + ξ2) ≥ 0 on [t1, t2] and η(t) = 0 elsewhere.



Numerical simulations: delayed solution with state constraint

Study the solution with delays τ = 0.5, ξ1 = 0.1, ξ2 and the state
constraint

z(t) ≤ zmax = 2.4, t ∈ [0, tf ].



Numerical simulations: non-delayed vs delayed solution with state

constraint - control u1

No delays and with state
constraint z(t) ≤ 2.4.

The control u1(t) is
bang-singular-bang with a

singular arc for 1, 81 ≤ t ≤ 7, 34.

With delays and state constraint
z(t) ≤ 2.4.

The control u1(t) is bang-bang
with only one switch from u1 = 1

to u1 = 0 at t = 2.505.



Numerical simulations: non-delayed vs delayed solution with state

constraint - control u2

No delays and with state
constraint z(t) ≤ 2.4.

u2 is of the type
u2(t) = 1 | boundary | 1 | 0.

With delays and state constraint
z(t) ≤ 2.4.

u2 is of the type
u2(t) = 1 | 0 | boundary | 1 | 0.



Numerical simulations: delayed solution with state constraint

The boundary arc is given by

z(t) = 2.4 for t1 = 0.925 ≤ t ≤ 1.635 = t2.

The boundary control
v2(t) = u2(t − ξ2) = −cx(t)y(t)zmax + h zmax

behaves like a singular control
0 < v2(t) < 1 for t1 < t < t2

which yields
φ2(t) = −1 + λz(t + ξ2) = 0 for
t1 − ξ2 = 0.725 < t < 1.435 = t2 − ξ2.



Numerical simulations: delayed solution with state constraint

The boundary control v2(t) is continuous both at the entry time t1 and
exit time t2 of the boundary arc. Then it follows from [Theorem 5.1,
Maurer’1977] that the adjoint variable λz(t) may have jumps both at
t1 = 0.925 and t2 = 1.625:

λz(0.925−) = 0.3600, λz(0.925+) = 1.0
λz(1.625−) = 1.0, λz(1.625+) = 6.483



Numerical simulations: delayed solution with state constraint

The multiplier η(t) satisfies the complementarity condition:

η(t + ξ2) ≥ 0 on [t1, t2] and η(t) = 0 elsewhere.
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