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Inference via Optimization

Many inference problems are formulated as optimization problems:

@ image reconstruction, restoration, denoising, segmentation, ...
@ machine learning

V" supervised learning

V" unsupervised learning

v/ many other tasks

statistical inference
decision theory
system identification
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Inference via Optimization

Many inference problems are formulated as optimization problems:

@ image reconstruction, restoration, denoising, segmentation, ...
@ machine learning

V" supervised learning

V" unsupervised learning

v many other tasks

o statistical inference
@ decision theory
@ system identification
° ...
Standard formulation:
o observed data: y
@ unknown mathematical object (signal, image, vector, matrix,...): x
@ inference criterion:
X € arg mXin g(x,y)
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Inference via Optimization

Inference criterion:

X € argmin g(x, y)
X

Question 1: how to build g? Where does it come from?

Answer: from the application domain (machine learning, signal
processing, inverse problems, system identification, statistics, computer
vision, bioinformatics,...);

. examples ahead.
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Inference via Optimization

Inference criterion:

x cargming(x,y) = {x: g(x,y) < g(z,y), ¥z}

Question 1: how to build g? Where does it come from?

Answer: from the application domain (machine learning, signal
processing, inverse problems, system identification, statistics, computer
vision, bioinformatics,...);

. examples ahead.

Question 2: how to solve the optimization problem?

Answer: the focus of this tutorial.
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Regularized Optimization

Inference criterion: X € argmin g(x, y)
X

Typical structure of g: g(x,y) = h(x,y) + 7(x)
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Regularized Optimization

Inference criterion: X € argmin g(x, y)
X

Typical structure of g: g(x,y) = h(x,y) + 7(x)

e h(x,y) — how well x “fits" / “explains” the data y;
(data term, log-likelihood, loss function, observation model,...)

e (x) — knowledge/constraints/structure: the regularizer
e 7 > 0: the regularization parameter/constant.
o Since y is fixed, we often write simply f(x) = h(x,y),

mXin f(x) + 7(x)

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 6/64



Probabilistic/Bayesian Interpretations

Inference criterion: X € argmin g(x, y)
X

Typical structure of g: g(x,y) = h(x,y) + T (x)
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Probabilistic/Bayesian Interpretations

Inference criterion: X € argmin g(x, y)
X

Typical structure of g: g(x,y) = h(x,y) + T (x)

1
o Likelihood (observation model): p(y|x) = Zexp(—h(x,y))
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Probabilistic/Bayesian Interpretations

Inference criterion: X € argmin g(x, y)
X
Typical structure of g: g(x,y) = h(x,y) + T (x)

1
o Likelihood (observation model): p(y|x) = Zexp(—h(x,y))

e Prior:  p(x) = Zipexp(—nb(x))
plyx) p(x)

o Posterior: xly) =
p(x|y) ()

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 7/64



Probabilistic/Bayesian Interpretations

Inference criterion: X € argmin g(x, y)
Typical structure of g: g(x,y) = h(x,y) + T (x)
1
o Likelihood (observation model): p(y|x) = 7exp(—h(x,y))
!
. 1
o Prior:  p(x) = = exp(—T¢(x))
Zp
o Posterior:  p(x|y) = Pl p()
p(y)

o Log-posterior: log p(x|y) = K(y) — h(x,y) — T¢(x)
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Probabilistic/Bayesian Interpretations

Inference criterion: X € argmin g(x, y)
Typical structure of g: g(x,y) = h(x,y) + T (x)
1
o Likelihood (observation model): p(y|x) = 7exp(—h(x,y))
!
. 1
o Prior:  p(x) = = exp(—T¢(x))
Zp
o Posterior:  p(x|y) = Pl p()
p(y)

Log-posterior: log p(x|y) = K(y) — h(x,y) — m(x) = K(y) —g(x, y)

@ X is a maximum a posteriori (MAP) estimate.
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Regularizers

Inference criterion: min f(x) + 7¢(x)

Typically, the unknown is a vector x € R”
or a matrix x € R"™™m
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Regularizers

Inference criterion: min f(x) + 7¢(x)

Typically, the unknown is a vector x € R”
or a matrix x € R"™™m

Common regularizers impose/encourage one (or a combination of) the
following characteristics:

small norm (vector or matrix)

sparsity (few nonzeros)

specific nonzero patterns (e.g., group/tree structure)
low-rank (matrix)

smoothness or piece-wise smoothness
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Unconstrained vs Constrained Formulations

o Tikhonov regularization: min f(x) + 79 (x)
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Unconstrained vs Constrained Formulations

o Tikhonov regularization: min f(x) + 79 (x)

L min (x)
o Morozov regularization: x
subject to f(x) <e
min f(x)

o lvanov regularization: x
subject to  ¥(x) <9
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Unconstrained vs Constrained Formulations

o Tikhonov regularization: min f(x) + 79 (x)

min P(x)

o Morozov regularization: X
subject to f(x) <e

min f(x)

o lvanov regularization: x
subject to  ¥(x) <9

Under mild conditions, these are all equivalent (in a precise sense).

Which one is more convenient is problem-dependent.
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Example: Under- and Over-Constrained Linear Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")
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Example: Under- and Over-Constrained Linear Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")
o Trivial case, A is invertible: x = A7y
o Over-determined system (m > n); least squares solution

(rank(A) = n):
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Example: Under- and Over-Constrained Linear Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")

o Trivial case, A is invertible: x = A7y

o Over-determined system (m > n); least squares solution
(rank(A) = n):

= argmin Z — (Ax);)? = argmin|ly — Ax[3 = (ATA)*ATy
X

° Under-determlned system (m < n); minimum norm solution

(rank(A) = m):

- { arg min [|x|3
X = X

=AT(AAT) 1y
st. Ax=y } ( )
o Non-trivial cases: resort to optimization and regularization.

o Quadratic (Euclidean norm) losses and regularizers have a long, rich
history: Gauss, Legendre, Wiener, Moore-Penrose, Tikhonov, ...

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 10/ 64



Norms: A Quick Review

Consider some real vector space V, for example, R"” or R"™" ...
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o ||ax|| = || ||x]|, for any x € V and « € R (homogeneity);
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Norms: A Quick Review

Consider some real vector space V, for example, R"” or R"™" ...

Some function || - || : V — R4 is a norm if it satisfies:

o ||ax|| = || ||x]|, for any x € V and « € R (homogeneity);
o [x+ X < [Ix[l + [IX]
° |x||=0 = x=0.

, for any x,x" € V  (triangle inequality);

Examples:

1/
o V=R" |x|lp = (Z |x,-|p) g (called #, norm, for p > 1).
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Norms: A Quick Review

Consider some real vector space V, for example, R"” or R"™" ...

Some function || - || : V — R4 is a norm if it satisfies:
o ||ax|| = || ||x]|, for any x € V and « € R (homogeneity);
o Ilx+ x|l < x| + I
° |x||=0 = x=0.

, for any x,x" € V  (triangle inequality);

Examples:
1/p
o V=R" |x|l, = (Z |X,'|p) (called #, norm, for p > 1).
i
° V=R" |lxfloo = lim [Ix]lp = max{|xt];..., [xn]}
o V=R™" |X|,=trace(VXTX) (matrix nuclear norm)

Also important (but not a norm): ||x|lo = lim |||} = [{i : x; # O}|
p—0
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Norm balls

Radius r ball in £, norm: Bo(r) ={xeR": ||x]|p < r}

|
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Examples: Back to Under-Constrained Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")

o Under-determined system (m < n); minimum norm solution:

- { argmin ||x|3
X = X

= A*(AA*)L
st. Ax=y } ( )y
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Examples: Back to Under-Constrained Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")

o Under-determined system (m < n); minimum norm solution:

: 2
o { arg min |[x||3

} = A*(AA*) "ty # x (in general)
st. Ax=y

o Can we hope to recover x? Yes! ..if x is sparse enough (||x|lo < k)
and A satisfies some conditions, using

X = argmin |x]|o
X

st. Ax=y

Several proofs, under different conditions (more later).

But, this is a hard problem! £3 “norm” is not convex.
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Review of Basics: Convex Sets

Convex and strictly convex sets

S isconvexif z,2' €S =VA€[0,1], da+(1—-N2' €S

convex non-convex

S is strictly convex if 7,2 € S = VA € (0,1), Ax+ (1 — N2’ € int(S)

convex, but
not strictly

strictly
convex
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Review of Basics: Convex Functions

Extended real valued function: f:RY - R=RU {400}
Domain: dom(f) = {x: f(z) # +o0}
f is proper if dom(f) # ()

f is convex if
VA€ [0,1],z,2" € dom(f) f(Az+ (1 —N)z') < Af(x) + (1 —N)f(z))

f is strictly convex if
VA€ (0,1),z,2" € dom(f) f(Ax+ (1 —=X)2') < Af(z)+ (1= N)f(2")

I
convex, not strictly

!
non-convex strictly convex
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Lower Semi-Continuity: Why Is It Important?

A function f : R” — R is lower semi-continuous (l.s.c.) if

Iirlinf > f(xp), for any xp € dom(f)
X—rXo

or, equivalently, {x : f(x) < a} is a closed set, for any « € R

e ™, ifx<0 e, ifx<0
f(x)_{+oo, if x>0 f(x)_{—l—oo, if x>0

dom(f) =] — 00, 0[, argmin, f(x) =0 dom(f) =] — 0, 0], argmin, f(x)= {0}

Unless stated otherwise, we only consider I.s.c. functions.
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Coercivity, Convexity, and Minima

f:RY 5 R=RU{+o0}
fiscoerciveif  lim f(x) = +oo
[| ]| —+o0
iff is coercive, then G = arg min f(:I:) is a non-empty set
x

iff is strictly convex, then (G has at most one element

coercive and coercive, not convex, not
strictly convex strictly convex coercive
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Another Important Concept: Strong Convexity

Recall the definition of convex function: VA € [0, 1],

FO A+ (1= A)x) < M(x) + (1 — NF(X)

. M)+ (1N )
S fAz+ (1= N)2)

x 2

Az + (1 — N2’

convexity
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Another Important Concept: Strong Convexity

Recall the definition of convex function: VA € [0, 1],

FO A+ (1= A)x) < M(x) + (1 — NF(X)

A [B—strongly convex function satisfies a stronger condition: VA € [0, 1]

B

FOOx 4+ (1= A)x) < M(x) + (1 = NFf(x) — ML= N)x = X3

. M)+ (1N )
S fAz+ (1= N)2)

x 2

Az + (1 — N2’

convexity

M. Figueiredo, 2021

8
A= Nz -3

SN M()+ (1= N f()
~ A fPe+ (1))
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Another Important Concept: Strong Convexity

Recall the definition of convex function: VA € [0, 1],
FAx + (1= A)x') < AMf(x) + (1 = N)f(X)
A [B—strongly convex function satisfies a stronger condition: VA € [0, 1]

FOX + (1= A)¥) < M(x) + (1 — A)F(x') — gm ~)lx = X2

8
A= Nz -3

. M)+ (1N )
S fAz+ (1= N)2)

/

SN M()+ (1= N f()
~ A fPe+ (1))

T X xT £E/
Az + (1 — N2’ Az + (1= N2/
convexity strong convexity

. = . .
Strong convexity i strict convexity.
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A Little More on Convex Functions

Let f1, ..., fy : R” — R be convex functions. Then
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A Little More on Convex Functions

Let f1,..., fy : R” — R be convex functions. Then
o f:R" = R, defined as f(x) = max{f(x), ..., fn(x)}, is convex.

o g:R" — R, defined as g(x) = fi(L(x)), where L is affine, is convex.
Note: L is affine < L(x) — L(0) is linear; e.g. L(x) = Ax + b.
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A Little More on Convex Functions

Let f1,..., fy : R” — R be convex functions. Then
o f:R" = R, defined as f(x) = max{f(x), ..., fn(x)}, is convex.

o g:R" — R, defined as g(x) = fi(L(x)), where L is affine, is convex.
Note: L is affine < L(x) — L(0) is linear; e.g. L(x) = Ax + b.

— N
o h:R" - R, defined as h(x) = >

Flajij-(x), for aj > 0, is convex.
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A Little More on Convex Functions

Let f1,..., fy : R” — R be convex functions. Then
o f:R" = R, defined as f(x) = max{f(x), ..., fn(x)}, is convex.
o g:R" — R, defined as g(x) = fi(L(x)), where L is affine, is convex.
Note: L is affine < L(x) — L(0) is linear; e.g. L(x) = Ax + b.
N

o h:R" - R, defined as h(x) = >~
J:

ajfi(x), for aj > 0, is convex.
An important function: the indicator of a set C C R”,

0 < xeC

tc ' R" 5 R, Lc(X):{ too « x¢C

If C is a closed convex set, ¢¢ is a |.s.c. convex function.
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The Case of Differentiable Functions

Let f: R" — R be twice differentiable and consider its Hessian matrix at
x, denoted V2f(x) (or Hf(x)):

of
2 _ s
(V f(x))l.j = —3x;8Xj’ fori,j=1,...,n.
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The Case of Differentiable Functions

Let f : R™ — R be twice differentiable and consider its Hessian matrix at
x, denoted V2f(x) (or Hf(x)):

of

i 0x;0x;

(V2f(x)) fori,j=1,...,n.

o f is convex < its Hessian V2f(x) is positive semidefinite V,

o f is strictly convex <= its Hessian V2f(x) is positive definite V,
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The Case of Differentiable Functions

Let f : R™ — R be twice differentiable and consider its Hessian matrix at
x, denoted V2f(x) (or Hf(x)):

of
2 _ s
(V f(x))ij = —8x;8Xj’ fori,j=1,...,n.

o f is convex < its Hessian V2f(x) is positive semidefinite V,
o f is strictly convex <= its Hessian V2f(x) is positive definite V,

o f is B-strongly convex < its Hessian V2f(x) = 3/, with 3 > 0, V..
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More on the Relationship Between ¢; and /g

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).
w = argmin|w|o

st |JAw —y|3 <6

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation



More on the Relationship Between ¢; and /g

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).
w = argmin|w|o
st |JAw —y|3 <6

The related best subset selection problem is also NP-hard (Amaldi and
Kann, 1998; Davis et al., 1997).

w = argmin|Aw — y|3
w

s. tlwllo <7
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More on the Relationship Between ¢; and /g

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).
w = argmin|w|o
st |JAw —y|3 <6

The related best subset selection problem is also NP-hard (Amaldi and
Kann, 1998; Davis et al., 1997).

w = argmin|Aw — y|3
w

s. tlwllo <7

Under conditions, replacing o with ¢1 yields “similar” results:
central issue in compressive sensing (CS) (Candgs et al., 2006a; Donoho,
2006)
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Compressive Sensing in a Nutshell
y A w
! @ i h

Nx1 NxD, N<D

Dx1

Even in the noiseless case, it seems impossible to recover w from y
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Compressive Sensing in a Nutshell

y A w

(+ noise )

Nx1 NxD, N<D

Dx1

Even in the noiseless case, it seems impossible to recover w from y
...unless, w is sparse and A has some properties.

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation



Compressive Sensing in a Nutshell
y A w
! Fm -

Nx1 NxD, N<D

Dx1

Even in the noiseless case, it seems impossible to recover w from y
...unless, w is sparse and A has some properties.

If w is sparse enough and A has certain properties, then w is stably
recovered via (Haupt and Nowak, 2006)

w = argmin|wlp
w

s. t. [[Aw —y|| <0 NP-hard!
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Compressive Sensing in a Nutshell

Under some conditions on A (e.g., the restricted isometry property (RIP)),
o can be replaced with ¢; (Candes et al., 2006b):

w = argmin|w|1
w

subject to ||[Aw — y|| < 6 convex problem
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Compressive Sensing in a Nutshell

Under some conditions on A (e.g., the restricted isometry property (RIP)),
o can be replaced with ¢; (Candes et al., 2006b):

w = argmin|w|1
w

subject to ||[Aw — y|| < 6 convex problem
Matrix A satisfies the RIP of order k, with constant ¢, € (0,1), if
Iwllo < k = (1= d)llwl3 < |Awl3 < (1 +di)llwli3

...i.e., for k-sparse vectors, A is approximately an isometry.
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Compressive Sensing in a Nutshell

Under some conditions on A (e.g., the restricted isometry property (RIP)),
o can be replaced with ¢; (Candes et al., 2006b):

w = argmin|w|1
w
subject to ||[Aw — y|| < 6 convex problem
Matrix A satisfies the RIP of order k, with constant ¢, € (0,1), if
lwllo < k = (1= 80)[wll3 < [[Aw3 < (1 +d)llwli3
...i.e., for k-sparse vectors, A is approximately an isometry.

Other properties (spark and null space property (NSP)) can be used;
caveat: checking RIP, NSP, spark is NP-hard (Tillmann and Pfetsch, 2012).
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Examples: Back to Under-Constrained Systems

Let X be the sparsest solution of Ax = y, where A € R™*" and m < n.

X =argmin |[x[[o s.t. Ax=y.

Consider the ¢; norm version: min ||x||1 s.t. Ax=1y
X
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X =argmin |[x[[o s.t. Ax=y.
Consider the ¢; norm version: min ||x||1 s.t. Ax=1y
X

Advantage: this is a convex problem! Fact: all norms are convex.
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Examples: Back to Under-Constrained Systems

Let X be the sparsest solution of Ax = y, where A € R™*" and m < n.

X =argmin |[x]o s.t. Ax=y.
Consider the ¢; norm version: min ||x||1 s.t. Ax=1y
X

Advantage: this is a convex problem! Fact: all norms are convex.
Of course, X solves this problem too, if |[x + v|1 > ||x]|1, Vv € ker(A).

Recall: ker(A) = {x € R": Ax = 0} is the kernel (a.k.a. null space) of A.
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Examples: Back to Under-Constrained Systems

Let X be the sparsest solution of Ax = y, where A € R™*" and m < n.

X =argmin [[x|lo st. Ax=y.
Consider the ¢; norm version: mXin Ix|][1 st. Ax=y
Advantage: this is a convex problem! Fact: all norms are convex.
Of course, X solves this problem too, if |[x + v|1 > ||x]|1, Vv € ker(A).

Recall: ker(A) = {x € R": Ax = 0} is the kernel (a.k.a. null space) of A.

Next: elementary analysis by Yin and Zhang (2008), based on work by
Kashin (1977) and Garnaev and Gluskin (1984).
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Equivalence Between /; and ¢y Optimization

o Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.

@ Minimum /; solution(s): G = argmin ||x||; s.t. Ax=1y.
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Equivalence Between /; and ¢y Optimization

o Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.
@ Minimum /; solution(s): G = argmin ||x||; s.t. Ax=1y.

0 X€G, if |Z+vlL> IR, Vv € ker(A)
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Equivalence Between /; and ¢y Optimization

o Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.
@ Minimum /; solution(s): G = argmin ||x||; s.t. Ax=1y.
o xe€ G, if ||x+v|1>|x|l1, Vv € ker(A)

o let S={i: x;#0} and Z={1,..,n}\S

1% + v]l1 = [|%s + vs|l1 + [[vz]1
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Equivalence Between /; and ¢y Optimization

o Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.
@ Minimum /; solution(s): G = argmin ||x||; s.t. Ax=1y.

o xe G, if ||X+v|1>]Xx|1, Vv e ker(A)

o let S={i: x;#0} and Z={1,..,n}\S

X+ vll1 = [IXs + vsll1 + [lvzllx
> |IXsll1 + llvzllr — llvs|ls (Ila+ bl > |lall — [|b]l)
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Equivalence Between /; and ¢y Optimization

o Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.
@ Minimum /; solution(s): G = argmin ||x||; s.t. Ax=1y.
o xe G, if ||x+v|1>|x|l1, Vv € ker(A)
o let S={i: x;#0} and Z={1,..,n}\S
1%+ vllL = lIxs + vsll1 + [lvzl1

> [IXsllx + llvzlly = [lvslla (la+ bl = flall = l[6])
= [IXllx + lIvlly = 2[lvs]la
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Equivalence Between /; and ¢y Optimization

o Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.
@ Minimum /; solution(s): G = argmin ||x||; s.t. Ax=1y.
o xe€ G, if ||x+v|1>|x|l1, Vv € ker(A)

o let S={i: x;#0} and Z={1,..,n}\S

1% + v]l1 = [|%s + vs|l1 + [[vz]1

> |51 + llvzlls — [Jvslx (la+ bl > [lall — ||6]])
= [I%ll1 + [[vlls — 2[lvs]lx
> [|%[l1 + [Iv]s — 2VK]|v]2. (lalls < v/ lall2)
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Equivalence Between /; and ¢y Optimization

o Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.
@ Minimum /; solution(s): G = argmin ||x||; s.t. Ax=1y.

o xe G, if ||X+v|1>]Xx|1, Vv e ker(A)

o let S={i: x;#0} and Z={1,..,n}\S

1% + v]l1 = [|%s + vs|l1 + [[vz]1

> [[Xslls + [lvzlls = [[vs|lx (la+ bl = [lall = [6])

= X[l + Ivll = 2llvsllx

> [I%llx + vl = 2Vkllvil- - (llall < vAllall)
Hence, x € G, if %HVH2 > Vk, Vv € ker(A)

...but, in general, we have only: 1 < livilx <+/n

vl
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Equivalence Between /; and ¢y Optimization

o Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.
@ Minimum /; solution(s): G = argmin ||x||; s.t. Ax=1y.

o xe G, if ||X+v|1>]Xx|1, Vv e ker(A)

o let S={i: x;#0} and Z={1,..,n}\S

1% + v]l1 = [|%s + vs|l1 + [[vz]1

> ||%s]ly + [lvzlls — [[vs|lx (la+ bl > [lall — ||6]])
= [I%ll1 + [[vlls — 2[lvs]lx
> [|%[l1 + [Iv]s — 2VK]|v]2. (lalls < v/ lall2)

Hence, X € G, if %”V”2 > Vk, Vv € ker(A)
...but, in general, we have only: 1 < % <+/n

(vl

However, we may have H;H; > 1, if v is restricted to a random subspace.
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Bounding the ¢1 /¢, Ratio in Random Matrices

If the elements of A € R™*" are sampled i.i.d. from N(0,1) (zero mean,
unit variance Gaussian), then, with high probability,

vl . cym
[vil2 = \/log(n/m)’

for all v € ker(A),

for some constant C (based on concentration of measure phenomena).

Thus, with high probability, x € G, if
4
m > ﬁk log n

Conclusion: Can solve under-determined system, where A has i.i.d.
N(0,1) elements, by solving

min ||x|[1 s.t. Ax = b,
X

(a convex problem), if the solution is sparse enough.
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Ratio ||v||1/||v||2 on Random Null Spaces

Random A € R**7, showing ratio ||v||1 for v € ker(A) with |v|> =1

Blue: |lv|l1 ~ 1. Red: ratio =~ /7. Note that ||v||; is well away from the
lower bound of 1 over the whole nullspace.
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When Data is Noisy

Sparse vector x

Observed data y

2 0.2
1.5 y - AX + n 0.15 B
1 0.1 H
0.5 0.05 ,
AR , ‘ Random matrix 0 !
-0.5 ‘ -0.05 4
-1 0.1 4
15 -0.18 1
20 200 400 600 800 @ % % % E3 % @
2
Under certain conditions, “perfect” 18 -
recovery is possible 1 x
0.5 ‘
i:argmxin{Hy*Ax\|2+2)\HxH1} 0 LU :
0.5
El
[Candés, Romberg, Tao, 2004 — 2006] 15
[Donoho, 2006]
-20 200 400 600 800 1000
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The Ubiquitous /1 Norm

o Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996)
a.k.a. basis pursuit denoising (Chen et al., 1995):

.1 :
min > Ax = |3 + 7]lx[[x or min[Ax =y st. [Ix|ly <

or, more generally,

min f(x) + Al|lx|]s or minf(x) s.t. ||x|l1 <¢
X X

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 29 /64



The Ubiquitous /1 Norm

o Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996)
a.k.a. basis pursuit denoising (Chen et al., 1995):

.1 :
min > Ax = |3 + 7]lx[[x or min[Ax =y st. [Ix|ly <

or, more generally,

min f(x) + Al|lx|]s or minf(x) s.t. ||x|l1 <¢
X X

o Widely used in statistics, signal processing, neural networks, ...
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Geology/geophysics

— Claerbout and Muir (1973)
Taylor et al. (1979)

Levy and Fullager (1981)
Oldenburg et al. (1983)

(Tibshirani, 1996)

o Lasso (least al
a.k.a. basis pi

1 — Santosa and Symes (1988)
mXin §||A + Radio astronomy st [[x]li <9
— Hoégbom (1974)
or, more gene — Schwarz (1978)
» Fourier transform spectroscopy
m) - Kawata et al. (1983) X[ <6

— Mammone (1983)
— Minami et al. (1985)
* NMR spectroscopy
— Barkhuijsen (1985)
— Newman (1988)
* Medical ultrasound
— Papoulis and Chamzas (1979)

o Widely used if networks, ...

from (Goyal et al, 2010)
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The Ubiquitous ¢; Norm

o Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996)
a.k.a. basis pursuit denoising (Chen et al., 1995):

.1 .
min > Ax = |3 + 7]lx[[x or min[Ax =y st. [Ix|ly <
or, more generally,

min f(x) + Al|lx|]s or minf(x) s.t. ||x|l1 <¢
X X

o Widely used in statistics, signal processing, neural networks, ...

@ Many extensions: namely to express structured sparsity (more later).
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The Ubiquitous ¢; Norm

o Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996)
a.k.a. basis pursuit denoising (Chen et al., 1995):

.1 .
min > Ax = |3 + 7]lx[[x or min[Ax =y st. [Ix|ly <
or, more generally,

min f(x) + Al|lx|]s or minf(x) s.t. ||x|l1 <¢
X X

o Widely used in statistics, signal processing, neural networks, ...
@ Many extensions: namely to express structured sparsity (more later).

o Why does ¢ yield sparse solutions? (next slides)
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The Ubiquitous ¢; Norm

o Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996)
a.k.a. basis pursuit denoising (Chen et al., 1995):

.1 .
min > Ax = |3 + 7]lx[[x or min[Ax =y st. [Ix|ly <
or, more generally,

min f(x) + Al|lx|]s or minf(x) s.t. ||x|l1 <¢
X X

o Widely used in statistics, signal processing, neural networks, ...
@ Many extensions: namely to express structured sparsity (more later).
o Why does ¢ yield sparse solutions? (next slides)

@ How to solve these problems? (this tutorial)
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Why /¢; Yields Sparse Solution

w* = argmin,, |[|Aw — y|3 vs  w*= argmin, |[[Aw —y|3
s.t. w2 <o s.t. lwlls <o
e wy
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Why /¢; Yields Sparse Solution

The simplest problem with ¢; regularization

1 y—XA <& y>A
w = arg min E(W—y)2 + Alw| = soft(y,A\)=¢ 0 < |yl <A
i Y+ <= y< =X
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Why /¢; Yields Sparse Solution

The simplest problem with ¢; regularization

1 y—XA <& y>A
w = arg min E(W—y)2 + Alw| = soft(y,A\)=¢ 0 < |yl <A
i Y+ <= y< =X

soft(y, A)
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Why /¢; Yields Sparse Solution

The simplest problem with ¢; regularization

1 y—XA <& y>A
= argmin E(W—y)2 + Alw| = soft(y,A\)=¢ 0 < |yl <A
i Y+ <= y< =X

3

soft(y, A)

‘ ...by the way, how was this solved? (more later).
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Why /¢; Yields Sparse Solution

The simplest problem with ¢; regularization

1 y—XA <& y>A
= argmin E(W—y)2 + Alw| = soft(y,A\)=¢ 0 < |yl <A
" y+A < y<-=2A

3

soft(y, A)

‘ ...by the way, how was this solved? (more later).

Contrast with the squared /> (ridge) regularizer (linear scaling):

. 1 A
W:argmmllna(w—y)2+§W2:1+—>\y
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Why /¢; Yields Sparse Solution

The simplest problem with ¢; regularization

1 y—XA <& y>A
= argmin E(W—y)2 + Alw| = soft(y,A\)=¢ 0 < |yl <A
" y+A < y<-=2A

3

soft(y, A)

‘ ...by the way, how was this solved? (more later).
Contrast with the squared /> (ridge) regularizer (linear scaling):

_ 1 A 1 _
w = argmin E(W_y)2+§wz =137 (zero iff y = 0)
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More on the Relationship Between ¢; and /g

The £y “norm” (number of non-zeros): ||wllo = |{i: w; # 0}
Not a norm, not convex, but in the simple case...

_ 1 Vv oy
w = arg mM|/n E(W - y)2 + )\|W|0 = hard(y, 2)\) = { é)/ z iil z ;i

M. Figueiredo, 2021
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More on the Relationship Between ¢; and /g

The £y “norm” (number of non-zeros): ||wllo = |{i: w; # 0}
Not a norm, not convex, but in the simple case...

_ 1 Vv oy
w = arg mM|/n E(W — y)2 + )\|W|0 = hard(y, 2)\) = { é)/ z iil z ;i

soft(y, A)

—A

M. Figueiredo, 2021
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Another Application: Images

Natural images are well represented by a few coefficients in some bases.
o Images (N x M = n pixels) are represented by vectors x € R”
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Another Application: Images

Natural images are well represented by a few coefficients in some bases.
o Images (N x M = n pixels) are represented by vectors x € R”

o Typical images have representations x = Ww that are sparse
(lw|lo < n) on some bases (WTW = WWT =), such as wavelets.

Original 1000 x 1000 image x € R __only its 25000 largest coefficients.
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Another Application: Images

Natural images are well represented by a few coefficients in some bases.
o Images (N x M = n pixels) are represented by vectors x € R”

o Typical images have representations x = Ww that are sparse
(lw|lo < n) on some bases (WTW = WWT =), such as wavelets.

Original 1000 x 1000 image x € R __only its 25000 largest coefficients.

o Also (even more) true with an over-complete tight frame; W is “fat”
(more columns than rows) and WWT =/, but WTW # I.
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Application to Image Deblurring/Deconvolution

blurred restored

N .1
X € argmin §||AX — yII% + 7 [|x[[1

A =BW
\

wavelet basis (or tight frame)
convolution (blur)
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Application to Magnetic Resonance Imaging

. 1
X € argmin §HAX —yll3 + 7%/

A =MUW

binary mask / \ \ wavelet basis (or tight frame)

discrete Fourier transform

original acquired slices in DFT domain  reconstruction WX
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Machine/Statistical Learning: Linear Regression

Data N pairs (x1,y1), ..., (X, yn), where x; € RY (feature/variable
vectors) and y; € R (outputs).

Q

Goal: find “good” linear function: y = Z wix; + g1 =[x 1]w
j=1
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Machine/Statistical Learning: Linear Regression

Data N pairs (x1,y1), ..., (X, yn), where x; € RY (feature/variable
vectors) and y; € R (outputs).

Q

Goal: find “good” linear function: y = Z wix; + g1 =[x 1]w
j=1

Assumption: data generated i.i.d. by some underlying distribution Px y

Mean squared error: min E(Y - [XT].]W)2 impossible! Px y unknown
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Machine/Statistical Learning: Linear Regression

Data N pairs (x1,y1), ..., (X, yn), where x; € RY (feature/variable
vectors) and y; € R (outputs).

Q

Goal: find “good” linear function: y = Z wix; + wgyp1 =[x 1w
j=1

Assumption: data generated i.i.d. by some underlying distribution Px y

Mean squared error: min E(Y - [XT].]W)2 impossible! Px y unknown

N
i Comin L T 2_ .1 2
Empirical error: min E_l (vi — [x' 1]w)” = min vy —Awlf3,
design matrix: Aj = (x;); (j-th component of i-th sample, A;(441) = 1)
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Machine/Statistical Learning: Linear Regression

Data N pairs (x1,y1), ..., (X, yn), where x; € RY (feature/variable
vectors) and y; € R (outputs).

Q

Goal: find “good” linear function: y = Z wix; + wgyp1 =[x 1w
j=1

Assumption: data generated i.i.d. by some underlying distribution Px y

Mean squared error: min E(Y - [XT].]W)2 impossible! Px y unknown

N
i Comin L T 2_ .1 2
Empirical error: min E_l (vi — [x' 1]w)” = min vy —Awlf3,
design matrix: Aj = (x;); (j-th component of i-th sample, A;(441) = 1)

Regularization: min,, ||y — Aw||3 + T (w)
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Machine/Statistical Learning: Linear Classification

Data N pairs (x1, y1), ..., (X, yn), where x; € R? (feature vectors)
and y; € {—1,+1} (labels).

Goal: find “good” linear classifier (i.e., find the optimal weights):

d
7 = sign([x"1]w) = sign (wa.r + > wyx;)
j=1
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Machine/Statistical Learning: Linear Classification

Data N pairs (x1, y1), ..., (X, yn), where x; € R? (feature vectors)
and y; € {—1,+1} (labels).

Goal: find “good” linear classifier (i.e., find the optimal weights):

d
7 = sign([x"1]w) = sign (wa.r + > wyx;)
j=1

Assumption: data generated i.i.d. by some underlying distribution Px y

Expected error: Wren]Rig{»l]E’(lY([XTl]W)<o) impossible! Px y unknown
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Machine/Statistical Learning: Linear Classification

Data N pairs (x1, y1), ..., (X, yn), where x; € R? (feature vectors)
and y; € {—1,+1} (labels).

Goal: find “good” linear classifier (i.e., find the optimal weights):

d
7 = sign([x"1]w) = sign (wa.r + > wyx;)
j=1

Assumption: data generated i.i.d. by some underlying distribution Px y

Expected error: Wren]Rig{»lE(lY([XTl]W)<o) impossible! Px y unknown

N
Empirical error (EE): mln A Z h(yi ( [XT].]W)) where h(z) = 1,-¢.
—_—

i=1
margin
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Machine/Statistical Learning: Linear Classification

Data N pairs (x1, y1), ..., (X, yn), where x; € R? (feature vectors)
and y; € {—1,+1} (labels).

Goal: find “good” linear classifier (i.e., find the optimal weights):

d
7 = sign([x"1]w) = sign (wa.r + > wyx;)
j=1

Assumption: data generated i.i.d. by some underlying distribution Px y

Expected error: Wren]Rig{»lE(lY([XTl]W)<o) impossible! Px y unknown

N
Empirical error (EE): m|n%2h (yi ( [XT].]W)) where h(z) = 1,-¢.
—_—

i=1
margin

Convexification: EE neither convex nor differentiable (NP-hard problem).
Solution: replace h: R — {0,1} with convex loss L : R — R.
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Machine/Statistical Learning: Linear Classification

N
Criterion: min Z L(yi (w'xi + b)) +ry(w)
W= ————
i=1 margin

[\ /

f(w)

Convex loss: L: R — Ry is a (preferably convex) loss function.
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Machine/Statistical Learning: Linear Classification

N
Criterion: min Z L(yi (w'xi + b)) +ry(w)
W= ————
i=1 margin

[\ /

f(w)

Convex loss: L: R — Ry is a (preferably convex) loss function.

Regularizer: » = ¥f1 = encourage sparseness => feature selection
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Machine/Statistical Learning: Linear Classification

N
Criterion: min Z L(yi (w'xi + b)) +ry(w)
w = N——e
i=1 margin

[\ /

f(w)

Convex loss: L: R — Ry is a (preferably convex) loss function.

Regularizer: » = ¥f1 = encourage sparseness => feature selection

L(z)
hing
o Misclassification loss: L(z) = 1,< 0%
o Hinge loss: L(z) = max{1 —z,0}
squared
| 1 — error loss
o LOgiStiC |OSS: L(Z) = w misclassification loss logistic loss I
@ Squared loss: L(z) = (z — 1)? M
-2 -1 0 1 2z
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Machine/Statistical Learning: Classification

This formulation covers a wide range of linear ML methods:

N
min >~ L0y (b7 1]w)) +7(w)
i=1

()
Least squares regression: L(z) = (z —1)?, ¥(w) = 0.
Ridge regression: L(z) = (z —1)?, ¥(w) = ||w]|3.
Lasso regression: L(z) = (z — 1), ¥(w) = |[|w]1
Logistic regression: L(z) = log(1 + exp(—z)) (ridge, if ¥(w) = ||w||3
Sparse logistic regression: L(z) = log(1 + exp(—2z)), ¥(w) = [|w]1
Support vector machines: L(z) = max{1 — z,0}, ¥(w) = ||w||3
Boosting: L(z) = exp(—z),
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Machine/Statistical Learning: Nonlinear Problems

What about non-linear functions?

D
Simply use y = ¢(x,w) = Z w; ¢j(x), where ¢; : RY 5 R
j=1

Essentially, nothing changes; computationally, a lot may change!

N

min Y- Ly 9(x,w) + o(w)

i=1

~

F(w)

Key feature: ¢(x, w) is still linear with respect to w, thus f inherits the
convexity of L.

Examples: polynomials, radial basis functions, wavelets, splines, kernels,...

Recover the linear case, letting D = d + 1, fj(x) =x;, and fy41 =1.

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation
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Structured Sparsity

{1 regularization promotes sparsity

A very simple sparsity pattern: prefer models with small cardinality
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Structured Sparsity

{1 regularization promotes sparsity

A very simple sparsity pattern: prefer models with small cardinality

Can we promote less trivial sparsity patterns? How?
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Structured Sparsity

{1 regularization promotes sparsity

A very simple sparsity pattern: prefer models with small cardinality

Can we promote less trivial sparsity patterns? How?

Group/structured regularization.

M. Figueiredo, 2021

Sparse Optimization CIMI-ANITI Optimisation



Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality
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Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality

Group sparsity: discard/keep entire groups of features (Bach et al., 2012)
o density inside each group
@ sparsity with respect to the groups which are selected

o choice of groups: prior knowledge about the intended sparsity patterns
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Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality

Group sparsity: discard/keep entire groups of features (Bach et al., 2012)
o density inside each group
@ sparsity with respect to the groups which are selected

o choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if the assumption is correct (Stojnic et al., 2009)
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Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality

Group sparsity: discard/keep entire groups of features (Bach et al., 2012)
o density inside each group

@ sparsity with respect to the groups which are selected

o choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if the assumption is correct (Stojnic et al., 2009)
Many applications:

o feature template selection (Martins et al., 2011)

o multi-task learning (Caruana, 1997; Obozinski et al., 2010)

@ learning the structure of graphical models (Schmidt and Murphy,
2010)
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For feature spaces that can be arranged as a grid (examples next)

dense sparse
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For feature spaces that can be arranged as a grid (examples next)

B

dense sparse group sparse
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For feature spaces that can be arranged as a grid (examples next)

B

dense sparse group sparse

Goal: push entire columns to have zero weights

The groups are the columns of the grid
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Example: Sparsity with Multiple Classes

In multi-class (more than just 2 classes) classification, a common
formulation is

S T
y =arg max x'w,

yE{l,...,K}

Weight vector w = (wq, ..., wg) € RX? has a natural group/grid
organization:
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Example: Sparsity with Multiple Classes

In multi-class (more than just 2 classes) classification, a common
formulation is
-

y=arg max x w,
ye{l)vK}

Weight vector w = (wq, ..., wg) € RX? has a natural group/grid

organization:

input features

e T

dense sparse group sparse

labels

Simple sparsity is wasteful: may still need to keep all the features

Structured sparsity: discard some input features (feature selection)

CIMI-ANITI Optimisation 44 / 64
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Example: Multi-Task Learning

Same thing, except now rows are tasks and columns are features

Example: simultaneous regression (seek function into RY — RP)

shared features

—
group sparse

sparse

tasks

dense
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Example: Multi-Task Learning

Same thing, except now rows are tasks and columns are features

Example: simultaneous regression (seek function into RY — RP)
shared features

—_——

sparse group sparse

tasks

dense

Goal: discard features that are irrelevant for all tasks

Approach: one group per feature (Caruana, 1997; Obozinski et al., 2010)
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Group Sparsity

[ o D features
|:|I:I O - |
! U
|
g B
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Group Sparsity

o D features

o M groups G, ..., Gy, each
Gm CA{1,...,D}

. @ parameter subvectors xg,, . .., Xg,,
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Group Sparsity

o D features
% o M groups G, ..., Gy, each
Gm CA{1,...,D}
‘ @ parameter subvectors xg,, . . ., XG,,

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

M
D(x) = lIxe,ll2
m=1
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Group Sparsity

o D features

o M groups G, ..., Gy, each
Gm CA{1,...,D}

. @ parameter subvectors xg,, . .., Xg,,

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

M
D(x) = lIxe,ll2
m=1

o Intuitively: the /1 norm of the ¢/, norms

o Technically, still a norm (called a mixed norm, denoted /5 1)
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Group Sparsity

o D features
% o M groups G, ..., Gy, each
Gm CA{1,...,D}
‘ @ parameter subvectors xg,, . . ., XG,,

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

M
96 = 3 Amle, 2
m=1

o Intuitively: the /1 norm of the ¢/, norms
o Technically, still a norm (called a mixed norm, denoted /5 1)

o Weighted version: \p, are prior weights for groups (groups may have
different sizes)
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Lasso versus group-Lasso

w3

Qw) <7

-

w1

| 000 = o + ] + s
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Lasso versus group-Lasso
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Composite Absolute Penalties (Zhao et al., 2009)

A mixed-norm regularization:

M 1/r
P(x) = (ZIIXMIZ)
m=1

The r-norm of the g-norms (r > 1,9 > 1)

Technically, this is also a norm, called a mixed norm, denoted ¢, ,
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Composite Absolute Penalties (Zhao et al., 2009)

A mixed-norm regularization:

M 1/r
P(x) = (ZIIMIIZ)
m=1

The r-norm of the g-norms (r > 1,9 > 1)
Technically, this is also a norm, called a mixed norm, denoted ¢, ,

@ The most common choice: {51 norm

@ Another frequent choice: ¢, 1 norm (Quattoni et al., 2009; Graga et al.,
2009; Eisenstein et al., 2011; Wright et al., 2009)
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Three Scenarios

@ Non-overlapping Groups
o Tree-structured Groups

o Graph-structured Groups
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Non-overlapping Groups

Assume that Gy, ..., Gy (where G, C {1,...,d}) constitute a partition:

M
UJGm={1,....d} and i#j= GnG=10
i=1

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 50 /64



Non-overlapping Groups

Assume that Gy, ..., Gy (where G, C {1,...,d}) constitute a partition:

M
UJGm={1,....d} and i#j= GnG=10
i=1

M
D(x) =Y Amlxe, 2
m=1

Trivial choices of groups recover unstructured regularizers:
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Non-overlapping Groups

Assume that Gy, ..., Gy (where G, C {1,...,d}) constitute a partition:

M
UJGm={1,....d} and i#j= GnG=10
i=1

M
D(x) =Y Amlxe, 2
m=1

Trivial choices of groups recover unstructured regularizers:
o (y-regularization: one large group Gy = {1,...,d}

o /1-regularization: d singleton groups G, = {m}
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Non-overlapping Groups

Assume that Gy, ..., Gy (where G, C {1,...,d}) constitute a partition:

M
UJGm={1,....d} and i#j= GnG=10
i=1

M
D(x) =Y Amlxe, 2
m=1

Trivial choices of groups recover unstructured regularizers:
o (y-regularization: one large group Gy = {1,...,d}
o /1-regularization: d singleton groups G, = {m}
Examples of non-trivial groups:
o label-based groups

o task-based groups
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Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
= hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)
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Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
= hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)
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Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
= hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)
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Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
= hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)
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Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
= hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

o What is the sparsity pattern?
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Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
= hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

o What is the sparsity pattern?
o If a group is discarded, all its descendants are also discarded
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Matrix Inference Problems

Sparsest solution:

o From Bx = b € RP, find
x €R" (p < n).

e ming||x|lo st. Bx=0>b

@ Yields exact solution, under
some conditions.
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Matrix Inference Problems

Sparsest solution: Lowest rank solution:

o From Bx = b € RP, find e From B(X) = b € R”, find
x €R" (p < n). X e R™" (p < mn).

e miny ||x|]jo s.t. Bx=05b e miny rank(X) s.t. B(X)=05b

@ Yields exact solution, under o Yields exact solution, under some
some conditions. conditions.

Both NP—hard (in general); the same is true of noisy versions:

i k(X) s.t. |IB(X)— b|2
Xg;gﬂmfa"( ) st [|B(X) — b3
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Matrix Inference Problems

Sparsest solution: Lowest rank solution:

o From Bx = b € RP, find e From B(X) = b € R”, find
x €R" (p < n). X e R™" (p < mn).

e miny ||x|]jo s.t. Bx=05b e miny rank(X) s.t. B(X)=05b

@ Yields exact solution, under o Yields exact solution, under some
some conditions. conditions.

Both NP—hard (in general); the same is true of noisy versions:

i k(X) s.t. |IB(X)— b|2
Xgnﬂgn’,‘x"ra”( ) st [|B(X) — b3

Under some conditions, the same solution is obtained by replacing rank(X)
by the nuclear norm || X||« (as any norm, it is convex) (Recht et al., 2010)
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Matrix Nuclear Norm (and Other Norms)

@ Also known as trace norm; the /1-type norm for matrices X € R™*"

min{m,n}

o Definition: || X[, = trace(VXTX) = Z ai,
i=1

the o; are the singular values of X.
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Matrix Nuclear Norm (and Other Norms)

@ Also known as trace norm; the /1-type norm for matrices X € R™*"

min{m,n}

o Definition: || X[, = trace(VXTX) = Z ai,
i=1

the o; are the singular values of X.

o Particular case of Schatten g-norm: || X||; = Z (/)9
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Matrix Nuclear Norm (and Other Norms)

@ Also known as trace norm; the /1-type norm for matrices X € R™*"

min{m,n}

o Definition: || X[, = trace(VXTX) = Z ai,
i=1

the o; are the singular values of X.

o Particular case of Schatten g-norm: || X||; = Z (/)9

@ Two other notable Schatten norms:

min{m,n}

Z (0i)? = ZX,?J

i=1 ii

o Frobenius norm: || X|2 = || X]|lF =

o Spectral norm: ||X||oc = max {1, ..., Cmin{m,n} }
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Nuclear Norm Regularization

Tikhonov formulation: min ||B(X) — b||3 + 7|/ X ||+
X —_—— ——
f(X) TP(X)
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Nuclear Norm Regularization

Tikhonov formulation: min ||B(X) — b||3 + 7|/ X ||+
X —_—— ——
f(X) TP(X)

Linear observations: B : R™<" — RP, (B(X)) = (B, X),

By € R™", and (B, X) = BjXj = trace(B' X)
Jjk
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Nuclear Norm Regularization

Tikhonov formulation: min ||B(X) — b||3 + 7|/ X ||+
X N—_——

£(X) TH(X)
Linear observations: B : R™<" — RP, (B(X)) = (B, X)
By € R™", and (B, X) = BjXj = trace(B' X)
Jjk

Matrix completion, each B(;y has one 1 and is 0 everywhere else.
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Nuclear Norm Regularization

Tikhonov formulation: min ||B(X) — b||3 + 7|/ X ||+
X —_—— ——
f(X) TP(X)

Linear observations: B : R™<" — RP, (B(X)) = (B, X),

By € R™", and (B, X) = BjXj = trace(B' X)
Jjk

Matrix completion, each B(;y has one 1 and is 0 everywhere else.

Why does the nuclear norm favor low rank solutions?
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Nuclear Norm Regularization

Tikhonov formulation: min ||B(X) — b||3 + 7|/ X ||+
X —_—— ——
f(X) TP(X)

Linear observations: B : R™*" — RP, (B(X)) = (B, X),

By € R™", and (B, X) = BjXj = trace(B' X)
Jjk

Matrix completion, each B(;y has one 1 and is 0 everywhere else.
Why does the nuclear norm favor low rank solutions? Let Y = UAVT be
the singular value decomposition, where A = diag (01, ..., Omin{m,n}); then
1
argmin Z||Y — X||Z +7|| X[l = U soft(A,7) VT
X 2 ~——
may vyield zeros

...singular value thresholding (Ma et al., 2011; Cai et al., 2010)
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Another Matrix Inference Problem: Inverse Covariance

Consider n samples yi, ..., y, € R? of a Gaussian r.v. Y ~ N (p, C); the
log-likelihood is

L(P) = log p(y1, .., yn|P) = log det(P) — trace(SP) + constant
where S =157 (y; — p)(y; — p)7 and P = C~1 (inverse covariance).
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Another Matrix Inference Problem: Inverse Covariance

Consider n samples yi, ..., y, € R? of a Gaussian r.v. Y ~ N (p, C); the
log-likelihood is

L(P) = log p(y1, .., yn|P) = log det(P) — trace(SP) + constant
where S =157 (y; — p)(y; — p)7 and P = C~1 (inverse covariance).
Zeros in P reveal conditional independencies between components of Y:

Pj=0 < Y LYj{Yi, k#iJj}

...exploited to infer (in)dependencies among Gaussian variables. Widely
used in computational biology, neuroscience, (social) network analysis, ...

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 55 /64



Another Matrix Inference Problem: Inverse Covariance

Consider n samples yi, ..., y, € R? of a Gaussian r.v. Y ~ N (p, C); the
log-likelihood is

L(P) = log p(y1, .., yn|P) = log det(P) — trace(SP) + constant
where S =157 (y; — p)(y; — p)7 and P = C~1 (inverse covariance).

Zeros in P reveal conditional independencies between components of Y:

Pi=0 & Yi L Yi{Ys, k#i,j}

...exploited to infer (in)dependencies among Gaussian variables. Widely

used in computational biology, neuroscience, (social) network analysis, ...

Sparsity (presence of zeros) in P is encouraged by solving
gi% — log det(P) + trace(SP) +7 ||vect(P)|1
— ~ . ~ J/
f(P) ¥(P)

where vect(P) = [P11, ..., Pad] "

55 /64
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Atomic-Norm Regularization

Key concept in sparse modeling: synthesize “object” using a few atoms:

lA|

X = E Ci aj
i=1

o A is the set of atoms (the atomic set), or building blocks.
@ ¢ > 0 are weights; x is simple/sparse object = ||c|lo < |A]
o Formally, A is a compact subset of R”
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Atomic-Norm Regularization

Key concept in sparse modeling: synthesize “object” using a few atoms:

lA|

X = E Ci aj
i=1

o A is the set of atoms (the atomic set), or building blocks.
@ ¢; > 0 are weights; x is simple/sparse object = ||c|jo < |A]
o Formally, A is a compact subset of R”

The (Minkowski) gauge of A is:

[x]la =inf{t >0: x € tconv(A)}

Assuming that A centrally symmetry about the origin
(ae A = —acA), || .aisanorm, called the atomic norm
(Chandrasekaran et al., 2012).
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Atomic-Norm Regularization

The atomic norm

[x]la=inf{t>0: x € tconv(A)}
lA| | A|

:inf{;c;: x:;c,-a,-, c,-EO}

...assuming that the centroid of A is at the origin.
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Atomic-Norm Regularization

The atomic norm

[x]la=inf{t>0: x € tconv(A)}
lA| | A|

:inf{Zc;: X:ZC,'a,', C,'EO}
i=1 i=1
...assuming that the centroid of A is at the origin.

o a={3]- o] [5)- 5]} a4 i :

o conv(A) = Bi(1) (41 unit ball).

Example: the ¢; norm as an atomic norm [ ~1/5 }

o |xla =inf{t>0: xetB(l)}
= [Ix[lx
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Atomic Norms: More Examples

Examples with easy forms:
e sparse vectors
A= {£e}il,
conv(.A) = cross-polytope
lzlla = llzl

e Jow-rank matrices

*symmetric
matrices

A={A:rank(A) =1,||A||lr =1}

conv(A) = nuclear norm ball

[z]la = llz(.
e binary vectors

A= {1}V
conv(A) = hypercube

[z]la = |2/l
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Atomic-Norm Regularization

Given an atomic set A, we can adopt an lvanov formulation
min f(x) s.t. ||x]|la <§

(for some § > 0) tends to recover x with sparse atomic representation.
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(for some § > 0) tends to recover x with sparse atomic representation.

Can formulate algorithms for the various special cases — but is a general
approach available for this formulation?
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Atomic-Norm Regularization

Given an atomic set A, we can adopt an lvanov formulation
min f(x) s.t. ||x]|la <§
(for some § > 0) tends to recover x with sparse atomic representation.

Can formulate algorithms for the various special cases — but is a general
approach available for this formulation?

Yes! The conditional gradient (more later.)
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e Many inference, learning, signal/image processing problems can be
formulated as optimization problems.

Sparsity-inducing regularizers play an important role in these problems
There are several way to induce sparsity

It is possible to formulate structured sparsity

It is possible to extend the sparsity rationale to other objects, namely
matrices

@ Atomic norms provide a unified framework for sparsity/simplicity
regularization
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Focus (Initially) on Smooth Convex Functions

Consider m]iRn f(x), with f smooth and convex.
xER"

Usually assume ju/ < V2f(x) < LI, Y., with0<p <L
(L is a Lipschitz constant of Vf).
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Focus (Initially) on Smooth Convex Functions

Consider m]ilg f(x), with f smooth and convex.
xER"

Usually assume i/ < V2f(x) < LI, V., with0<p <L
(L is a Lipschitz constant of Vf).

If > 0, then f is p-strongly convex (as seen in Part 1) and

Fy) 2 F(x) + V)T (y = x) + Slly = xI3.
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Consider m]ilg f(x), with f smooth and convex.
xER"

Usually assume i/ < V2f(x) < LI, V., with0<p <L
(L is a Lipschitz constant of Vf).

If > 0, then f is p-strongly convex (as seen in Part 1) and
Fy) 2 F(x) + V)T (y = x) + Slly = xI3.

Define conditioning (or condition number) as « := L/p.
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Focus (Initially) on Smooth Convex Functions

Consider m]ilg f(x), with f smooth and convex.
xER"

Usually assume i/ < V2f(x) < LI, V., with0<p <L
(L is a Lipschitz constant of Vf).

If > 0, then f is p-strongly convex (as seen in Part 1) and
Fy) 2 F(x) + V)T (y = x) + Slly = xI3.

Define conditioning (or condition number) as ~ = L/p.

We are often interested in convex quadratics:
1
f(x) = EXTAX, ul < A=<LI or

1
f(x)=5|Bx—bll3, p/ <BTB=LI
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What's the Setup?

We consider iterative algorithms

X1 = P(xk), or xep1 = DXk, Xk—1)

Assume we can evaluate f(x;) and Vf(x;) at each iteration.
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What's the Setup?

We consider iterative algorithms

X1 = P(xk), or xep1 = DXk, Xk—1)

Assume we can evaluate f(x;) and Vf(x;) at each iteration.
Later, we look at broader classes of problems:
@ nonsmooth regularization; i.e., instead of just f(x), minimize
F(x) + 7(x);
@ nonsmooth f;
e f not available (or too expensive to evaluate exactly);
@ only an estimate of the gradient is available;

@ a constraint x € €, usually for a simple Q (e.g. ball, box, simplex).

We focus on algorithms that can be adapted to those scenarios.
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Steepest Descent

Steepest descent (a.k.a. gradient descent):

Xk+1 = Xk — o VF(xk), for some ay > 0.

Different ways to select an appropriate ay.

Q@ Hard: interpolating scheme with safeguarding to identify an
approximate minimizing c.
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Steepest Descent

Steepest descent (a.k.a. gradient descent):

Xk+1 = Xk — o VF(xk), for some ay > 0.

Different ways to select an appropriate ay.

Q@ Hard: interpolating scheme with safeguarding to identify an
approximate minimizing c.
Q@ Easy: backtracking. a, %&, %&, %o‘z, ... until sufficient decrease in f

is obtained.
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Steepest Descent

Steepest descent (a.k.a. gradient descent):

Xk+1 = Xk — o VF(xk), for some ay > 0.

Different ways to select an appropriate ay.
@ Hard: interpolating scheme with safeguarding to identify an
approximate minimizing c.
Q@ Easy: backtracking. a, %&, %a, %o‘z, ... until sufficient decrease in f
is obtained.

© Trivial: don't test for function decrease; use rules based on L and p.
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Steepest Descent

Steepest descent (a.k.a. gradient descent):

Xk+1 = Xk — o VF(xk), for some ay > 0.

Different ways to select an appropriate ay.

@ Hard: interpolating scheme with safeguarding to identify an
approximate minimizing c.
Q@ Easy: backtracking. a, %&, %o‘z, %o‘z, ... until sufficient decrease in f

is obtained.

© Trivial: don't test for function decrease; use rules based on L and p.

Analysis of 1 and 2 yields global convergence at unspecified rate, but not
applicable to non-smooth problems.

Analysis of 3 focuses on convergence rate, and leads to accelerated
multi-step methods.
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Constant (Short) Steplength

By elementary use of Taylor's theorem, and since V2f(x) =< LI,

(k1) < F0) = o (1= 5L IVF (3013

1
For ay = 1/L,  f(xkp1) < F(xx) — Z||Vf(xk)\|§,

thus IV F(xi)lI? < 2L[F(xk) — F(xkp1)]
Summing for k =0,1,..., N, and telescoping the sum,
N
D IVFGa)I? < 2L[f(x0) — Fxn41)]-
k=0

It follows that Vf(xx) — 0 if f is bounded below.

5/51
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Rate Analysis

Suppose that the minimizer x* is unique.
Another elementary use of Taylor's theorem shows that

* * 2
I = 1P < = X2 = e ( § = ) I G

so that {||xx — x*||} is decreasing.
Define for convenience: Ay := f(xx) — f(x*). By convexity, have
Ay < V)T O = x*) < IV e = x| < IV F Gl lxo — X))

From previous page (subtracting f(x*) from both sides of the inequality),
and using the inequality above, we have

L 2

DNprq < A — (1/20)||VF IR\ P —| U
k1 < Ap — (1/20)|VF(xi)||° < A 2o — 2K

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation 6/51



Weakly convex: 1/k sublinear; Strongly convex: linear

Take reciprocal of both sides and manipulate (using (1 — €)™ > 1 +¢):

1 S 1 n 1 S 1 n k+1
Api1 — Ay 2L||X0 —X*“2 VAN 2L||X0 —X*||2’

which yields
. 2L|xo — x||?
) — () < 20—
The classic 1/k convergence rate!

By assuming u > 0, can set oy =2/(p + L) and get a linear (geometric)
rate: Much better than sublinear, in the long run

2k 2k
*2< L_N *(12 1 2 * (12
b= <P < (75 ) o—xP=(1- 7)) Io—xIP
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Weakly convex: 1/k sublinear; Strongly convex

Since by Taylor's theorem we have
Ay = Fxi) = F(x*) < (L/2) I = x*|1%,
it follows immediately that

2k
f(xk)—f(x*)<£(1_ 2 ) %o — x* 12

-2 k+1

Note: A geometric/linear rate is generally better than almost any sublinear
(1/k or 1/k?) rate.
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Detour: Convergence Rates

Sequence ti, for k = 1,2, ..., that converges to zero, limy_,o tx =0
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Sublinear: t"t—:rl — 1 (for example, tx = K /k)
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Superlinear: tkt—:l — 0 (for example, t; = 7~°)

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation

9/51



Detour: Convergence Rates

Sequence ti, for k = 1,2, ..., that converges to zero, limy_,o tx =0

Sublinear: t"t—:rl — 1 (for example, tx = K/k)
Linear: tkt—zl <, for v € (0,1) (for example, tx = ,yk)
Superlinear: t"t—Jkrl — 0 (for example, ty = 7k2)

Quadratic: (t:—:)lg — B < oo (for example, t = fy2k, with v € (0,1))
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Detour: Convergence Rates

Sequence ti, for k = 1,2, ..., that converges to zero, limy_,o tx =0

Sublinear: t"t—:l — 1 (for example, tx = K /k)

Linear: tkt—f < 7, for v € (0,1) (for example, t, = v¥)

Superlinear: tkt—:l — 0 (for example, t; = 7~°)

Quadratic: (t:—:)lg — B < oo (for example, t) = 2", with v € (0,1))

The above sequences with v = 0.5
10°

Sub-Linear

Linear

LOG SCALE
5,

o 10" 6
k (LOG SCALE)
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Multistep Methods: The Heavy-Ball

Enhanced search direction with a contribution from the previous step.
(known as heavy ball, momentum, or two-step)

Consider first a constant step length «, and a second parameter [ for the
“momentum” term:

Xk+1 = Xk — Osz(Xk) + ,B(Xk — Xk,1)
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Multistep Methods: The Heavy-Ball

Enhanced search direction with a contribution from the previous step.
(known as heavy ball, momentum, or two-step)

Consider first a constant step length «, and a second parameter [ for the
“momentum” term:

Xk+1 = Xk — an(Xk) + ,B(Xk — Xk,1)

Analyze by defining a composite iterate vector:

X — x*
Wy = .
k X1 — x*
Thus

—aV2f(x*)+ (1+8) —pl

e = B+ oflwel). B = | , ;

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation 10 /51



Multistep Methods: The Heavy-Ball

Matrix B has same eigenvalues as

[—a/\ +(1+9)1

/ _(?I:| ) A:diag()‘h)‘Z?"'uAn)?

where ); are the eigenvalues of V2f(x*).
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Multistep Methods: The Heavy-Ball

Matrix B has same eigenvalues as

[‘O‘“fl ) ‘f’] C A=diag(\, A, A),

where ); are the eigenvalues of V2f(x*).

Choose «, (8 to explicitly minimize the max eigenvalue of B, obtain

4 1 2\’
=t ()
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Multistep Methods: The Heavy-Ball

Matrix B has same eigenvalues as
[_O‘A + fl +A) _gl] . A=diag(M Aas- s An),

where ); are the eigenvalues of V2f(x*).

Choose «, (8 to explicitly minimize the max eigenvalue of B, obtain

4 1 2\’
=t ()

Leads to linear convergence for ||xx — x*|| with rate approximately

(b )
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Summary: Linear Convergence, Strictly Convex f

2
o Steepest descent: Linear rate approx (1 — 7);
K

2
@ Heavy-ball: Linear rate approx (1 — ﬁ>

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation 12 /51



Summary: Linear Convergence, Strictly Convex f

2
o Steepest descent: Linear rate approx (1 — 7>;
K

2
@ Heavy-ball: Linear rate approx (1 — ﬁ>

Big difference! To reduce ||xx — x*|| by a factor €, need k large enough that

2\ K
(1 - —) <e < k> g\ loge| (steepest descent)
K

2\ K
(1 - ﬁ) <e < k> §| loge| (heavy-ball)

A factor of \/k difference; e.g. if k = 1000 (not at all uncommon in
inverse problems), need ~ 30 times fewer steps.
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Accelerated First-Order Methods

Accelerate the rate to 1/k? for weakly convex, while retaining the linear
rate (related to \/k) for strongly convex case.
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Accelerated First-Order Methods

Accelerate the rate to 1/k? for weakly convex, while retaining the linear
rate (related to \/k) for strongly convex case.

Nesterov (1983) describes a method that requires k.

Initialize: Choose xg, ap € (0,1); set yp < xo.
lterate: xxi1 ¢ Yk — %Vf(yk); (*short-step*)
find aur1 € (0,1): ofyq = (1— apqr)of + 4t

K
ar(l —ax)
04;2< + g1

set Oy =

set yi41 ¢ Xkt1 + Be(Xk+1 — X«)-

Still works for weakly convex (k = c0).
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Convergence Results: Nesterov

If g > 1/4/k, have

i} _ 1\* 4L
f(xk) — f(x*) < ¢ min ((1— ﬁ) ,m> ,

where constants ¢; and ¢ depend on xp, «pg, L.

o Linear convergence “heavy-ball” rate for strongly convex f;

o 1/k? sublinear rate otherwise.

In the special case of ag = 1//k, this scheme yields

Ak

1
V'
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Beck and Teboulle

Beck and Teboulle (2009) propose a similar algorithm.

Initialize: Choose xp; set y1 = xp, t1 = 1;

lterate:  xg < yk — £V F(yk);

tir1 < 3 <1+,/1+4t,3);

te — 1
Tkt

Vi1 < Xk + (Xk — Xk—1)-
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lterate:  xg < yk — £V F(yk);

tir1 < 3 <1+,/1+4t,3);

te — 1
Tkt

Vi1 < Xk + (Xk — Xk—1)-

For (weakly) convex f, converges with f(x) — f(x*) ~ 1/k>.
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Initialize: Choose xp; set y1 = xp, t1 = 1;

lterate:  xg < yk — £V F(yk);

tir1 < 3 <1+,/1+4t,3);

te — 1
Tkt

Vi1 < Xk + (Xk — Xk—1)-

For (weakly) convex f, converges with f(x) — f(x*) ~ 1/k>.

When L is not known, increase an estimate of L until it's big enough.
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Beck and Teboulle

Beck and Teboulle (2009) propose a similar algorithm.

Initialize: Choose xp; set y1 = xp, t1 = 1;

lterate:  xg < yk — £V F(yk);

tir1 < 3 <1+,/1+4t,3);

te — 1
Tkt

Vi1 < Xk + (Xk — Xk—1)-

For (weakly) convex f, converges with f(x) — f(x*) ~ 1/k>.
When L is not known, increase an estimate of L until it's big enough.

Beck and Teboulle (2009) do the convergence analysis in 2-3 pages;
elementary, but not intuitive.

CIMI-ANITI Optimisation 15 /51
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A Non-Monotone Gradient Method: Barzilai-Borwein

Barzilai and Borwein (1988) (BB) proposed an unusual choice of a.
Allows f to increase (sometimes a lot) on some steps: non-monotone.

Xk+1 = Xk — e VI(xk), Qi = arg moin IIsk — azk||2,

where
Sk = Xk — Xk—1, 7= Vi(xi) = VF(xe-1).
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A Non-Monotone Gradient Method: Barzilai-Borwein

Barzilai and Borwein (1988) (BB) proposed an unusual choice of a.
Allows f to increase (sometimes a lot) on some steps: non-monotone.

Xk+1 = Xk — e VI(xk), Qi = arg moin IIsk — azk||2,
where
Sk =Xk — Xk—1,  2Zk = VF(xk) = VI(x_1).
Explicitly, we have
-
S, Zk
o= %2
Zy, Zk
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A Non-Monotone Gradient Method: Barzilai-Borwein

Barzilai and Borwein (1988) (BB) proposed an unusual choice of a.
Allows f to increase (sometimes a lot) on some steps: non-monotone.

Xk+1 = Xk — e VI(xk), Qi = arg moin IIsk — azk||2,

where
Sk = Xk — Xk—1, 7= Vi(xi) = VF(xe-1).
Explicitly, we have
B S/Z—Zk

Q= .
T
Zy, Zk

Note that for f(x) = %XTAX, we have

skTAsk [1 1]

ax = - =
s A?sy L p
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A Non-Monotone Gradient Method: Barzilai-Borwein

Barzilai and Borwein (1988) (BB) proposed an unusual choice of a.
Allows f to increase (sometimes a lot) on some steps: non-monotone.

Xk+1 = Xk — e VI(xk), Qi = arg moin IIsk — azk||2,

where
Sk = Xk — Xk—1, 7= Vi(xi) = VF(xe-1).
Explicitly, we have
B S/Z—Zk

Q= .
T
Zy, Zk

Note that for f(x) = %XTAX, we have

skTAsk [1 1]

ax = - =
s A?sy L p

BB can be seen as a quasi-Newton method, with Hessian ~ a;ll.
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Comparison: BB vs Greedy Steepest Descent
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Extending to the Constrained Case: x €

How to change these methods to handle the constraint x € 2 7

(Q is a closed convex set)
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Extending to the Constrained Case: x €

How to change these methods to handle the constraint x € Q 7
(Q is a closed convex set)

Some algorithms and theory stay much the same,

...if we can involve the constraint x € Q explicity in the subproblems.
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Extending to the Constrained Case: x €

How to change these methods to handle the constraint x € Q 7
(Q is a closed convex set)

Some algorithms and theory stay much the same,

...if we can involve the constraint x € Q explicity in the subproblems.

Example: Nesterov's constant step scheme requires just one calculation to
be changed from the unconstrained version.
Initialize: Choose xg, ag € (0, 1); set yp < Xo.
lterate: xxq1 <= argminycq %Hy — vk — %Vf(yk)” %;
find ak41 € (0,1): aiﬂ = (1 — agy1)as + 2L,

K
ak(l—ak) .
set = )
IBk oo

set Y1 ¢ Xkt1 + Be(Xk+1 — Xk)-

Convergence theory is unchanged.

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation



Regularized Optimization

How to change these methods to handle regularizers?
min f(x) + 7 (x),
X

where f is convex and smooth, while 1) is convex but usually nonsmooth.
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Regularized Optimization

How to change these methods to handle regularizers?
mXin f(x) + T(x),
where f is convex and smooth, while 1) is convex but usually nonsmooth.
Often, all that is needed is to change the update step to
Xj41 = argmin [|x — S (x) 5 + A(x).

where ®(x) is gradient descent step, or something more complicated
(such as heavy ball, with ®(xx, xx_1), or some other accelerated method).
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Regularized Optimization

How to change these methods to handle regularizers?
mXin f(x) + T(x),
where f is convex and smooth, while 1) is convex but usually nonsmooth.
Often, all that is needed is to change the update step to
Xj41 = argmin [|x — S (x) 5 + A(x).
where ®(x) is gradient descent step, or something more complicated

(such as heavy ball, with ®(xx, xx_1), or some other accelerated method).

This is the shrinkage/tresholding step; how to solve it with a nonsmooth
1?7 That is the topic of the following slides.
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Handling Nonsmoothness (e.g. /; Norm)

Convexity = continuity (on the domain of the function).

Convexity # differentiability (e.g., ¥(x) = [|x||1)-

Subgradients generalize gradients for general convex functions:
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Handling Nonsmoothness (e.g. /; Norm)

Convexity = continuity (on the domain of the function).

Convexity # differentiability (e.g., ¥(x) = [|x||1)-

Subgradients generalize gradients for general convex functions:

v is a subgradient of f at x if f(x') > f(x)+v'(x — x)

Subdifferential: 0f(x) = {all subgradients of f at x}

slope v —_ \ fla) +o(

' — )

linear lower bound
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Handling Nonsmoothness (e.g. /; Norm)

Convexity = continuity (on the domain of the function).

Convexity # differentiability (e.g., ¥(x) = [|x||1)-

Subgradients generalize gradients for general convex functions:

v is a subgradient of f at x if f(x') > f(x)+v'(x — x)

Subdifferential: 0f(x) = {all subgradients of f at x}
If f is differentiable, 0f(x) = {Vf(x)}

linear lower bound
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Handling Nonsmoothness (e.g. /; Norm)

Convexity = continuity (on the domain of the function).

Convexity # differentiability (e.g., ¥(x) = [|x||1)-

Subgradients generalize gradients for general convex functions:

v is a subgradient of f at x if f(x') > f(x)+v'(x — x)

Subdifferential: 0f(x) = {all subgradients of f at x}
If f is differentiable, 0f(x) = {Vf(x)}

x
linear lower bound nondifferentiable case
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More on Subgradients and Subdifferentials

The subdifferential is a set-valued function:

fiRI SR = of :RY 2R (power set of RY)
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More on Subgradients and Subdifferentials

The subdifferential is a set-valued function:

fiRI SR = of :RY 2R (power set of RY)

f(x)
Example: —2x—1, x < —1
f(x) = —X, -1<x<0
x?/2, x>0
(-2}, x<-1 l :
[-2, -1], x=-1 0t
of(x)=4¢ {-1}, —-1<x<0
[—1, 0], x=0 X
{x}, x>0 N
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More on Subgradients and Subdifferentials

The subdifferential is a set-valued function:

fiRI SR = of :RY 2R (power set of RY)

f(x)
Example: —2x—1, x < —1
f(x) = —X, -1<x<0
x?/2, x>0
(-2}, x<-1 1 :
[-2, -1], x=-1 0t
of(x)=4¢ {-1}, —-1<x<0
[—1, 0], x=0 X
{x}, x>0 N

Fermat's Rule: x € argminy f(x) & 0 € 0f(x)

First-Order Methods CIMI-ANITI Optimisation 21/51
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A Key Tool: Moreau's Proximity Operators

Moreau (1962) proximity operator

~ o1
% € argmin S{lx — y|[3 + v(x) =: prox,(y)

...well defined for convex v, since || - —y||3 is coercive and strictly convex.
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A Key Tool: Moreau's Proximity Operators

Moreau (1962) proximity operator

~ o1
% € argmin S{lx — y|[3 + v(x) =: prox,(y)

...well defined for convex v, since || - —y||3 is coercive and strictly convex.

Example: (seen above) prox, | (y) = soft(y, 7) = sign(y) max{|y| — 7,0}
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A Key Tool: Moreau's Proximity Operators

Moreau (1962) proximity operator

~ o1
% € argmin S{lx — y|[3 + v(x) =: prox,(y)

...well defined for convex v, since || - —y||3 is coercive and strictly convex.
Example: (seen above) prox, | (y) = soft(y, 7) = sign(y) max{|y| — 7,0}

Block separability: x = (x1,...,xy) (a partition of the components of x)

Y(x) = Z_w,-(x,-) = (prox,(y))i = proxy,(yi)

Relationship with subdifferential: z = prox,(y) < z—y € 9¢(z)
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A Key Tool: Moreau's Proximity Operators

Moreau (1962) proximity operator

~ o1
% € argmin S{lx — y|[3 + v(x) =: prox,(y)

...well defined for convex v, since || - —y||3 is coercive and strictly convex.
Example: (seen above) prox, | (y) = soft(y, 7) = sign(y) max{|y| — 7,0}

Block separability: x = (x1,...,xy) (a partition of the components of x)

Y(x) = Z_w,-(x,-) = (prox,(y))i = proxy,(yi)

Relationship with subdifferential: z = prox,(y) < z—y € 9¢(z)

Resolvent: z = prox,(y) < 0€0yY(z)+(z—y) & y€(0Y+1)z
prox,(y) = (0 + 1)ty
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Important Proximity Operators

@ Soft-thresholding is the proximity operator of the /1 norm.
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Important Proximity Operators

@ Soft-thresholding is the proximity operator of the /1 norm.

o Consider the indicator LS of a convex set S;
( ) . 1” ”2 S( ) i 1” ”2 S( )
rox, .(u) = arg min X —Ul||5+ts(x) = arg min X = Pg(u
P s x 2 2 gxe.S‘ 2 Yii2

...the Euclidean projection on S.
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Important Proximity Operators

@ Soft-thresholding is the proximity operator of the /1 norm.

o Consider the indicator LS of a convex set S;
( ) . 1” ”2 S( ) i 1” ”2 S( )
rox, .(u) = arg min X —Ul||5+ts(x) = arg min X = Pg(u
P s x 2 2 gxeS 2 Yii2

...the Euclidean projection on S.

@ Squared Euclidean norm (separable, smooth):

. y
prox,|.z(y) = arg min[|x — y|3 + 7|x3 = Tor
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Important Proximity Operators

@ Soft-thresholding is the proximity operator of the /1 norm.
o Consider the indicator ts of a convex set S;
(u) = argmin _ lx— ul3 +15(x) = argmin 2 1x— y[§ = Ps(u)
prox,s(u) = argmin Z||x — ulj3 +us(x) = argmin Sfx —yllz = Ps(u
...the Euclidean projection on S.

@ Squared Euclidean norm (separable, smooth):

. y
prox,|.z(y) = arg min[|x — y|3 + 7|x3 = Tor

o Euclidean norm (not separable, nonsmooth):

(2l =), x> T
proxr. () { 0 if x[lo <
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More Proximity Operators

e prox,a
i (%) =—ry
wr if x<0 T-w if r<w
i opm@) =40 ifr=0 softm(x) =40 if 7 € [w,]
Tr_otherwise -7 fz>T
V() + Olum) ()
i ¥ e [o(R) differentiable at 0 prox, (softiyz(x))
¥'(0) =0
= el <w
v max{|z| - w,0} sign(z)w ifw< o] < 2
—w) if |z > 2w
Sign(z)
v mll w::f'u ):z 0and p + grpi—! = |z
N = if |z| < w/V2K z/(2k + 1) if |z] < w2k +1)/V2x
Y w?/2 otherwise x — wyFRsign(z) otherwise
i wla| +7lz]? + Klz]? sign(z)prox, w«znnw

%) sign(z) (]
wlz| - In(1 + wlz|) @) ign(a) (el

400 otherwise such that p+2 — zpi*! = wg
. ;l"(x) fi w0 W(es1),
o i X where W is the Lambert W-function
400 otherwise
T > N
In(z — w) + In(—w) if = € Jw,0] §(I+u+ le—wP+1) ifr<tl/w
xiii In@-=z)+In@) if z€]0,3[ 1(1 T@— \/Iz—ﬁt—zﬂ) if x> 1/m
+o0 otherwise 2 .
0 otherwise
w<0<@T (see Figure 1)

. [—rkln@) +72*/24+az ifz>0 1 N rie=:
s otherwive | T (7 70+ VE=aF T A7)
w @ raztwr T fz>0 7>0

+o0 otherwise such that p* + (a — z)p? —Kkp=w

i @ e fz>0 7>0
* +o0 otherwise such that qwp? + p? — zp = K

sz —w) —Fh@E-2) pelwal
xvii if 7 €lwd| such that p* — (w +@ + 2)p*+
+oo otherwise (wm

(e +@)p = o — o Ok (Combettes and Pesquet, 2011)
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Another Key Tool: Fenchel-Legendre Conjugates

The Fenchel-Legendre conjugate of a proper convex function f — denoted
by f*: R" — R — is defined by

f*(u) = supx’ u — f(x)

X
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Another Key Tool: Fenchel-Legendre Conjugates

The Fenchel-Legendre conjugate of a proper convex function f — denoted
by f*: R" — R — is defined by

f*(u) = supx’ u — f(x)

X

Main properties and relationship with proximity operators:

o Biconjugation: if f is convex and proper, f** = f.
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Another Key Tool: Fenchel-Legendre Conjugates

The Fenchel-Legendre conjugate of a proper convex function f — denoted
by f*: R" — R — is defined by

f*(u) = supx’ u — f(x)

X

Main properties and relationship with proximity operators:
@ Biconjugation: if f is convex and proper, f** = f.

@ Moreau's decomposition:  proxg(u) + proxs«(u) = u

...meaning that, if you know prox,, you know prox,., and vice-versa.
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Another Key Tool: Fenchel-Legendre Conjugates

The Fenchel-Legendre conjugate of a proper convex function f — denoted
by f*: R" - R — is defined by

f*(u) = supx’ u — f(x)

X

Main properties and relationship with proximity operators:
o Biconjugation: if f is convex and proper, f** = f.
@ Moreau's decomposition:  proxg(u) + proxs«(u) = u
...meaning that, if you know prox,, you know prox,., and vice-versa.

o Conjugate of indicator: if f(x) = tc(x), where C is a convex set,

f*(u) =supx’ u—1c(x) =supxu=oc(u) (support function of C).
X xeC
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From Conjugates to Proximity Operators

Notice that |u| = sup,c(_11 xTu=op_15(u), thus |- [* =11 1.

Using Moreau's decomposition, we easily derive the soft-threshold:

prox, . =1—prox,  =1-P_ ;= soft(-, 7)
P a(2) ‘ soft(z, T)

Conjugate of a norm: if f(x) = 7|x||, then f* = t|x),<r}s

where %’ + % = 1 (a Holder pair, or Holder conjugates).
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From Conjugates to Proximity Operators

Notice that |u| = sup,c(_11 xTu=op_15(u), thus |- [* =11 1.

Using Moreau's decomposition, we easily derive the soft-threshold:

prox, . =1—prox,  =1-P_ ;= soft(-, 7)
P a(2) ‘ soft(z, T)

Conjugate of a norm: if f(x) = 7|x||, then f* = t|x),<r}s
where %’ + % = 1 (a Holder pair, or Holder conjugates).
That is, || - ||, and || - ||4 are dual norms:

Izllq = sup{xz: |||l <1} = sup xTz=og,1)(2)
x€Bp(1)
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From Conjugates to Proximity Operators

@ Proximity of norm:

ProXe|., = I = Pay(r)

where Bq(7) = {x : ||x]|¢ < 7} and (l’ + Il) -1
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From Conjugates to Proximity Operators

@ Proximity of norm:

ProXe|., = I = Pay(r)

where By(7) = {x: ||x||qg < 7} and %’ + Il) =1.
o Example: computing prox|_ (notice £o is not separable):
Since L +1 =1,
ProXe o, = I = Pay(r)

... the proximity operator of ¢, norm is the residual of the projection
on an #1 ball.
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From Conjugates to Proximity Operators

@ Proximity of norm:

ProXe|., = I = Pay(r)

where By(7) = {x: ||x||qg < 7} and %’ + Il) =1.
o Example: computing prox|_ (notice £o is not separable):
Since L +1 =1,
ProXe o, = I = Pay(r)

... the proximity operator of ¢, norm is the residual of the projection
on an #1 ball.

@ Projection on ¢; ball has no closed form, but there are efficient (linear
cost) algorithms (Brucker, 1984), (Maculan and de Paula, 1989).
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Geometry and Effect of prox,

Whereas {1 promotes sparsity, /~, promotes equality (in absolute value).

Xz

@
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From Conjugates to Proximity Operators

The dual of the ¢ norm is the ¢5 norm.

Prox. ., (1) = & = Plajap<r) (1)

u < ullz <7
—u—
Tufllulle = flufz>7

maX{O Jull2 — 7}

vector soft thresholding

First-Order Methods CIMI-ANITI Optimisation 29/51



Matrix Nuclear Norm and its Prox Operator

min{m,n}
@ Recall the trace/nuclear norm: || X||. = Z oi.
i=1
@ The dual of a Schatten p-norm is a Schatten g-norm, with

%1 + % = 1. Thus, the dual of the nuclear norm is the spectral norm:

HXHOO = max {Ul, -"7Umin{m,n}} .
o If Y = UAVT is the SVD of Y, we have

prOXT”'”*(Y) = UAVT — P{X:max{al,...,amin{mm}}gT}(U/\VT)
= Usoft(/\, 7') vT.
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Atomic Norms: A Unified View

vectors

matrices

prox

atomic set

rox

atomic set

residual of TN spectral residual of | 4 — gt of
projection {:l:l} 2:V. PIOl. | 3| orthogonal
”x”OO on (1 ball ||X||2 on {yball matrices
Al =2V
KQ "4 = s_eto__fa_H Frobenius A = all
vector soft e matrix soft | matrices of
||22||2 |thresholding|  norm 1 1 e | bt S
|A| = F norm.

M. Figueiredo, 2021

First-Order Methods

CIMI-ANITI Optimisation
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Another Use of Fenchel-Legendre Conjugates

@ The original problem min f(x) + ¥(x)
o ... often has the form: min g(Ax) + 1(x)
X
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Another Use of Fenchel-Legendre Conjugates

@ The original problem min f(x)+(x)
o ... often has the form: mXin g(Ax) +(x)
o Using the definition of conjugate g(Ax) = sup, u’ Ax — g*(u)
mXin g(Ax) +(x) = iE\(f sup uT Ax — g*(u) + ¥(x)
=sup(—g*(v) + ir)1<f uT Ax 4 1(x))

= sup(—g"(u) —sup —x"ATu —3(x))

J/

$*(—ATu)
= —infg*(u) + 9" (~ATv)
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Another Use of Fenchel-Legendre Conjugates

@ The original problem min f(x)+(x)
o ... often has the form: mXin g(Ax) +(x)
o Using the definition of conjugate g(Ax) = sup, u’ Ax — g*(u)
mXin g(Ax) +(x) = iE\(f sup uT Ax — g*(u) + ¥(x)
=sup(—g*(v) + ir)1<f uT Ax 4 1(x))

= sup(—g"(u) —sup —x"ATu —3(x))

J/

$*(—ATu)
= —infg*(u) + 9" (~ATv)

o The problem inf, g*(u) +¢*(—AT u) is sometimes easier to handle.
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Basic Proximal-Gradient Algorithm

Use basic structure:
X = arg min |x — ()3 + ¥ (x).

with ®(xx) a simple gradient descent step, thus

Xk+1 = ProXg,q (xk — aka(xk))
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Basic Proximal-Gradient Algorithm

Use basic structure:
X = arg min |x — ()3 + ¥ (x).

with ®(xx) a simple gradient descent step, thus

Xk+1 = ProXg,q (xk — aka(xk))

This approach goes by many names, such as
e “proximal gradient algorithm” (PGA),
o ‘iterative shrinkage/thresholding” (IST),
o “forward-backward splitting” (FBS)
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Basic Proximal-Gradient Algorithm

Use basic structure:
X = arg min |x — ()3 + ¥ (x).

with ®(xx) a simple gradient descent step, thus

Xict1 = ProXa, s (Xk — ax VF(xc))

This approach goes by many names, such as
e “proximal gradient algorithm” (PGA),
o ‘“iterative shrinkage/thresholding” (IST),
o “forward-backward splitting” (FBS)

Reinvented several times in different communities: optimization, PDEs,
convex analysis, signal processing, machine learning.
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Convergence of the Proximal-Gradient Algorithm

e Basic algorithm: X1 = prox,,, (xx — axVf(x))
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Convergence of the Proximal-Gradient Algorithm

e Basic algorithm: X1 = prox,,, (xx — axVf(x))
o Generalized (possibly inexact) version:
Xk4+1 = (]. — )\k)xk + )\k (pl’OXakw (Xk — Oéka(Xk) + bk) + ak>

where a, and by are “errors” in computing the prox and the gradient;
Ak is an over-relaxation parameter.
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Convergence of the Proximal-Gradient Algorithm

e Basic algorithm: X1 = prox,,, (xx — axVf(x))

o Generalized (possibly inexact) version:

Xk4+1 = (]. — )\k)xk + )\k (pl’OXakw (Xk — Oéka(Xk) + bk) + ak)

where a, and by are “errors” in computing the prox and the gradient;
Ak is an over-relaxation parameter.

o Convergence is guaranteed (Combettes and Wajs, 2006) if
vV 0<infag <supay < %
v A¢ € (0, 1], with inf A >0
/5 llaell < oo and 3352 [1bel] < oo
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Proximal-Gradient Algorithm: Quadratic Case

o Consider the quadratic case (of great interest): f(x) = %||Bx — b||3.
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Proximal-Gradient Algorithm: Quadratic Case

o Consider the quadratic case (of great interest): f(x) = %||Bx — b||3.

o Here, Vf(x) = BT(B x — b) and the IST/PGA/FBS algorithm is
X1 = ProXy, s (X — kBT (Bx — b))

requires only matrix-vector multiplications with B and BT
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Proximal-Gradient Algorithm: Quadratic Case

o Consider the quadratic case (of great interest): f(x) = %||Bx — b||3.

o Here, Vf(x) = BT(B x — b) and the IST/PGA/FBS algorithm is
X1 = ProXy, s (X — kBT (Bx — b))

requires only matrix-vector multiplications with B and BT
o Very important in large-scale applications, e.g., image processing.

o Often, fast algorithms exist for computing these products (e.g. fast
Fourier transforms or wavelet transforms), but these matrices cannot
be formed and stored explicitly.
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Proximal-Gradient Algorithm: Quadratic Case

Consider the quadratic case (of great interest): f(x) = 1||[Bx — b||3.

o Here, Vf(x) = BT(B x — b) and the IST/PGA/FBS algorithm is
X1 = ProXy, s (X — kBT (Bx — b))

requires only matrix-vector multiplications with B and BT

Very important in large-scale applications, e.g., image processing.

o Often, fast algorithms exist for computing these products (e.g. fast
Fourier transforms or wavelet transforms), but these matrices cannot
be formed and stored explicitly.

@ In this case, some more refined convergence results are available.
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Proximal-Gradient Algorithm: Quadratic Case

Consider the quadratic case (of great interest): f(x) = 1||[Bx — b||3.

o Here, Vf(x) = BT(B x — b) and the IST/PGA/FBS algorithm is
X1 = ProXy, s (X — kBT (Bx — b))

requires only matrix-vector multiplications with B and BT

Very important in large-scale applications, e.g., image processing.

o Often, fast algorithms exist for computing these products (e.g. fast
Fourier transforms or wavelet transforms), but these matrices cannot
be formed and stored explicitly.

@ In this case, some more refined convergence results are available.

o Even more refined results are available if ¢¥(x) = 7|x||1
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More on IST/FBS/PGA for the (,-¢; Case

@ Problem: X € G = arg nglllg H1Bx — b3+ 7||x||1 (recall BTB < LI)
X n

o IST/FBS/PGA becomes | x41 = soft(xx — aB' (Bx — b),ar)
with o < 2/L.
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More on IST/FBS/PGA for the (,-¢; Case

@ Problem: X € G = arg m]ilg H1Bx — b3+ 7||x||1 (recall BTB < LI)
xeR"

o IST/FBS/PGA becomes | x41 = soft(xx — aB' (Bx — b),ar)
with o < 2/L.

o Thezeroset: ZC{l,..,n}: Xe G=Xxz=0

@ Zeros are found in a finite number of iterations (Hale et al., 2008):
after a finite number of iterations (xx)z = 0.
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More on IST/FBS/PGA for the (,-¢; Case

@ Problem: X € G = arg nglllg H1Bx — b3+ 7||x||1 (recall BTB < LI)
X n

o IST/FBS/PGA becomes | xi1 = soft(xx — aBT(Bx —b), ar)
with o < 2/L.

o Thezeroset: ZC{l,..,n}: Xe G=Xxz=0

@ Zeros are found in a finite number of iterations (Hale et al., 2008):
after a finite number of iterations (xx)z = 0.

o After that, if BBz = pul, with > 0 (thus k(B Bz) = L/u < o),
we have linear convergence

—~ K —~
I Xk41 — X2 < 1 Hllxk —X|l2

for the optimal choice & = 2/(L + p) (see unconstrained theory).
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Heavy Ball Acceleration: FISTA

o FISTA (fast iterative shrinkage-thresholding algorithm) is
heavy-ball-type acceleration of IST (based on Nesterov (1983)) (Beck
and Teboulle, 2009).

Initialize: Choose av < 1/L, xp; set y3 = xp, t1 = 1;

lterate: X 4= Prox, oy (vk — @V F(yk));

b1 < % (1+V1+4tk);
te — 1

tkt1

Y1 € Xk + (Xk — Xk—1)-
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Heavy Ball Acceleration: FISTA

o FISTA (fast iterative shrinkage-thresholding algorithm) is
heavy-ball-type acceleration of IST (based on Nesterov (1983)) (Beck
and Teboulle, 2009).

Initialize: Choose av < 1/L, xp; set y3 = xp, t1 = 1;

lterate: X 4= Prox, oy (vk — @V F(yk));

b1 < % (1+V1+4tk);
te — 1

tkt1

Y1 € Xk + (Xk — Xk—1)-

o Acceleration:

FISTA: f(xi) — F(%) ~ O (1(12) IST: f(x) — F(X) ~ O (k) .
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Heavy Ball Acceleration: FISTA

o FISTA (fast iterative shrinkage-thresholding algorithm) is
heavy-ball-type acceleration of IST (based on Nesterov (1983)) (Beck
and Teboulle, 2009).

Initialize: Choose av < 1/L, xp; set y3 = xp, t1 = 1;

lterate: X 4= Prox, oy (vk — @V F(yk));

b1 < % (1+V1+4tk);
te — 1

tkt1

Y1 € Xk + (Xk — Xk—1)-

o Acceleration:

FISTA: f(x¢) — F(R) ~ O (1(12) IST: f(x) — F(R) ~ O (k) .

o When L is not known, increase an estimate of L until it's big enough.
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Heavy Ball Acceleration: TwIST

o TwIST (two-step iterative shrinkage-thresholding (Bioucas-Dias and
Figueiredo, 2007)) is a heavy-ball-type acceleration of IST, for

mXin 2B x — b|3 + T(x)
o lterations (with a < 2/L)

Xpep1 = (7 = B) X+ (1 = 7)xu—1 + B proxy, (xk — BT(Bx — b))
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Heavy Ball Acceleration: TwIST

o TwIST (two-step iterative shrinkage-thresholding (Bioucas-Dias and
Figueiredo, 2007)) is a heavy-ball-type acceleration of IST, for

mXin 2B x — b|3 + T(x)
o lterations (with a < 2/L)

Xpep1 = (7 = B) X+ (1 = 7)xu—1 + B proxy, (xk — BT(Bx — b))

o Analysis in the strongly convex case: pul < BT B < LI, with p > 0.
Conditioning (as above) K = L/u < 0.
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Heavy Ball Acceleration: TwIST

o TwIST (two-step iterative shrinkage-thresholding (Bioucas-Dias and
Figueiredo, 2007)) is a heavy-ball-type acceleration of IST, for

mXin 2B x — b|3 + T(x)
o lterations (with a < 2/L)

Xpep1 = (7 = B) X+ (1 = 7)xu—1 + B proxy, (xk — BT(Bx — b))

o Analysis in the strongly convex case: pul < BT B < LI, with p > 0.
Conditioning (as above) K = L/u < 0.

o Optimal parameters: v =p? +1, = #+L, where p = 1+§ yield
linear convergence

I -
X1 — X2 < 1Jr\/EHXk—XIlz
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Heavy Ball Acceleration: TwIST

o TwIST (two-step iterative shrinkage-thresholding (Bioucas-Dias and
Figueiredo, 2007)) is a heavy-ball-type acceleration of IST, for

mXin 2B x — b|3 + T(x)
o lterations (with a < 2/L)

Xpep1 = (7 = B) X+ (1 = 7)xu—1 + B proxy, (xk — BT(Bx — b))

o Analysis in the strongly convex case: pul < BT B < LI, with p > 0.
Conditioning (as above) K = L/u < 0.

o Optimal parameters: v =p? +1, = #+L, where p = 1+§ yield
linear convergence

/R
1++k

Ixkr1 — X2 < I — %2 (versus s for IST)

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation 38/51



[llustration of the TwIST Acceleration

original Blurred (B) 9x9, 40db noise restored

representatlon coefficients
T € arg mlIl ||B\I/fL' - U||2 + T||ZU||1 dictionary (e.g, wavelet

u basis, frame,. o)

2 18
= o 16
2 — full TwIST
o 14
& x TwIST
© Z 1
16 ST »n
=}
3 10 over-relaxed IST
2 ~rela
g over-relaxed IST

14 s

TwIST
0 200 400 600 800 1000 %o 200 400 600 800 1000

iterations iterations

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation 39/



Acceleration via Larger Steps: SpaRSA

o The standard step-size oy < % in IST too timid
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Acceleration via Larger Steps: SpaRSA

o The standard step-size oy < % in IST too timid

@ The SpARSA (sparse reconstruction by separable approximation)
framework proposes bolder choices of a, (Wright et al., 2009):
v' Barzilai-Borwein (see above), to mimic Newton steps — or at least get
the scaling right.
v keep increasing ay until monotonicity is violated: backtrack.
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Acceleration via Larger Steps: SpaRSA

o The standard step-size oy < % in IST too timid

@ The SpARSA (sparse reconstruction by separable approximation)
framework proposes bolder choices of a, (Wright et al., 2009):
v' Barzilai-Borwein (see above), to mimic Newton steps — or at least get
the scaling right.
v keep increasing ay until monotonicity is violated: backtrack.

o Convergence to critical points (minima in the convex case) is
guaranteed for a safeguarded version: ensure sufficient decrease w.r.t.
the worst value in previous M iterations.
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Another Approach: Gradient Projection

® miny 3|[Bx — b||3 + 7|/x||1 can be written as a standard QP:

1
min EHB(U —v)= b3+ ruT1+7u"1 st u>0,v>0,
u,v

)

where uj = max{0, x;} and v; = max{0, —x;}.
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Another Approach: Gradient Projection

® miny 3|[Bx — b||3 + 7|/x||1 can be written as a standard QP:
1
min EHB(U —v)=b|3+1u"1+7uT1 st. u>0, v>0,
u,v

where uj = max{0, x;} and v; = max{0, —x;}.

. u . . .
o With z = [ y ] problem can be written in canonical form

1
min EZTQZ +cTz st z >0
z
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Another Approach: Gradient Projection

® miny 3|[Bx — b||3 + 7|/x||1 can be written as a standard QP:
1
min EHB(U —v)=bl3+71u"1+7u"1 st. u>0, v>0,
u,v

where uj = max{0, x;} and v; = max{0, —x;}.

. u . . .
o With z = [ y ] problem can be written in canonical form
o1
min EZTQZ +c’z st. z>0
V4

@ Solving this problem with projected gradient using Barzilai-Borwein
steps: GPSR (gradient projection for sparse reconstruction).

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation
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Speed Comparisons

o Lorenz (2011) proposed a way of generating problem instances with
known solution X: useful for speed comparison.

and ry = % (where L(x) = f(x) + T¢(x)).

lxe =Xl
[IX1l2

o Define: Ry =
Typical CS example: A = [I U] (512 x 1024), X has 80 non-zeros, 7 = (.1

r
100"
1075 7\

10—10 1

— N — N
100 100
IST, GPSR, SpaRSA, FISTA, YALL1, NESTA, fpc
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More Speed Comparisons

Typical CS example: A = [I U R (512 x 1536), X has 120 non-zeros, 7 = 0.1
16@ 1
10—5 ]

10—10 4

n

\ Q‘ N\ 4 n \ "\
100 200 100 200
IST, GPSR, SpaRSA, FISTA, YALL1, NESTA, fpc
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Even More Speed Comparisons

A difficult problem: A is very coherent, 7 issmall T = 10_3

All the solvers struggle...

10-2 bn 107
1,000

IST, GPSR, SpaRSA, FISTA, YALL1, NESTA, fpc
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Acceleration by Continuation

o IST/FBS/PGA can be very slow if 7 is very small and/or f is poorly
conditioned.
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Acceleration by Continuation

o IST/FBS/PGA can be very slow if 7 is very small and/or f is poorly
conditioned.

o A very simple acceleration strategy: continuation/homotopy

Initialization: Set 79 > 7, starting point X, factor o € (0,1), and kK = 0.

Iterations: Find approx solution x(7x) of miny, f(x) + 7x%(x), starting from X;
if 7« = 7¢ STOP;

Set Tk+1 < max(7r,07k) and X < x(7%);
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Acceleration by Continuation

o IST/FBS/PGA can be very slow if 7 is very small and/or f is poorly
conditioned.

o A very simple acceleration strategy: continuation/homotopy

Initialization: Set 79 > 7, starting point X, factor o € (0,1), and kK = 0.

Iterations: Find approx solution x(7x) of miny, f(x) + 7x%(x), starting from X;
if 7« =17 STOP;

Set Tk+1 < max(7r,07k) and X < x(7%);

o Often the solution path x(7), for a range of values of 7 is desired,
anyway (e.g., within an outer method to choose an optimal 7)
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Acceleration by Continuation

o IST/FBS/PGA can be very slow if 7 is very small and/or f is poorly
conditioned.

o A very simple acceleration strategy: continuation/homotopy

Initialization: Set 79 > 7, starting point X, factor o € (0,1), and kK = 0.

Iterations: Find approx solution x(7x) of miny, f(x) + 7x%(x), starting from X;
if 7« =17 STOP;
Set Tk+1 < max(7r,07k) and X < x(7%);

o Often the solution path x(7), for a range of values of 7 is desired,
anyway (e.g., within an outer method to choose an optimal 7)

@ Shown to be very effective in practice (Hale et al., 2008; Wright
et al., 2009). Analyzed by Xiao and Zhang (2012).

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation 45 /51



Acceleration by Continuation: An Example

Classical sparse reconstruction problem (Wright et al., 2009)

X € arg mXin 1B x = bl3 +7x]1

with B € R1024x409 (thys x € R40% and b € R1024).

- SpaRSA monot.
—%— SpaRSA
) —&— GPSR-BB
10" F | —e—FpPC
SpaRSA monot. w/ cont.
% SpaRSA w/ cont.
© GPSR-BB w/ cont.

CPU time (seconds)
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A Final Touch: Debiasing

Consider problems of the form X € arg m]ilg 1B x — b3+ 7l|x|1
xeRnM

Often, the original goal was to minimize the quadratic term, after the
support of x had been found. But the ¢; shrinks the non-zero values.
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A Final Touch: Debiasing

Consider problems of the form X € arg m]iRp HIBx— b|13 + 7/|x|l1
xeRnM

Often, the original goal was to minimize the quadratic term, after the
support of x had been found. But the ¢; shrinks the non-zero values.

Debiasing:

v find the zero set (complement of the support of x):
Z(x) = {1,...,n} \ supp(X).

v solve min, ||Bx — b3 s.t. xz(z) = 0. (Fix the zeros and solve an
unconstrained problem over the support.)

v" Often, this has to be solved using an algorithm that only uses
products by B and BT, since this matrix cannot be partitioned.
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Effect of Debiasing

Original (n = 4096, number of nonzeros = 160)

L1 \MHHIII %WMI | IM | I\jlu([
I RERARRA R QLR YRR
0 500 1000 1500 2000 2500 3000 3500 4000
SpaRSA reconstruction (m = 1024, tau = 0.08, MSE = 0.0072) _

Ll L L Ll b
0N B L A AR

]
0 500 1000 1 500 2000 2500 3000 3500 4000
Debiased (MSE = 3.377e—005)

1 C T T T T T T T T
-1 L I L L L | | L

0 500 1000 1500 2000 2500 3000 3500 4000

o -
T

o -

Minimum norm solution (MSE = 1.568)

Il Il Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500 4000
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Final Example: Matrix Recovery (Toh and Yun, 2010)

— 1
M € arg min =
M

12(M) — UIf7 + pl| M]|x
eRan 2 L

linear operator

The proximal algorithm (IST) is as before: ...its adjoint

Xkt1 = SVt B, (Xk

Matrix completion: ®(X) = Xg

— G, (P

(X1) - U))

(subset of entries) |Q| =D

| Unknown M IST APG (FISTA)

[ n/r T p |p/ld] 1 iter #sv error | iter  #sv error |
100/10 5666 3 8.21e-03 7723 61 1.88e-01 655 13 1.06e-03
200/10 | 15665 4 1.05e-02 | 12180 96 2.45e-01 812 12 1.02e-03
500/10 | 49471 5 1.21e-02 | 10900 203 5.91e-01 1132 16 7.63e-04

Unknown M continuation —— APG + continuation

n/r | P | p/dr m iter  #sv error iter  #sv error
100/10 5666 3 8.21e-03 | 429 32 1.06e-03 74 10 1.46e-04
200/10 | 15665 4 1.05e-02 | 278 49 4.38e-04 73 10 1.02e-04
500/10 | 49471 5 1.21e-02 | 484 125 5.50e-04 72 10 8.06e-05

M. Figueiredo, 2021

...the importance of acceleration!
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© Introduction: ADMM and SALSA (2009-2011)
© Image Restoration/Reconstruction (Including Blind) (2010-2014)
© Plug-and-Play: Class-Adaptation (2015-2017)

@ Final Remarks
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Alternating Direction Methof of Multipliers (ADMM)

o Canonical problem:

. . f(x) +g(z)

subjectto Ax+Bz=Db
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- f(x) +g(z)

subjectto Ax+Bz=Db

o Functions f : R®™ — R and g : R™ — R are closed, proper, and convex
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Alternating Direction Methof of Multipliers (ADMM)

o Canonical problem:

min f(x) +9(z)

x€R”, zeR™
subjectto Ax+Bz=Db

o Functions f : R®™ — R and g : R™ — R are closed, proper, and convex
o Often used to re-write problems of the form
min f(x) + g(Hx)

as
min f(x)+ g(z) subjectto Hx =1z
X,z
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Alternating Direction Method of Multipliers (ADMM)

@ Canonical problem: i
P - f(x) +9(2)

subjectto Ax+Bz=Db
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Alternating Direction Method of Multipliers (ADMM)

@ Canonical problem: i
P - f(x) +9(2)
subjectto Ax+Bz =D

o Canonical ADMM (in scaled form)
X+ 1 :argmlnf pHAx+sz—b—|—ukH2
Zjt1 =argm1ng —HAxk+1+Bz—b+ukH2

Upir1 = Uppg + AXpyq +Bzi — b
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Alternating Direction Method of Multipliers (ADMM)

@ Canonical problem: i
P - f(x) +9(2)
subjectto Ax+Bz =D

o Canonical ADMM (in scaled form)
X+ 1 :argmlnf pHAx—szk—b—i—ukH2
Zjt1 =argm1ng —HAXk+1+Bz—b+ukH2

Upir1 = Uppg + AXpyq +Bzi — b

o Can be derived in several ways: method of multipliers (augmented
Lagrangian); Douglas-Rachford for the dual; ...
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Alternating Direction Method of Multipliers (ADMM)

@ Canonical problem: i
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subjectto Ax+Bz =D
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X+ 1 :argmlnf pHAx—szk—b—i—ukH2
Zjt1 =argm1ng —HAxk+1+Bz—b+ukH2

Upir1 = Uppg + AXpyq +Bzi — b

o Can be derived in several ways: method of multipliers (augmented
Lagrangian); Douglas-Rachford for the dual; ...

o Introduced by French mathematicians in the 1970s
[Gabay and Mercier, 1976], [Glowinski and Marrocco, 1975]
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Alternating Direction Method of Multipliers (ADMM)

@ Canonical problem: i
P - f(x) +9(2)
subjectto Ax+Bz =D

o Canonical ADMM (in scaled form)
X+ 1 :argmlnf pHAx—szk—b—i—ukH2
Zjt1 =argm1ng —HAxk+1+Bz—b+ukH2

Upir1 = Uppg + AXpyq +Bzi — b

o Can be derived in several ways: method of multipliers (augmented
Lagrangian); Douglas-Rachford for the dual; ...

o Introduced by French mathematicians in the 1970s
[Gabay and Mercier, 1976], [Glowinski and Marrocco, 1975]

o Cornerstone work in the 1990s by Eckstein and Bertsekas [1992]
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Explosion of Interest in ADMM

o Citations to paper by Eckstein and Bertsekas [1992]:

300

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
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1600
o Citations to review paper by Boyd et al. [2011]:
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Explosion of Interest in ADMM

o Citations to paper by Eckstein and Bertsekas [1992]:

300

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

1600
o Citations to review paper by Boyd et al. [2011]:

2011 2012 2013 2014 2015 2016

o Convergence properties: active research topic
[Aspelmeier et al., 2016], [Bauschke et al., 2015], [Davis and Yin, 2014], [Deng
and Yin, 2012], [Goldstein et al., 2014], [Nishihara et al., 2015], [Liang et al.,
2015], [Patrinos et al., 2014], ...
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Classical Convergence Result

@ Problem: miny f(x) + g(Hx)
o ADMM:
xF+D — arg mlnf —HHX — vk ) H;

v+ — = arg mlng p HHx(k+1) —u® H;,

a+D) — k) _ Hx(k+1) 4y (D)

Theorem (Eckstein and Bertsekas [1992])

Let H have full column rank, and f : R” — R and g : R™ — R be closed,
proper, convex functions; let vo,uyg € R™, and p > 0 be given. Then
(x(k))k:m,m converges to a solution, if one exists. If no solution exists,
then at least one of the sequences (v(k))k:m,m or (u(’“))kzl,gw diverges.
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Two or More Functions

o Problem template:

J

min 2 9 (H; )
J:

M. Figueiredo, 2021
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Two or More Functions

J
o Problem template: }1{(161%{1% Z;gj (H, x)
J:

v g R™ — R are closed, proper, and convex.
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Two or More Functions

J
@ Problem template: min (H:x
p xeR"Zg]( J )
J=1
v g R™ — R are closed, proper, and convex.
v H; e Rmaxn

@ Can be re-written in canonical form

min f(x) + g(Fx),
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Two or More Functions

J
o Problem template: ;IelliRI}L Z;gj (H, x)
J:

v g R™ — R are closed, proper, and convex.
v H; e Rmaxn
o Can be re-written in canonical form
min f(x) + g(Fx),

21
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ADMM for Two or More Functions

@ General problem template: min (H;x
p p xER”Zlg]( 7 )
‘7:
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ADMM for Two or More Functions

J
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J=1
o ADMM after re-writing in canonical form:

J
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ADMM for Two or More Functions

J
@ General problem template: min (H;x
p p xER”Zlg]( 7 )
‘7:

o ADMM after re-writing in canonical form:

J
- ; @) ()2
Xp41 = argmin ElnHJX z; +uy H2
J:

1 _ : P (1)12
zy.41 = arg min g1(v) + 5[ Hixe — v+ w|

) _ : P (J))12
zpy = arg min g;(v) + 5{Hyxi — v+ w7

Upy1 = Upt1 + AXgy1 + Bzg

o SALSA, PIDAL, PIDSplit, SDMM
F and Bioucas-Dias, 2010], [Setzer et al., 2010], [Combettes and Pesquet, 2011

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 7/52



A Closer Look

o A closer look at the algorithm

X1 = (Z Hj Hj) > H(z) —uf)
j=1

J=1
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M. Figueiredo, 2021

X1 = (Z Hj Hj) > H(z) —uf)
j=1

J=1

1 1
Z;(cll = ProXg, /p; (FL x40 + ugf ))
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A Closer Look

o A closer look at the algorithm
xen = (L) Y - uf)
j=1 j=1
1 1
z,(c_zl = ProXy, /p, (H1 Xg4+1 + ugg ))
J J
zl(c+)1 = ProXg; /py, (FLy X1 + ul(c ))
U1 = Ugt1 + AXpi1 + Bzggg

o Decoupled: a linear algebraic problem and a set of proximity operators
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A Closer Look

o A closer look at the algorithm

xen = (L) Y - uf)
s =1
1 1
z,(c_zl = ProXy, /p, (H1 Xg4+1 + ugg ))
J J
zl(c+)1 = ProXy; /oy, (HJ Xk+1 + ul(c ))
U1 = Ugt1 + AXpi1 + Bzggg

o Decoupled: a linear algebraic problem and a set of proximity operators

@ Hinges on the efficient matrix inversion and simple proximity operators

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 8/52



A Closer Look

o A closer look at the algorithm

Kbt — (z H;ij) SH, () )
j=1

J=1

1 1
zl(c-i)—l = ProXg, /oy, (Hl Xk+1 + ugs ))

J J
zl(c+)1 = Pro%g;/px (FLy xp41 + ul(c ))
U1 = Ugt1 + AXpi1 + Bzggg
o Decoupled: a linear algebraic problem and a set of proximity operators

@ Hinges on the efficient matrix inversion and simple proximity operators

@ Matrix inverse independent of p; (good, if not kept constant)
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Image Restoration /Reconstruction

o General formulation: x € arg min V(Ax,y) + ®(Px) + to(x)
x€R
0 < xelC

where y are observations and tc(x) = { too « x¢C
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Image Restoration/Reconstruction

o General formulation: X € arg min U(Ax,y) + ¢(Px) + tc(x)
x€R

0 < xeC

where y are observations and (¢ (x) = { too = x¢C

o U: the observation model (negative log-likelihood); namely,
v Gaussian observations: ¥(u,y) = 555 |lu—yl|3 = 50 >, (ui — v:)?

v Poisson observations: ¥(u,y) =Y, (u; + tr, (u;) — yilog(z)4)
v Multiplicative noise: W(u,y) = M >, (2 + e¥i—%)
o ®oP is a regularizer; e.g., total variation (TV), or ® is a norm

o A: linear observation operator (blur, projections, ...)
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Image Restoration: Observation Models W

o General formulation: X € arg m]iRn U(Ax,y) + O(Px) + to(x)
xeR™
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Image Restoration: Observation Models W

o General formulation: X € arg m]iRn U(Ax,y) + O(Px) + to(x)
xeR™

@ All the above observation models have simple, component-wise
proximity operators
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@ All the above observation models have simple, component-wise
proximity operators
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v~ Gaussian observations: prox_ g (u) =
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Image Restoration: Observation Models W

o General formulation: X € arg m]iRn U(Ax,y) + O(Px) + to(x)
xeR™

@ All the above observation models have simple, component-wise
proximity operators

2
. . o‘u+TY
v G b tions: =—-
aussian observations: prox_ () o
. . 1
v Poisson observations: prox.q(u) = B (y -7+ -1+ 4y7’)
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Image Restoration: Observation Models W

o General formulation: X € arg m]iRn U(Ax,y) + O(Px) + to(x)
xeR™

@ All the above observation models have simple, component-wise
proximity operators
2
. . ou+TY
v Gaussian observations: prox_ g (u) = ——
p T\I!( ) 0'2+’T

1
v Poisson observations: prox.q(u) = B (y -7+ (-1 + 4y7’)

V" Multiplicative noise: prox,y(u) uses Lambert’s W-function
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Image Restoration: Observation Models W

o General formulation: X € arg m]iRn U(Ax,y) + O(Px) + to(x)
xeR™

@ All the above observation models have simple, component-wise
proximity operators
olu+ Ty

v~ Gaussian observations: prox_ g (u) =
T\I!( ) 0_2+7_

1
v Poisson observations: prox.q(u) = B (y -7+ (-1 + 4y7’)
V" Multiplicative noise: prox,y(u) uses Lambert’s W-function

@ The proximity operator of ¢ is simply an Euclidean projection:

prox,., (u) = projc(u);
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Image Restoration: Observation Models W

o General formulation: X € arg m]iRn U(Ax,y) + O(Px) + to(x)
xeR™

@ All the above observation models have simple, component-wise
proximity operators
olu+ Ty

v~ Gaussian observations: prox_ g (u) =
T\I!( ) 0_2+7_

1
v Poisson observations: prox.q(u) = B (y -7+ (-1 + 4y7’)
V" Multiplicative noise: prox,y(u) uses Lambert’s W-function
@ The proximity operator of ¢ is simply an Euclidean projection:

prox,., (u) = projc(u);

e.g., if C =R, then (projo(u)), = max{0,u;}
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Image Restoration: Regularizers ®

o General formulation: X € arg min U(Ax,y) + ®(Px) + tc(x)
xeR
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Image Restoration: Regularizers ®

o General formulation: X € arg min U(Ax,y) + ®(Px) + tc(x)
xeR

o Classical regularizers with simple proximity operators
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Image Restoration: Regularizers ®

o General formulation: X € arg min U(Ax,y) + ®(Px) + tc(x)
xeR

o Classical regularizers with simple proximity operators

v £y norm: (prox, ., (w)), = sign(u;) max{0, u; — 7}
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Image Restoration: Regularizers ®

o General formulation: X € arg min U(Ax,y) + ®(Px) + tc(x)
xeR
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Image Restoration: Regularizers ®

o General formulation: X € arg min U(Ax,y) + ®(Px) + tc(x)
xeR

o Classical regularizers with simple proximity operators

v £y norm: (prox,.”,”l(u))i = sign(u;) max{0, u; — 7} = soft(u;, )

u
1+7

v Squared £ norm: prox, |z (u) =
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Image Restoration: Regularizers ®

o General formulation: X € arg min U(Ax,y) + ®(Px) + tc(x)
xeR

o Classical regularizers with simple proximity operators
v £y norm: (proxT”,Hl(u))i = sign(u;) max{0, u; — 7} = soft(u;, )

v Squared £ norm: prox, |z (u) = (linear shrinkage)

u
1+7

u max{0, ||ullz — 7}

v o morm: proxyy, (W) = o Tl — 1 7
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Image Restoration: Regularizers ®

o General formulation: X € arg min U(Ax,y) + ®(Px) + tc(x)
xeR

o Classical regularizers with simple proximity operators
v £y norm: (proxT”,Hl(u))i = sign(u;) max{0, u; — 7} = soft(u;, 7)

v Squared £ norm: prox, |z (u) = (linear shrinkage)

u
147
u max{0, ||ullz — 7}
max{0, ||ulls —7}+ T

v Az norm: prox. ., (u) = = vect-soft(u, 7)

o Total variation can be written as ® o P, where

P :R" — (R)", with (Px); = [9” ‘xh@} , and (v valn2

Li — Toy(d)

with h(i) and v(i) the horizontal and vertical neighbours of pixel
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Image Restoration: Synthesis Formulation

o General formulation: x € arg min V(Ax,y) + ®(Px)
x€R
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Image Restoration: Synthesis Formulation

o General formulation: x € arg min V(Ax,y) + ®(Px)
x€R

@ Synthesis formulation: A =BW and P =1
v~ W the synthesis operator of a Parseval frame: WW7 =1

v B is the observation operator

v/ x contains the representation coefficients, not the image itself
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Image Restoration: Synthesis Formulation

o General formulation: x € arg min V(Ax,y) + ®(Px)
x€R

@ Synthesis formulation: A =BW and P =1

v~ W the synthesis operator of a Parseval frame: WW7 =1
v B is the observation operator

v/ x contains the representation coefficients, not the image itself

@ Using the Sherman-Morrison-Woodbury matrix inversion formula

(W'B"BW + I>_1 —1-W'B"(B"B+1) 'BW
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Image Restoration: Synthesis Formulation

o General formulation: x € arg min V(Ax,y) + ®(Px)
x€R
@ Synthesis formulation: A =BW and P =1

v~ W the synthesis operator of a Parseval frame: WW7 =1
v B is the observation operator

v/ x contains the representation coefficients, not the image itself

Using the Sherman-Morrison-Woodbury matrix inversion formula
-1
(W'B"BW +1)  =1-W'B"(B"B+1) 'BW

Can BTB+1 be inverted efficiently?
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Image Restoration: Analysis Formulation

o General formulation: X € arg mIiRn V(Ax,y) + ¢(Px)
xcR™
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Image Restoration: Analysis Formulation

o General formulation: X € arg mIiRn V(Ax,y) + ¢(Px)
xcR™

o Analysis formulation: A =B
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Image Restoration: Analysis Formulation

o General formulation: X € arg mIiRn V(Ax,y) + ¢(Px)
xcR™

o Analysis formulation: A =B

v P the analysis operator of a Parseval frame: PTP =1
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Image Restoration: Analysis Formulation
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v B is the observation operator
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Image Restoration: Analysis Formulation

o General formulation: X € arg mIiRn V(Ax,y) + ¢(Px)
xcR™

o Analysis formulation: A =B

v P the analysis operator of a Parseval frame: PTP =1
v B is the observation operator

v/ x contains the image itself

@ Matrix inversion:

(B"B+ PTP)_l - (B™B+1)"
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Image Restoration: Analysis Formulation

o General formulation: X € arg mIiRn V(Ax,y) + ¢(Px)
xcR™

o Analysis formulation: A =B

v P the analysis operator of a Parseval frame: PTP =1
v B is the observation operator
v/ x contains the image itself

o Matrix inversion:

(B"B+ PTP)_l - (B™B+1)"

o Can B”B +1 be inverted efficiently?
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Image Restoration: Constrained (Morozov) Formulations

o General formulation: X € arg mIiRn V(Ax,y) + ¢(Px)
xeR™
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Image Restoration: Constrained (Morozov) Formulations

o General formulation: X € arg mIiRn V(Ax,y) + ¢(Px)
xeR™

o Constrained (or Morozov) formulation:

S mIiRn ®(Px) subject to A(Ax,y) <1
xER™
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Image Restoration: Constrained (Morozov) Formulations

o General formulation: X € arg mIiRn V(Ax,y) + ¢(Px)
xeR™

o Constrained (or Morozov) formulation:

S mIiRn ®(Px) subject to A(Ax,y) <1
xER™

o Can be written in the general formulation, with

V(AX,y) = tpy)(Ax), with D(y) = {x:A(x,y) <1}
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Image Restoration: Constrained (Morozov) Formulations

General formulation: X € arg mIiRn V(Ax,y) + ®(Px)
xeR™

Constrained (or Morozov) formulation:

S mIiRn ®(Px) subject to A(Ax,y) <1
xER™

Can be written in the general formulation, with

V(AX,y) = tpy)(Ax), with D(y) = {x:A(x,y) <1}

Classical example: x € arg mingepn ®(Px) s.t. {|Ax—yl2 <1

Thus, D(y) is a unit Euclidean ball around y; projection is trivial.
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Image Restoration: Constrained (Morozov) Formulations

General formulation: X € arg mIiRn V(Ax,y) + ®(Px)
xeR™

Constrained (or Morozov) formulation:

S mIiRn ®(Px) subject to A(Ax,y) <1
xER™

Can be written in the general formulation, with
V(AX,y) = tpy)(Ax), with D(y) = {x:A(x,y) <1}
Classical example: x € arg mingepn ®(Px) s.t. {|Ax—yl2 <1

Thus, D(y) is a unit Euclidean ball around y; projection is trivial.

Applies both to synthesis and analysis formulations
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Image Restoration: Matrix Inversions

L . -1. . .
@ The required inversion (BTB + I) is simple in many relevant cases:
[Afonso et al., 2011], [F and Bioucas-Dias, 2010]
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@ The required inversion (BTB + I) is simple in many relevant cases:
[Afonso et al., 2011], [F and Bioucas-Dias, 2010]

/" Periodic deconvolution: B = UZFU,
F is diagonal; U is the DFT matrix (U7 U = UU# =1)

1

(B™B+1)' =U" (FP+1)"'U

———
diagonal

v Inpainting: B € {0,1}™*", with m rows of I; thus, BTB is diagonal

v~ Compressive Fourier imaging (MRI, multi-coil MRI): B = MU, where
M € {0,1}™>", with m rows of I; thus, MM7T =1

(B"TB+1)"" :I—%UH M'M U

diagonal
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Image Restoration: Matrix Inversions

L . -1. . .
@ The required inversion (BTB + I) is simple in many relevant cases:
[Afonso et al., 2011], [F and Bioucas-Dias, 2010]

/" Periodic deconvolution: B = UZFU,
F is diagonal; U is the DFT matrix (U7 U = UU# =1)

1

(B™B+1)' =U" (FP+1)"'U

———
diagonal

v Inpainting: B € {0,1}™*", with m rows of I; thus, BTB is diagonal

v~ Compressive Fourier imaging (MRI, multi-coil MRI): B = MU, where
M € {0,1}™>", with m rows of I; thus, MM7T =1

BB+ =1-U" M™M U
2 ~——
diagonal
o Cost is at most O(nlogn)
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Non-periodic Deconvolution

Periodic BC

@ Periodic boundary conditions are usually unnatural

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 16 /52



Non-periodic Deconvolution

Periodic BC Neumann BC Dirichlet BC

@ Periodic boundary conditions are usually unnatural

@ ...as are other standard BC: Neumann, Dirichlet.
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Non-periodic Deconvolution

Neumann BC Dirichlet BC

Periodic BC

@ Periodic boundary conditions are usually unnatural
@ ...as are other standard BC: Neumann, Dirichlet.

@ A more natural choice: unknown boundaries [Reeves, 2005],
[Chan et al., 2005], [Almeida and F, 2013a], [Ramani and Fessler, 2013]

convolution, arbitrary BC masking

unknown values/\ /\
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Non-periodic Deconvolution (2)

mask
: : : _ 10V uH _uli2
o Gaussian noise model: ¥(Bx,y) = 5| M U"FU x —y||3

period. conv.
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mask
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o Gaussian noise model: ¥(Bx,y) = 5| M U"FU x —y||3

period. conv.

o Choosing B = MU”FU, makes (BTB+ I)_1 hard to compute
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Non-periodic Deconvolution (2)

mask
: : : _ 10V uH _uli2
o Gaussian noise model: ¥(Bx,y) = 5| M U"FU x —y||3

period. conv.
o Choosing B = MU”FU, makes (BTB+ I)_1 hard to compute

o Better option: B = UYFU (as in periodic deconvolution), and

1
W(u,y) = 5 [ Mu -y}
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Non-periodic Deconvolution (2)

mask
: : : _ 10V uH _uli2
o Gaussian noise model: ¥(Bx,y) = 5| M U"FU x —y||3

period. conv.
o Choosing B = MU”FU, makes (BTB+ I)_1 hard to compute
o Better option: B = UYFU (as in periodic deconvolution), and
1 2
W(uy) = o5 Mu - y|3
o The proximity operator is still simple:

prox,¢(u) = (TM™M + °T) - (tM"y + o%u)

diagonal
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Non-periodic Deconvolution (2)

mask
: : : _ 10V uH _uli2
o Gaussian noise model: ¥(Bx,y) = 5| M U"FU x —y||3

period. conv.
o Choosing B = MU”FU, makes (BTB+ I)_1 hard to compute
o Better option: B = UYFU (as in periodic deconvolution), and
1 2
W(uy) = o5 Mu - y|3
o The proximity operator is still simple:

prox,¢(u) = (TM™M + °T) - (tM"y + o%u)

diagonal

@ Similar formulations:
v deconvolution + inpainting (IM masks the boundary and missing pixels)

v super-resolution (filtering + downsampling mask)
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Deconvolution with Unknown Boundaries: Example

Unknown BC by ADMM

original (256 x 256) observed (238 x 238)
Assuming periodic BC Edge tapering

FA-MD (ISRN = 10.63dB)

FA-BC (ISNR = -2.52dB)  FA-ET (ISNR = 3.06dB)
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Deconvolution + Inpainting with Unknown BC: Example

FA-CG (SNR = 20.58dB) FA-MD (SNR = 20.57dB)
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Speed

o Benchmark deblurring problem (9 x 9 blur, 40dB SNR, Haar frame, ¢;)
and inpainting problem (50% missing data) [Afonso et al., 2011]

Y 10
-=-FISTA
' SpaRSA|
== TWIST
—SALSA

10 10° 10 10 10 10 10 10 10° 10
seconds seconds
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Speed

o Benchmark deblurring problem (9 x 9 blur, 40dB SNR, Haar frame, ¢;)
and inpainting problem (50% missing data) [Afonso et al., 2011]

Y 10
-=-FISTA

' SpaRSA|
= TWIST
—SALSA

107" 10° 10 10’ 10° 10 10 10 10° 10
seconds seconds

@ Deconvolution with unknown BC [Almeida and F, 2013a], [Ramani and
Fessler, 2013]

~A-NCGs

100+

—ADMM |

§ bk 4 b & bk gt
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Summaryzing

o ...a flexible toolbox for ADMM-based image restoration:
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Summaryzing

o ...a flexible toolbox for ADMM-based image restoration:

v Frame-based analysis or synthesis regularization
v~ Total variation regularization

v ...or combinations thereof

v~ Tikhonov, Morozov, Ivanov formulations

v Gaussian, Poissonian, multiplicative noise, ...
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o ...a flexible toolbox for ADMM-based image restoration:

Frame-based analysis or synthesis regularization
Total variation regularization

...or combinations thereof

Tikhonov, Morozov, Ivanov formulations

Gaussian, Poissonian, multiplicative noise, ...

SN N N RN

Deconvolution, inpainting, compressive Fourier sensing (MRI),
super-resolution, ...
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o ...a flexible toolbox for ADMM-based image restoration:

Frame-based analysis or synthesis regularization
Total variation regularization

...or combinations thereof

Tikhonov, Morozov, Ivanov formulations

Gaussian, Poissonian, multiplicative noise, ...

SN N N RN

Deconvolution, inpainting, compressive Fourier sensing (MRI),
super-resolution, ...

BN

Periodic or unknown boundaries
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o ...a flexible toolbox for ADMM-based image restoration:

NN N RN

v
v

Frame-based analysis or synthesis regularization
Total variation regularization

...or combinations thereof

Tikhonov, Morozov, lvanov formulations
Gaussian, Poissonian, multiplicative noise, ...

Deconvolution, inpainting, compressive Fourier sensing (MRI),
super-resolution, ...

Periodic or unknown boundaries

Blind deconvolution

o Convergence guaranteed by classical results [Eckstein and Bertsekas, 1992]
...functions are closed, proper, convex; matrices have full column rank
(except blind deconvolution)
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o ...a flexible toolbox for ADMM-based image restoration:

NN N RN

v
v

Frame-based analysis or synthesis regularization
Total variation regularization

...or combinations thereof

Tikhonov, Morozov, lvanov formulations
Gaussian, Poissonian, multiplicative noise, ...

Deconvolution, inpainting, compressive Fourier sensing (MRI),
super-resolution, ...

Periodic or unknown boundaries

Blind deconvolution

o Convergence guaranteed by classical results [Eckstein and Bertsekas, 1992]
...functions are closed, proper, convex; matrices have full column rank
(except blind deconvolution)

o Current research: choice of parameter py [Xu et al., 2016]
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Blind Deconvolution: Real Examples

Blurred photo [14]. 70 seconds [16]. 100 seconds Proposed method, 55 seconds

Observed photo. [Almeida et al, 2010] proposed

Results from [Almeida and F, 2013b]
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Blind Deconvolution: The Importance of Inpainting

blur and saturations blind deblurring blind deblurring

ignoring saturations accounting for saturations
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Denoising Step in ADMM

1
@ Restoration (w/ Gauss noise): X € arg m]iRn §|]Ax — |13 + ®(x)
xcR™
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Denoising Step in ADMM

1
@ Restoration (w/ Gauss noise): X € arg m]iRn §|]Ax — |13 + ®(x)
xcR™
o ADMM directly applied to this problem has the form
-1
X1 = (ATA +pI) " (ATy + p(z — uy))
Zi+1 = ProXg/, (Xk+1 + U—k)

Ugt1 = U1 + Xg+1 — Zk+1
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Denoising Step in ADMM

1
@ Restoration (w/ Gauss noise): X € arg m]iRn §|]Ax — |13 + ®(x)
xcR™
o ADMM directly applied to this problem has the form
-1

xi+1 = (ATA +pI) " (ATy + p(zx — uy))

Zi+1 = ProXg/, (Xk+1 + U—k)

Upt1 = Uet1 + Xpt1 — Z41

@ The prox of the regularizer ® is a denoising operation
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Denoising Step in ADMM

1
@ Restoration (w/ Gauss noise): X € arg m]iRn §|]Ax — |13 + ®(x)
xER™
o ADMM directly applied to this problem has the form
-1

X1 = (ATA +pI) " (ATy + p(z — uy))

Zky1 = Proxg,, (Xk_H + uk)

Upy1 = Ukl + Xyl — Zkt1
@ The prox of the regularizer ® is a denoising operation

@ Prox of convex regularizer (frames, TV): not state-of-the-art denoising
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The prox of the regularizer ® is a denoising operation

@ Prox of convex regularizer (frames, TV): not state-of-the-art denoising

State-of-the-art denoising methods are patch-based, non-local:

v Collaborative filtering (BM3D) [Dabov et al., 2007]
v Non-local Bayes [Lebrun et al., 2013]
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Denoising Step in ADMM

1
@ Restoration (w/ Gauss noise): X € arg m]iRn §|]Ax — |13 + ®(x)
xcR™
o ADMM directly applied to this problem has the form
-1
X1 = (ATA +pI) " (ATy + p(z — uy))
Z+1 = ProXg/, (Xk+1 + U—k)

Ugt1 = U1 + Xg+1 — Zk+1

The prox of the regularizer ® is a denoising operation

@ Prox of convex regularizer (frames, TV): not state-of-the-art denoising

State-of-the-art denoising methods are patch-based, non-local:

v Collaborative filtering (BM3D) [Dabov et al., 2007]
v Non-local Bayes [Lebrun et al., 2013]
V" Gaussian mixture models [Zoran and Weiss, 2011], [Teodoro et al., 2015]

@ Can we use one of these denoisers instead of some proximity operator?
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Plug-and-Play ADMM

o Plug a black-box denoiser into ADMM [Venkatakrishnan et al., 2013]

xi1 = (ATA 4+ 1) (ATy + plzy, — wy)
Zj11 = denoise(xp41 + ug)

Ugt1 = U + X1 — Zk+1
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o If denoiser = prox, for convex ¢, convergence is well-known
[Eckstein and Bertsekas, 1992, Boyd et al., 2011].
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o Plug a black-box denoiser into ADMM [Venkatakrishnan et al., 2013]

xi1 = (ATA 4+ 1) (ATy + plzy, — wy)
Zj11 = denoise(xp41 + ug)

Ugt1 = U + X1 — Zk+1

o If denoiser = prox, for convex ¢, convergence is well-known
[Eckstein and Bertsekas, 1992, Boyd et al., 2011].

o ...what about convergence of PnP-ADMM?
[Sreehari et al., 2016, Teodoro et al., 2017a, Chan et al., 2017]
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Plug-and-Play ADMM

o Plug a black-box denoiser into ADMM [Venkatakrishnan et al., 2013]

xi1 = (ATA 4+ 1) (ATy + plzy, — wy)
Zj11 = denoise(xp41 + ug)

Ugt1 = U + X1 — Zk+1

o If denoiser = prox, for convex ¢, convergence is well-known
[Eckstein and Bertsekas, 1992, Boyd et al., 2011].

o ...what about convergence of PnP-ADMM?
[Sreehari et al., 2016, Teodoro et al., 2017a, Chan et al., 2017]

o Empirical results: competitive!
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GMM-Based Denoising

@ Observation model: p(y|x) = N (y|x,o?I)
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GMM-Based Denoising

@ Observation model: p(y|x) = N (y|x,o?I)
o Decompose noisy image into overlapping patches y;

@ Denoise each patch independently under GMM prior:

K
p(xi) =Y aj N(xi; pj, Cj)
j=1
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GMM-Based Denoising

@ Observation model: p(y|x) = N (y|x,o?I)
o Decompose noisy image into overlapping patches y;

@ Denoise each patch independently under GMM prior:
K
p(xi) =Y o5 N(xi; 1, C;)
j=1

o The minimum mean squared error (MMSE) estimate (not the MAP)
has closed-form:
xi = E[Xilyi]
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GMM-Based Denoising

Observation model: p(y|x) = N (y|x, o*I)
Decompose noisy image into overlapping patches y;

Denoise each patch independently under GMM prior:
K
p(xi) =Y o5 N(xi; 1, C;)
j=1

The minimum mean squared error (MMSE) estimate (not the MAP)
has closed-form:

x; = E[Xlyi]
Assemble the denoised image by putting the estimated patches at
their locations, averaging overlapping pixel estimates
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x; = E[Xlyi]
Assemble the denoised image by putting the estimated patches at
their locations, averaging overlapping pixel estimates

Estimating the mixture:
v~ From a collection of clean image patches [Zoran and Weiss, 2011]
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GMM-Based Denoising

Observation model: p(y|x) = N (y|x, o*I)
Decompose noisy image into overlapping patches y;

Denoise each patch independently under GMM prior:
K
p(xi) =Y o5 N(xi; 1, C;)
j=1

The minimum mean squared error (MMSE) estimate (not the MAP)
has closed-form:

x; = E[Xlyi]
Assemble the denoised image by putting the estimated patches at
their locations, averaging overlapping pixel estimates

Estimating the mixture:
v~ From a collection of clean image patches [Zoran and Weiss, 2011]

v From the noisy image itself using EM [Teodoro et al., 2015]
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MMSE Estimate with GMM Prior

o Gaussian noisy observations: fyx(y[x) = N (y|x, o*I)
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MMSE Estimate with GMM Prior

o Gaussian noisy observations: fyx(y[x) = N (y|x,o*I)
o Gaussian prior: fx(x) = N (x|u, C)
o MMSE estimate:

. ~ -1 _
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MMSE Estimate with GMM Prior

o Gaussian noisy observations: fyx(y[x) = N (y|x,o*I)
o Gaussian prior: fx(x) = N (x|u, C)
o MMSE estimate:

. ~ -1 _
argmin E[[|x — X|[|y] = E[X|y] = (¢*C+ 1) (¢*°C 'p +y)

Gaussian mixture prior: fx(x Za] (x|, Cy)

o MMSE estimate
E[Xy] = 2/3] )(0?C;+1) 7 (oC s + )

where 3;(y) o< N (y|p;, C; + oT), with Z]K:1 Bi(y) =
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MMSE Estimate with GMM Prior

o Gaussian noisy observations: fyx(y[x) = N (y|x,o*I)
o Gaussian prior: fx(x) = N (x|u, C)
o MMSE estimate:

. ~ -1 _
argmin E[[|x — X|[|y] = E[X|y] = (¢*C+ 1) (¢*°C 'p +y)

Gaussian mixture prior: fx(x Za] (x|, Cy)

o MMSE estimate (the MAP solutlon has no closed form)
-1 _
E[X]y] = Z Biy)(0*C; + 1) (*C; p; +y)

where 3;(y) o ;N (y|p;, C; + o°I), with Z]KZI Bi(y) =1

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 27 /52



Plug-and-Play ADMM: Deblurring of Generic Images

o Generic GMM prior

Image: Cameraman House
Experiment: 1 2 3 4 5 6 1 2 3 4 5 6
IDD-BM3D [Danielyan et al., 2012] || 8.85 | 7.12 | 10.45 | 3.98 | 4.31 | 4.89 || 9.95 | 8.55 | 12.89 | 5.79 | 5.74 | 7.13
ADMM-GMM [Teodoro et al., 2016b] || 8.39 | 6.36 | 9.80 | 3.47 | 4.16 | 4.88 || 9.66 | 822 | 12.43 | 550 | 542 | 6.82

(a) Original (b) Blurred (c) IDD-BM3D (d) ADMM-GMM

@ For generic natural images: competitive, but does not beat state-of-the-art
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Class-Adapted GMM-Based Restoration

o Learn a GMM for class of images, plug the corresponding denoiser
into ADMM [Teodoro et al., 2016b]
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procedure de s i i procedure de procedure de
>termine the ¢ Wi e 1 termine the « 2termine the ¢
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Class-Adapted GMM-Based Restoration

o Learn a GMM for class of images, plug the corresponding denoiser
into ADMM [Teodoro et al., 2016b]

original blurred IDD-BM3D ADMM-GMM
procedure de s i i procedure de procedure de
>termine the ¢ Wi e 1 termine the « 2termine the ¢
means algorit! ww e e means algoritl means algorit!
srimental rest Wl o erimental rest :rimental rest

dddd

Image class: Text Face

Experiment: 1 2 3 4 5 6 1 2 3 4 5 6
BSNR 26.07 | 20.05 | 40.00 | 15.95 | 24.78 | 18.11 | 28.28 | 22.26 | 40.00 | 15.89 | 26.22 | 15.37

Input PSNR 14.14 | 14.13 | 12.13 | 16.83 | 14.48 | 28.73 | 25.61 | 22.54 | 20.71 | 26.49 | 24.79 | 30.03

IDD-BM3D | 11.97 | 891 | 1629 | 5.88 | 6.81 | 4.87 | 13.66 | 11.16 | 1496 | 7.31 | 1033 | 6.8
ADMM-GMM | 16.24 | 1155 | 23.11 | 888 | 10.77 | 8.34 | 1505 | 1250 | 17.28 | 884 | 1L.69 | 7.32
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Blind Deblurring

e Blind image deblurring/deconvolution
y=hxx+n

where both x and h are unknown
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Blind Deblurring

e Blind image deblurring/deconvolution
y=hsxx+n=Hh)x+n=X(x)h+n
where both x and h are unknown

o Joint criterion (under Gaussian noise) [Almeida and F, 2013b]

- 1
(x,h) € argmiﬁl §||h *X —yl3 + ®(x) + ¥(h)

O(x,h)

where ® and ¥ are regularizers
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Blind Deblurring

e Blind image deblurring/deconvolution
y=hsxx+n=Hh)x+n=X(x)h+n
where both x and h are unknown

o Joint criterion (under Gaussian noise) [Almeida and F, 2013b]

- 1
(x,h) € argmiﬁl §||h *X —yl3 + ®(x) + ¥(h)

O(x,h)
where ® and ¥ are regularizers

o Even if & and ¥ are convex, this is a non-convex problem

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 30/52



Algorithm

@ Proximal alternating minimization [Attouch et al., 2007]

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 31/52



Algorithm

@ Proximal alternating minimization [Attouch et al., 2007]

@ Solver for each minimization: ADMM/SALSA
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Algorithm

@ Proximal alternating minimization [Attouch et al., 2007]

@ Solver for each minimization: ADMM/SALSA

~

Initialization: x =y, h - identity filter
while stopping criterion is not satisfied do
X < argmin O(x, h) + £ ||x — xereviow||2
X

h < argmin O(x,h) + £||h — flprevious”2
h

end while
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~

Initialization: x =y, h - identity filter
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X < argmin O(x, h) + £ ||x — xereviow||2
X
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h

end while

@ Image regularizer: class-adapted plug-and-play priors
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Algorithm

@ Proximal alternating minimization [Attouch et al., 2007]

@ Solver for each minimization: ADMM/SALSA

~

Initialization: x =y, h - identity filter
while stopping criterion is not satisfied do
X < argmin O(x, h) + £ ||x — xereviow||2
X

h < argmin O(x,h) + £||h — flprevious”2
h

end while

@ Image regularizer: class-adapted plug-and-play priors

o Filter regularizer: positivity and support, or sparsity
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@ Plug-and-play image priors:
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Priors

@ Plug-and-play image priors:

v GMM-based patch denoiser, trained on a dataset of clean images
(text, faces, fingerprint)
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classes)
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Priors

@ Plug-and-play image priors:
v GMM-based patch denoiser, trained on a dataset of clean images
(text, faces, fingerprint)

v Dictionary-based patch denoiser, learned from clean images (same
classes)

v General-purpose BM3D denoiser.

o Blur filter priors

v Constraint: positivity and maximum support

v Sparsity (adequate for motion blur)
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Results: GMM-based prior for text images
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[Pan et al., 2014]
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BM3D: 9.97 dB GMM: 11.16 dB
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3 /¥ /1

[Almeida and F, 2013b] BM3D: 0.66 dB GMM: 1.19 dB
0.36 dB
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Experiments

Kb gidis ol oph biivo il ah e n.

FAbbb bz Ak d Addd Aok

Name and surname: xxx X.

Address: xxxx xxxx xx
Phone number: xx xxx Xxxx
INSLItULioN: XXXOXRXXXXKXXXXX

Plutrdil diiidititst  AF At Abds

Womttdi ¢uied ) Bk h A A A

(a) Blurred image (b) [Almeida and F, 2013b]

Name and surname: xxx X.

Address: xx000 xxxx Xx
Phone number: xx xxx Xxxx
Institution: }O0oaaaEOeX

Narrie and surrismie: 423 xH
Address: gasx waxk xx

Flicrie aumbier: £4 x4x 441
ISt iO R KRR R RARZRER

(c) [Pan et al., 2014] (d) Proposed
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Experiments

R gidis aiol d disido il - okt ‘.

Fotbbbi bvive Abdd AAddd bk

Name and surname: xxx X.

Address: xxxx xxxx xx
Phone number: xx xxx Xxxx
INSLItULioN: XXXOXRXXXXKXXXXX

Plutrdil diiidititst  AF At Abds

Womttdi ¢uied ) Bk h A A A

(a) Blurred image (b) [Almeida and F, 2013b]

Name and surname: xxx X.

Address: xx000 xxxx Xx
Phone number: xx xxx Xxxx
Institution: }O0oaaaEOeX

Narrie and surrismie: 423 ~3H
Address: gasx waxk xx

Plicrie auinbier: s4 i $444
ISt iO R KRR R RARZRER

(c) [Pan et al., 2014] (d) Proposed

@ Uses a concatenation of two dictionaries: face and text
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Experiments

ID Number: 08081986
Issued: November 2015
Expires: November 2018

Name: Marina Ljubenovic
Position: Researcher

original

Name: Marina Ljubenovic
Position: Researcher

[Xu and Jia, 2011]

M. Figueiredo, 20:

1D Number: 98081986
Issued: Wovember 2015
Expires: November 2018

Wame Maiina Ljubeniic
Pasitian Researcher

10 Wumnibser: OROB1986
Isswed Navembers 1015
Engives Wovember 2018

blurred

| Name: Marina Ljubenowc
Position: Researcher

10 Numlber: 08081986
Issued: Movember 2015
Expites: November 2018

Name: Mar l}ube!

Position. Researcher

- J 10 Number: 08081986
Issued: November 2015
Expires: November 2018

[Krishnan et al, 2011]

Name: Marina Ljubenovic
Position: Researcher

_ ID Number: 08081986
Issued: November 2015
Expires: November 2018

[Pan et al, 2014]

Augmented Lagrangian Methods
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An Extreme Case of Adaptation: Hyperspectral Fusion

o Spectral-spatial resolution trade-off:

Multi-spectral: Hyper-spectral:

high spatial resolution low spatial resolution
low spectral resolution high spectral resolution
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An Extreme Case of Adaptation: Hyperspectral Fusion

o Spectral-spatial resolution trade-off:

Multi-spectral: Hyper-spectral:
high spatial resolution low spatial resolution
low spectral resolution high spectral resolution

o Fuse MS and HS data:

high spatial & spectral resolutions
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Hyperspectral Fusion: Formulation

o Observation model [Simdes et al., 2015]

z
T L
Y, = EXBM+ N, hyperspectral data € R*»* "
Y,, = REX+N,, multispectral data € R* X nm
z

Ly > L,, and n;, < ng,
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o Observation model [Simdes et al., 2015]

z
o L
Y, = EXBM+ N, hyperspectral data € R*»* "
Y,, = REX+N,, multispectral data € R* X nm
z

Ly > L,, and n;, < ng,

v/ E € RErXP: the p-dimensional subspace containing the fused image Z

v X € RPX"h: the corresponding coefficients (p < L)
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Y, = EXBM+ N, hyperspectral data € R*»* "~
Y,, = REX+N,, multispectral data € R* X nm
z
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Hyperspectral Fusion: Formulation

o Observation model [Simdes et al., 2015]

z
o L
Y, = EXBM+ N, hyperspectral data € R*»* "~
Y,, = REX+N,, multispectral data € R* X nm
z

Ly > L,, and n;, < ng,

v/ E € RErXP: the p-dimensional subspace containing the fused image Z
v X € RP*™: the corresponding coefficients (p < L)

v (BM) € R"™*"™ models spatial convolution & subsampling

v R € REm>Ln models the spectral responses of the MS sensors

v~ Ny, and N,,, model noise
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Hyperspectral Fusion via PnP-ADMM

@ Assuming Gaussian noise:

IS 1 A
X carg min - |[EXBM-Y|%+ "2 |REX - Y, || %+ “6(X)"
XeRPX"h 2 2
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Hyperspectral Fusion via PnP-ADMM

@ Assuming Gaussian noise:
S 1 A
X carg min - |[EXBM-Y|%+ "2 |REX - Y, || %+ “6(X)"
XeRPX"h 2 2

J
o ...which fits nicely the SALSA template (J = 3): minZgj (H, x)
j=1
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Hyperspectral Fusion via PnP-ADMM

@ Assuming Gaussian noise:
S 1 A
X carg min - |[EXBM-Y|%+ "2 |REX - Y, || %+ “6(X)"
XeRPX"h 2 2

J
o ...which fits nicely the SALSA template (J = 3): minZgj (H, x)
j=1

o Matrix inversion computable via FFT (with periodic or unknown BC)

Proximity operators:
v~ The one involving RE: a single p X p inversion; decoupled across pixels

v The one involving BM: solved by FFT, decoupled across bands

v The prox of ¢ is replaced by an adapted GMM-based denoiser

o The GMM is learned from patches of Y,, (high spatial resolution)
[Teodoro et al., 2016a]
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Convergence

o PnP-ADMM with a patch-based GMM-MMSE denoiser

-1
xp1 = (ATA+pI) " (ATy + plzx +wp))
Zit1 = denoiser(xk+1 — uy, 1/p)
Upt1 = Ukl — Xg+1 T Zg+1
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Convergence

o PnP-ADMM with a patch-based GMM-MMSE denoiser

xi1 = (ATA +pI) " (ATy + p(zk + 1))
Zit1 = denoiser(xk+1 — uy, 1/p)

Up 1 = Ukl — X1 + Zky1

@ denoiser is the prox of a convex function = convergence.
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Convergence

o PnP-ADMM with a patch-based GMM-MMSE denoiser

xi1 = (ATA +pI) " (ATy + p(zk + 1))
Zit1 = denoiser(xk+1 — uy, 1/p)

Upt1 = UWet1 — Xft1 + Z41
@ denoiser is the prox of a convex function = convergence.

@ From Moreau [1965]: some map p : R" — R" is the prox of a convex
function if and only if:
a) p is non-expansive, i.e.,
Vx,x', [p(x) = p(x)|| < [[x = x|
b) and p is subgradient of a convex function, i.e.,
J¢:R" - R: p(x) € 0o(x), Vx
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Convergence

o PnP-ADMM with a patch-based GMM-MMSE denoiser

xi1 = (ATA +pI) " (ATy + p(zk + 1))
Zit1 = denoiser(xk+1 — uy, 1/p)

Upt1 = UWet1 — Xft1 + Z41
@ denoiser is the prox of a convex function = convergence.

@ From Moreau [1965]: some map p : R" — R" is the prox of a convex
function if and only if:
a) p is non-expansive, i.e.,
Vx,x', [p(x) = p(x)|| < [[x = x|

b) and p is subgradient of a convex function, i.e.,
J¢:R" - R: p(x) € 0¢(x), Vx

@ Does the patch-based GMM-MMSE denoiser satisfy these conditions?
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Convergence (2)

o Is the patch-based GMM-MMSE denoiser non-expansive?
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Convergence (2)

o Is the patch-based GMM-MMSE denoiser non-expansive?
@ No! A simple univariate counter-example:

v Spike-and-slab-type prior:
p(x) = sN(2;0,71) + 3N (2;0,72), 2> 7
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Convergence (2)

@ Is the patch-based GMM-MMSE denoiser non-expansive?
@ No! A simple univariate counter-example:

v Spike-and-slab-type prior:
p(x) = sN(2;0,71) + 3N (2;0,72), 2> 7

v~ MMSE estimate under Gaussian noise of unit variance:
G = E[X|y] _ 7-7;1_51 Bl(y) + 7-‘;2_31 ﬂ?(y)
B1(y) + B2(y) ’

where 8;(y) = N (y;0, 7;+1)

= — Reference (slope = 1)
04| — Nonlinear 5 (3 y : siope > 1)

MMSE estimate &
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Convergence (2)

@ Is the patch-based GMM-MMSE denoiser non-expansive?
@ No! A simple univariate counter-example:

v Spike-and-slab-type prior:
p(x) = sN(2;0,71) + 3N (2;0,72), 2> 7

v~ MMSE estimate under Gaussian noise of unit variance:
G = E[X|y] _ 7-7;1_51 Bl(y) + 7-‘;2_31 ﬂ?(y)
B1(y) + B2(y) ’

o With 3; fixed: & = y(6 T+ B %)/(& + f2)

Ay

where 8;(y) = N (y;0, 7;+1)

= — Reference (slope = 1)
04| — Nonlinear 5 3y : siope > 1)

= Reference (siope = 1]
[ —Fixed 5 (slope < 1. )|

MMSE estimate &
MMSE
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Convergence (2)

o Freeze the weights (3,,) after a certain number of iterations.
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Convergence (2)

o Freeze the weights (3,,) after a certain number of iterations.

@ Patch estimate:

K ) ) 1
. — 7 .
%= 3 B Cn (Cn+0?1) v,
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Convergence (2)

o Freeze the weights (3,,) after a certain number of iterations.

@ Patch estimate:

K
%= B Cm<Cm + 0 I>_1Yi =Fi(o?)yi
m=1
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Convergence (2)

o Freeze the weights (3,,) after a certain number of iterations.

@ Patch estimate:
K -1
Xi= B Cm(Cm + 0 I) yi =Fi(0®)y; = Fi(c®) Py
m=1

P, is the operator (binary matrix) that extracts the i-th patch
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Convergence (2)

o Freeze the weights (3,,) after a certain number of iterations.

@ Patch estimate:
K -1
Xi= B CTTL<Cm + 0 I) yi =Fi(0®)y; = Fi(c®) Py
m=1

P, is the operator (binary matrix) that extracts the i-th patch

(weights are normalized, to simplify the notation: 3, < f;,/ >, B})
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Convergence (2)

o Freeze the weights (3,,) after a certain number of iterations.

@ Patch estimate:
K -1
Xi= B CTTL<Cm + 0 I) yi =Fi(0®)y; = Fi(c®) Py
m=1

P, is the operator (binary matrix) that extracts the i-th patch
(weights are normalized, to simplify the notation: 3, < f;,/ >, B})

o Global image estimate: aggregate the patch estimates:
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Convergence (2)

o Freeze the weights (3,,) after a certain number of iterations.

@ Patch estimate:
K ‘ 1
%= B CTTL<Cm +0’ I) i = Fi(0?)y; = Fi(0?) Piy
m=1

P, is the operator (binary matrix) that extracts the i-th patch
(weights are normalized, to simplify the notation: 3, < f;,/ >, B})

o Global image estimate: aggregate the patch estimates:
Xx=— Z PIFi(c®)P;y = W(o?) y

o Key properties of W [Teodoro et al., 2017b]: for any o2 > 0,
W(e?) =W, W) =0, Au(W(e?) <1
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Convergence (2)

o Freezing the weights (/3,,,) after a certain number of iterations,

denoiser(y, 0%) = W(o?)y
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Convergence (2)

o Freezing the weights (/,,) after a certain number of iterations,
denoiser(y, 0%) = W(o?)y
o Recalling Moreau's corollary, this is a proximity operator:
o It is non-expansive: W (o?) is symmetric with A, (W(O’2)) <1

o It is the gradient of a convex function: W (o?)y = Vy (3y" W(o?)y)
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Convergence (2)

o Freezing the weights (/,,) after a certain number of iterations,
denoiser(y, 0%) = W(o?)y
o Recalling Moreau's corollary, this is a proximity operator:
o It is non-expansive: W (o?) is symmetric with A, (W(a2)) <1
1

o It is the gradient of a convex function: W (o?)y = Vy (3y" W(o?)y)

o Can we identify the function of which this denoiser is the prox?
1 e _
P(x) = tgew)(x) + §XTQ(A '-DQ™x

where S(W) is the column span of W, A has the positive eigenvalues
of W, and Q the corresponding eigenvectors.
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Convergence (2)

o Freezing the weights (/,,) after a certain number of iterations,
denoiser(y, 0%) = W(o?)y
o Recalling Moreau's corollary, this is a proximity operator:
o It is non-expansive: W (o?) is symmetric with A, (W(a2)) <1
o It is the gradient of a convex function: W (o?)y = Vy (3y" W(o?)y)

o Can we identify the function of which this denoiser is the prox?
1 e _
P(x) = tgew)(x) + §XTQ(A '-DQ™x

where S(W) is the column span of W, A has the positive eigenvalues
of W, and Q the corresponding eigenvectors.

@ Conclusion: the problem has a solution and PnP-ADMM converges
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Hyperspectral Fusion: Synthetic Example

Table 3: HS and MS fusion on RTerrain dataset.

Exp. 1 (PAN) Exp. 2 (PAN)  |[Exp. 3 (R,G,B,N-IR)||Exp. 4 (R,G,B.N-IR)
SNR (Y.) 50dB 30dB 50dB 30dB
SNR (Yh) 5048 20dB 50dB 20dB
Metric |BRGAS|SAM]| SRE |ERGAS|[SAM] SRE | ERGAS|SAM| SRE |[ERGAS[SAM| SRE
HySure 2.62 |5.34|21.46] 2.77 |5.35]2086] 1.08 |2.68] 28.71 ] 153 |3.42] 26.07
Proposed | 2.58 |5.15[21.69| 2.75 |5.33[21.12] 0.91 |2.20]30.86| 1.29 |2.85|27.85
ADMM-BM3D|| 2.57 |[5.17(21.65| 2.76 [5.36(21.08( 0.93 |[2.22| 30.80 1.31 [2.91|27.72

[Teodoro et al., 2016a]
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RMSE

Poxal numbor o W % w w w W e woom % W W w % % W
Band
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Final Remarks

o ADMM/SALSA: a flexible toolbox for a variety inverse problems
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Final Remarks

o ADMM/SALSA: a flexible toolbox for a variety inverse problems
o Its speed hinges on the inversion of (B”B + 1) (3 la quasi-Newton)
@ Plug-and-play (PnP) denoisers “can” be used with ADMM

o Convergence properties of PnP-ADMM with fixed linear denoiser
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Thank you.
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