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Universidade de Lisboa, Portugal

CIMI-ANITI School on Optimisation, Toulouse, 2021

(Based on other tutorials with Stephen Wright, University of Wisconsin, USA)

M. Figueiredo Sparse Optimization CIMI-ANITI School on Optimisation 1 / 64



Outline

Part 1: Sparse Optimization and Applications

Part 2: First-Order Methods

Part 3: Augmented Lagrangian Methods

M. Figueiredo Sparse Optimization CIMI-ANITI School on Optimisation 2 / 64



Part 1: Sparse Optimization and Applications

Mário A. T. Figueiredo

1Instituto de Telecomunicações,
Instituto Superior Técnico,
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Inference via Optimization

Many inference problems are formulated as optimization problems:

image reconstruction, restoration, denoising, segmentation, ...
machine learning
X supervised learning
X unsupervised learning
X many other tasks

statistical inference

decision theory

system identification

...

Standard formulation:

observed data: y

unknown mathematical object (signal, image, vector, matrix,...): x

inference criterion:
x̂ ∈ arg min

x
g(x , y)
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Inference via Optimization

Inference criterion:

x̂ ∈ arg min
x

g(x , y)

= {x : g(x , y) ≤ g(z , y), ∀z}

Question 1: how to build g? Where does it come from?

Answer: from the application domain (machine learning, signal
processing, inverse problems, system identification, statistics, computer
vision, bioinformatics,...);
... examples ahead.

Question 2: how to solve the optimization problem?

Answer: the focus of this tutorial.
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Regularized Optimization

Inference criterion: x̂ ∈ arg min
x

g(x , y)

Typical structure of g : g(x , y) = h(x , y) + τψ(x)

h(x , y) → how well x “fits”/“explains” the data y ;
(data term, log-likelihood, loss function, observation model,...)

ψ(x) → knowledge/constraints/structure: the regularizer

τ ≥ 0: the regularization parameter/constant.

Since y is fixed, we often write simply f (x) = h(x , y),

min
x

f (x) + τψ(x)
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Probabilistic/Bayesian Interpretations

Inference criterion: x̂ ∈ arg min
x

g(x , y)

Typical structure of g : g(x , y) = h(x , y) + τψ(x)

Likelihood (observation model): p(y |x) =
1

Zl
exp
(
−h(x , y)

)
Prior: p(x) =

1

Zp
exp
(
−τψ(x)

)
Posterior: p(x |y) =

p(y |x) p(x)

p(y)

Log-posterior: log p(x |y) = K (y)− h(x , y)− τψ(x)

= K (y)− g(x , y)

x̂ is a maximum a posteriori (MAP) estimate.
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Regularizers

Inference criterion: min
x

f (x) + τψ(x)

Typically, the unknown is a vector x ∈ Rn

or a matrix x ∈ Rn×m

Common regularizers impose/encourage one (or a combination of) the
following characteristics:

small norm (vector or matrix)

sparsity (few nonzeros)

specific nonzero patterns (e.g., group/tree structure)

low-rank (matrix)

smoothness or piece-wise smoothness

...
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Unconstrained vs Constrained Formulations

Tikhonov regularization: min
x

f (x) + τψ(x)

Morozov regularization:
min
x

ψ(x)

subject to f (x) ≤ ε

Ivanov regularization:
min
x

f (x)

subject to ψ(x) ≤ δ

Under mild conditions, these are all equivalent (in a precise sense).

Which one is more convenient is problem-dependent.
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Example: Under- and Over-Constrained Linear Systems

A simple linear inverse problem: from y = Ax , find x (A ∈ Rm×n)

Trivial case, A is invertible: x = A−1y

Over-determined system (m > n); least squares solution
(rank(A) = n):

x̂ = arg min
x

n∑
i=1

(yi − (Ax)i )
2 = arg min

x
‖y − Ax‖2

2 = (ATA)−1AT y

Under-determined system (m < n); minimum norm solution
(rank(A) = m):

x̂ =

{
arg min

x
‖x‖2

2

s.t. Ax = y

}
= AT (AAT )−1y

Non-trivial cases: resort to optimization and regularization.

Quadratic (Euclidean norm) losses and regularizers have a long, rich
history: Gauss, Legendre, Wiener, Moore-Penrose, Tikhonov, ...
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Norms: A Quick Review

Consider some real vector space V, for example, Rn or Rn×n, ...

Some function ‖ · ‖ : V → R+ is a norm if it satisfies:

‖αx‖ = |α| ‖x‖, for any x ∈ V and α ∈ R (homogeneity);

‖x + x ′‖ ≤ ‖x‖+ ‖x ′‖, for any x , x ′ ∈ V (triangle inequality);

‖x‖ = 0 ⇒ x = 0.

Examples:

V = Rn, ‖x‖p =
(∑

i

|xi |p
)1/p

(called `p norm, for p ≥ 1).

V = Rn, ‖x‖∞ = lim
p→∞

‖x‖p = max{|x1|, ..., |xn|}

V = Rn×n, ‖X‖∗ = trace
(√

XTX
)

(matrix nuclear norm)

Also important (but not a norm): ‖x‖0 = lim
p→0
‖x‖pp = |{i : xi 6= 0}|
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V = Rn, ‖x‖∞ = lim
p→∞

‖x‖p = max{|x1|, ..., |xn|}

V = Rn×n, ‖X‖∗ = trace
(√

XTX
)

(matrix nuclear norm)

Also important (but not a norm): ‖x‖0 = lim
p→0
‖x‖pp = |{i : xi 6= 0}|
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Norm balls

Radius r ball in `p norm: Bp(r) = {x ∈ Rn : ‖x‖p ≤ r}

p = 1 p = 2
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Examples: Back to Under-Constrained Systems

A simple linear inverse problem: from y = Ax , find x (A ∈ Rm×n)

Under-determined system (m < n); minimum norm solution:

x̂ =

{
arg min

x
‖x‖2

2

s.t. Ax = y

}
= A∗(AA∗)−1y

6= x (in general)

Can we hope to recover x? Yes! ...if x is sparse enough (‖x‖0 < k)
and A satisfies some conditions, using

x̂ = arg min
x
‖x‖0

s.t. Ax = y

Several proofs, under different conditions (more later).

But, this is a hard problem! `0 “norm” is not convex.

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 13 / 64



Examples: Back to Under-Constrained Systems

A simple linear inverse problem: from y = Ax , find x (A ∈ Rm×n)

Under-determined system (m < n); minimum norm solution:

x̂ =

{
arg min

x
‖x‖2

2

s.t. Ax = y

}
= A∗(AA∗)−1y 6= x (in general)

Can we hope to recover x? Yes! ...if x is sparse enough (‖x‖0 < k)
and A satisfies some conditions, using

x̂ = arg min
x
‖x‖0

s.t. Ax = y

Several proofs, under different conditions (more later).

But, this is a hard problem! `0 “norm” is not convex.

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 13 / 64



Examples: Back to Under-Constrained Systems

A simple linear inverse problem: from y = Ax , find x (A ∈ Rm×n)

Under-determined system (m < n); minimum norm solution:

x̂ =

{
arg min

x
‖x‖2

2

s.t. Ax = y

}
= A∗(AA∗)−1y 6= x (in general)

Can we hope to recover x? Yes! ...if x is sparse enough (‖x‖0 < k)
and A satisfies some conditions, using

x̂ = arg min
x
‖x‖0

s.t. Ax = y

Several proofs, under different conditions (more later).

But, this is a hard problem! `0 “norm” is not convex.

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 13 / 64



Review of Basics: Convex Sets
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Review of Basics: Convex Functions
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Lower Semi-Continuity: Why Is It Important?

A function f : Rn → R̄ is lower semi-continuous (l.s.c.) if

lim inf
x→x0

≥ f (x0), for any x0 ∈ dom(f )

or, equivalently, {x : f (x) ≤ α} is a closed set, for any α ∈ R

f (x) =

{
e−x , if x < 0
+∞, if x ≥ 0

dom(f ) =]−∞, 0[, arg minx f (x) = ∅

f (x) =

{
e−x , if x ≤ 0
+∞, if x > 0

dom(f ) =]−∞, 0], arg minx f (x) = {0}

Unless stated otherwise, we only consider l.s.c. functions.
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Coercivity, Convexity, and Minima
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Another Important Concept: Strong Convexity

Recall the definition of convex function: ∀λ ∈ [0, 1],

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)

A β−strongly convex function satisfies a stronger condition: ∀λ ∈ [0, 1]

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)− β

2
λ(1− λ)‖x − x ′‖2

2

convexity

strong convexity

Strong convexity
⇒
6⇐ strict convexity.
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A Little More on Convex Functions

Let f1, ..., fN : Rn → R̄ be convex functions. Then

f : Rn → R̄, defined as f (x) = max{f1(x), ..., fN(x)}, is convex.

g : Rn → R̄, defined as g(x) = f1(L(x)), where L is affine, is convex.

Note: L is affine ⇔ L(x)− L(0) is linear; e.g. L(x) = Ax + b.

h : Rn → R̄, defined as h(x) =
∑N

j=1
αj fj(x), for αj > 0, is convex.

An important function: the indicator of a set C ⊂ Rn,

ιC : Rn → R̄, ιC (x) =

{
0 ⇐ x ∈ C
+∞ ⇐ x 6∈ C

If C is a closed convex set, ιC is a l.s.c. convex function.
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The Case of Differentiable Functions

Let f : Rn → R be twice differentiable and consider its Hessian matrix at
x , denoted ∇2f (x) (or Hf (x)):

(
∇2f (x)

)
ij

=
∂f

∂xi∂xj
, for i , j = 1, ..., n.

f is convex ⇔ its Hessian ∇2f (x) is positive semidefinite ∀x

f is strictly convex ⇐ its Hessian ∇2f (x) is positive definite ∀x

f is β-strongly convex ⇔ its Hessian ∇2f (x) � βI , with β > 0, ∀x .
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More on the Relationship Between `1 and `0

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

s. t. ‖Aw − y‖2
2 ≤ δ

The related best subset selection problem is also NP-hard (Amaldi and
Kann, 1998; Davis et al., 1997).

ŵ = arg min
w
‖Aw − y‖2

2

s. t. ‖w‖0 ≤ τ

Under conditions, replacing `0 with `1 yields “similar” results:
central issue in compressive sensing (CS) (Candès et al., 2006a; Donoho,

2006)
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Compressive Sensing in a Nutshell

Even in the noiseless case, it seems impossible to recover w from y

...unless, w is sparse and A has some properties.

If w is sparse enough and A has certain properties, then w is stably
recovered via (Haupt and Nowak, 2006)

ŵ = arg min
w
‖w‖0

s. t. ‖Aw − y‖ ≤ δ NP-hard!
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Compressive Sensing in a Nutshell

Under some conditions on A (e.g., the restricted isometry property (RIP)),
`0 can be replaced with `1 (Candès et al., 2006b):

ŵ = arg min
w
‖w‖1

subject to ‖Aw − y‖ ≤ δ convex problem

Matrix A satisfies the RIP of order k, with constant δk ∈ (0, 1), if

‖w‖0 ≤ k ⇒ (1− δk)‖w‖2
2 ≤ ‖Aw‖2

2 ≤ (1 + δk)‖w‖2
2

...i.e., for k-sparse vectors, A is approximately an isometry.

Other properties (spark and null space property (NSP)) can be used;
caveat: checking RIP, NSP, spark is NP-hard (Tillmann and Pfetsch, 2012).
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Examples: Back to Under-Constrained Systems

Let x̄ be the sparsest solution of Ax = y , where A ∈ Rm×n and m < n.

x̄ = arg min ‖x‖0 s.t. Ax = y .

Consider the `1 norm version: min
x
‖x‖1 s.t. Ax = y

Advantage: this is a convex problem! Fact: all norms are convex.

Of course, x̄ solves this problem too, if ‖x̄ + v‖1 ≥ ‖x̄‖1, ∀v ∈ ker(A).

Recall: ker(A) = {x ∈ Rn : Ax = 0} is the kernel (a.k.a. null space) of A.

Next: elementary analysis by Yin and Zhang (2008), based on work by
Kashin (1977) and Garnaev and Gluskin (1984).
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Equivalence Between `1 and `0 Optimization

Minimum `0 (sparsest) solution: x̄ ∈ arg min ‖x‖0 s.t. Ax = y .

Minimum `1 solution(s): G = arg min ‖x‖1 s.t. Ax = y .

x̄ ∈ G , if ‖x̄ + v‖1 ≥ ‖x̄‖1, ∀v ∈ ker(A)

Let S = {i : x̄i 6= 0} and Z = {1, ..., n} \ S

‖x̄ + v‖1 = ‖x̄S + vS‖1 + ‖vZ‖1

≥ ‖x̄S‖1 + ‖vZ‖1 − ‖vS‖1 (‖a + b‖ ≥ ‖a‖ − ‖b‖)
= ‖x̄‖1 + ‖v‖1 − 2‖vS‖1

≥ ‖x̄‖1 + ‖v‖1 − 2
√
k‖v‖2. (‖a‖1 ≤

√
n ‖a‖2)

Hence, x̄ ∈ G , if 1
2
‖v‖1

‖v‖2
≥
√
k, ∀v ∈ ker(A)

...but, in general, we have only: 1 ≤ ‖v‖1

‖v‖2
≤
√
n

However, we may have ‖v‖1

‖v‖2
� 1, if v is restricted to a random subspace.
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Bounding the `1/`2 Ratio in Random Matrices

If the elements of A ∈ Rm×n are sampled i.i.d. from N (0, 1) (zero mean,
unit variance Gaussian), then, with high probability,

‖v‖1

‖v‖2
≥ C

√
m√

log(n/m)
, for all v ∈ ker(A),

for some constant C (based on concentration of measure phenomena).

Thus, with high probability, x̄ ∈ G , if

m ≥ 4

C 2
k log n

Conclusion: Can solve under-determined system, where A has i.i.d.
N (0, 1) elements, by solving

min
x
‖x‖1 s.t. Ax = b,

(a convex problem), if the solution is sparse enough.
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Ratio ‖v‖1/‖v‖2 on Random Null Spaces

Random A ∈ R4×7, showing ratio ‖v‖1 for v ∈ ker(A) with ‖v‖2 = 1

Blue: ‖v‖1 ≈ 1. Red: ratio ≈
√

7. Note that ‖v‖1 is well away from the
lower bound of 1 over the whole nullspace.
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When Data is Noisy
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The Ubiquitous `1 Norm

Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996)
a.k.a. basis pursuit denoising (Chen et al., 1995):

min
x

1

2
‖Ax − y‖2

2 + τ‖x‖1 or min
x
‖Ax − y‖2

2 s.t. ‖x‖1 ≤ δ

or, more generally,

min
x

f (x) + λ‖x‖1 or min
x

f (x) s.t. ‖x‖1 ≤ δ

Widely used in statistics, signal processing, neural networks, ...

Many extensions: namely to express structured sparsity (more later).

Why does `1 yield sparse solutions? (next slides)

How to solve these problems? (this tutorial)
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Why `1 Yields Sparse Solution

w∗ = arg minw ‖Aw − y‖2
2

s.t. ‖w‖2 ≤ δ
vs w∗ = arg minw ‖Aw − y‖2

2

s.t. ‖w‖1 ≤ δ
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Why `1 Yields Sparse Solution

The simplest problem with `1 regularization

ŵ = arg min
w

1

2
(w − y)2 + λ|w | = soft(y , λ) =


y − λ ⇐ y > λ
0 ⇐ |y | ≤ λ
y + λ ⇐ y < −λ

...by the way, how was this solved? (more later).

Contrast with the squared `2 (ridge) regularizer (linear scaling):

ŵ = arg min
w

1

2
(w − y)2 +

λ

2
w2 =

1

1 + λ
y

(zero iff y = 0)
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More on the Relationship Between `1 and `0

The `0 “norm” (number of non-zeros): ‖w‖0 = |{i : wi 6= 0}|.
Not a norm, not convex, but in the simple case...

ŵ = arg min
w

1

2
(w − y)2 + λ|w |0 = hard(y ,

√
2λ) =

{
y ⇐ |y | >

√
2λ

0 ⇐ |y | ≤
√

2λ
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Another Application: Images

Natural images are well represented by a few coefficients in some bases.

Images (N ×M ≡ n pixels) are represented by vectors x ∈ Rn

Typical images have representations x = Ww that are sparse
(‖w‖0 � n) on some bases (W TW = WW T = I ), such as wavelets.

Original 1000× 1000 image x ∈ R106

...only its 25000 largest coefficients.

Also (even more) true with an over-complete tight frame; W is “fat”
(more columns than rows) and WW T = I , but W TW 6= I .

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 33 / 64



Another Application: Images

Natural images are well represented by a few coefficients in some bases.

Images (N ×M ≡ n pixels) are represented by vectors x ∈ Rn

Typical images have representations x = Ww that are sparse
(‖w‖0 � n) on some bases (W TW = WW T = I ), such as wavelets.

Original 1000× 1000 image x ∈ R106

...only its 25000 largest coefficients.

Also (even more) true with an over-complete tight frame; W is “fat”
(more columns than rows) and WW T = I , but W TW 6= I .

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 33 / 64



Another Application: Images

Natural images are well represented by a few coefficients in some bases.

Images (N ×M ≡ n pixels) are represented by vectors x ∈ Rn

Typical images have representations x = Ww that are sparse
(‖w‖0 � n) on some bases (W TW = WW T = I ), such as wavelets.

Original 1000× 1000 image x ∈ R106

...only its 25000 largest coefficients.

Also (even more) true with an over-complete tight frame; W is “fat”
(more columns than rows) and WW T = I , but W TW 6= I .
M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 33 / 64



Application to Image Deblurring/Deconvolution
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Application to Magnetic Resonance Imaging
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Machine/Statistical Learning: Linear Regression

Data N pairs (x1, y1), ..., (xN , yN), where xi ∈ Rd (feature/variable
vectors) and yi ∈ R (outputs).

Goal: find “good” linear function: ŷ =
d∑

j=1

wjxj + wd+1 = [xT1]w

Assumption: data generated i.i.d. by some underlying distribution PX ,Y

Mean squared error: min
w

E
(
Y − [XT1]w

)2
impossible! PX ,Y unknown

Empirical error: min
w

1
N

N∑
i=1

(
yi − [xTi 1]w

)2
= min

w

1
N ‖y − Aw‖2

2,

design matrix: Aij = (xi )j (j-th component of i-th sample, Ai(d+1) = 1)

Regularization: minw ‖y − Aw‖2
2 + τψ(w)
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d∑

j=1

wjxj + wd+1 = [xT1]w

Assumption: data generated i.i.d. by some underlying distribution PX ,Y

Mean squared error: min
w

E
(
Y − [XT1]w

)2
impossible! PX ,Y unknown

Empirical error: min
w

1
N

N∑
i=1

(
yi − [xTi 1]w

)2
= min

w

1
N ‖y − Aw‖2

2,

design matrix: Aij = (xi )j (j-th component of i-th sample, Ai(d+1) = 1)

Regularization: minw ‖y − Aw‖2
2 + τψ(w)

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 36 / 64



Machine/Statistical Learning: Linear Classification

Data N pairs (x1, y1), ..., (xN , yN), where xi ∈ Rd (feature vectors)
and yi ∈ {−1,+1} (labels).

Goal: find “good” linear classifier (i.e., find the optimal weights):

ŷ = sign([xT1]w) = sign
(
wd+1 +

d∑
j=1

wjxj

)

Assumption: data generated i.i.d. by some underlying distribution PX ,Y

Expected error: min
w∈Rd+1

E
(
1Y ([XT 1]w)<0

)
impossible! PX ,Y unknown

Empirical error (EE): min
w

1
N

N∑
i=1

h
(
yi ([xTi 1]w)︸ ︷︷ ︸

margin

)
, where h(z) = 1z<0.

Convexification: EE neither convex nor differentiable (NP-hard problem).
Solution: replace h : R→ {0, 1} with convex loss L : R→ R+.
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Machine/Statistical Learning: Linear Classification

Criterion: min
w

N∑
i=1

L
(
yi (wT xi + b)︸ ︷︷ ︸

margin

)
︸ ︷︷ ︸

f (w)

+τψ(w)

Convex loss: L : R→ R+ is a (preferably convex) loss function.

Regularizer: ψ = `1 ⇒ encourage sparseness ⇒ feature selection

Misclassification loss: L(z) = 1z<0

Hinge loss: L(z) = max{1− z , 0}

Logistic loss: L(z) =
log
(

1+exp(−z)
)

log 2

Squared loss: L(z) = (z − 1)2
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Machine/Statistical Learning: Classification

This formulation covers a wide range of linear ML methods:

min
w

N∑
i=1

L
(
yi ([xTi 1]w)

)
︸ ︷︷ ︸

f (w)

+ τψ(w)

Least squares regression: L(z) = (z − 1)2, ψ(w) = 0.

Ridge regression: L(z) = (z − 1)2, ψ(w) = ‖w‖2
2.

Lasso regression: L(z) = (z − 1)2, ψ(w) = ‖w‖1

Logistic regression: L(z) = log(1 + exp(−z)) (ridge, if ψ(w) = ‖w‖2
2

Sparse logistic regression: L(z) = log(1 + exp(−z)), ψ(w) = ‖w‖1

Support vector machines: L(z) = max{1− z , 0}, ψ(w) = ‖w‖2
2

Boosting: L(z) = exp(−z),

...
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Machine/Statistical Learning: Nonlinear Problems

What about non-linear functions?

Simply use ŷ = φ(x ,w) =
D∑
j=1

wj φj(x), where φj : Rd → R

Essentially, nothing changes; computationally, a lot may change!

min
w

N∑
i=1

L
(
yi φ(x ,w)

)
︸ ︷︷ ︸

f (w)

+ τψ(w)

Key feature: φ(x ,w) is still linear with respect to w , thus f inherits the
convexity of L.

Examples: polynomials, radial basis functions, wavelets, splines, kernels,...

Recover the linear case, letting D = d + 1, fj(x) = xj , and fd+1 = 1.
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Structured Sparsity

`1 regularization promotes sparsity

A very simple sparsity pattern: prefer models with small cardinality

Can we promote less trivial sparsity patterns? How?

Group/structured regularization.
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Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality

Group sparsity: discard/keep entire groups of features (Bach et al., 2012)

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if the assumption is correct (Stojnic et al., 2009)

Many applications:

feature template selection (Martins et al., 2011)

multi-task learning (Caruana, 1997; Obozinski et al., 2010)

learning the structure of graphical models (Schmidt and Murphy,
2010)
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“Grid” Sparsity

For feature spaces that can be arranged as a grid (examples next)

Goal: push entire columns to have zero weights

The groups are the columns of the grid
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Example: Sparsity with Multiple Classes

In multi-class (more than just 2 classes) classification, a common
formulation is

ŷ = arg max
y∈{1,...,K}

xTwy

Weight vector w = (w1, ...,wK ) ∈ RKd has a natural group/grid
organization:

input features

la
b
e
ls

Simple sparsity is wasteful: may still need to keep all the features

Structured sparsity: discard some input features (feature selection)

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 44 / 64



Example: Sparsity with Multiple Classes

In multi-class (more than just 2 classes) classification, a common
formulation is
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Example: Multi-Task Learning

Same thing, except now rows are tasks and columns are features

Example: simultaneous regression (seek function into Rd → Rb)

shared features

ta
sk

s

Goal: discard features that are irrelevant for all tasks

Approach: one group per feature (Caruana, 1997; Obozinski et al., 2010)
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Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors xG1 , . . . , xGM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

ψ(x) =
M∑

m=1

‖xGm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

Weighted version: λm are prior weights for groups (groups may have
different sizes)
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Lasso versus group-Lasso
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Composite Absolute Penalties (Zhao et al., 2009)

A mixed-norm regularization:

ψ(x) =

(
M∑

m=1

‖xm‖rq

)1/r

The r -norm of the q-norms (r ≥ 1, q ≥ 1)

Technically, this is also a norm, called a mixed norm, denoted `q,r

The most common choice: `2,1 norm

Another frequent choice: `∞,1 norm (Quattoni et al., 2009; Graça et al.,

2009; Eisenstein et al., 2011; Wright et al., 2009)
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Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups
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Non-overlapping Groups

Assume that G1, . . . ,GM (where Gm ⊂ {1, ..., d}) constitute a partition:

M⋃
i=1

Gm = {1, ..., d} and i 6= j ⇒ Gi ∩ Gj = ∅

ψ(x) =
M∑

m=1

λm‖xGm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . , d}
`1-regularization: d singleton groups Gm = {m}

Examples of non-trivial groups:

label-based groups

task-based groups
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Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 51 / 64



Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 51 / 64



Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 51 / 64



Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 51 / 64



Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 51 / 64



Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 51 / 64



Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

M. Figueiredo, 2021 Sparse Optimization CIMI-ANITI Optimisation 51 / 64



Matrix Inference Problems

Sparsest solution:

From Bx = b ∈ Rp, find
x ∈ Rn (p < n).

minx ‖x‖0 s.t. Bx = b

Yields exact solution, under
some conditions.

Lowest rank solution:

From B(X ) = b ∈ Rp, find
X ∈ Rm×n (p < mn).

minX rank(X ) s.t. B(X ) = b

Yields exact solution, under some
conditions.

Both NP−hard (in general); the same is true of noisy versions:

min
X∈Rm×n

rank(X ) s.t. ‖B(X )− b‖2
2

Under some conditions, the same solution is obtained by replacing rank(X )
by the nuclear norm ‖X‖∗ (as any norm, it is convex) (Recht et al., 2010)
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Matrix Nuclear Norm (and Other Norms)

Also known as trace norm; the `1-type norm for matrices X ∈ Rm×n

Definition: ‖X‖∗ = trace
(√

XTX
)

=

min{m,n}∑
i=1

σi ,

the σi are the singular values of X .

Particular case of Schatten q-norm: ‖X‖q =

min{m,n}∑
i=1

(σi )
q

1/q

.

Two other notable Schatten norms:

Frobenius norm: ‖X‖2 = ‖X‖F =

√√√√min{m,n}∑
i=1

(σi )2 =

√∑
i,i

X 2
i,j

Spectral norm: ‖X‖∞ = max
{
σ1, ..., σmin{m,n}

}
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Nuclear Norm Regularization

Tikhonov formulation: min
X
‖B(X )− b‖2

2︸ ︷︷ ︸
f (X )

+ τ‖X‖∗︸ ︷︷ ︸
τψ(X )

Linear observations: B : Rm×n → Rp,
(
B(X )

)
i

= 〈B(i),X 〉,

B(i) ∈ Rm×n, and 〈B,X 〉 =
∑
jk

BjkXjk = trace(BTX )

Matrix completion, each B(i) has one 1 and is 0 everywhere else.

Why does the nuclear norm favor low rank solutions? Let Y = UΛV T be
the singular value decomposition, where Λ = diag

(
σ1, ..., σmin{m,n}

)
; then

arg min
X

1

2
‖Y − X‖2

F + τ‖X‖∗ = U soft(Λ, τ)︸ ︷︷ ︸
may yield zeros

V T

...singular value thresholding (Ma et al., 2011; Cai et al., 2010)
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Another Matrix Inference Problem: Inverse Covariance

Consider n samples y1, ..., yn ∈ Rd of a Gaussian r.v. Y ∼ N (µ,C ); the
log-likelihood is

L(P) = log p(y1, ..., yn|P) = log det(P)− trace(SP) + constant

where S = 1
n

∑n
i=1(yi − µ)(yi − µ)T and P = C−1 (inverse covariance).

Zeros in P reveal conditional independencies between components of Y :

Pij = 0 ⇔ Yi ⊥⊥ Yj |{Yk , k 6= i , j}

...exploited to infer (in)dependencies among Gaussian variables. Widely
used in computational biology, neuroscience, (social) network analysis, ...

Sparsity (presence of zeros) in P is encouraged by solving

min
P�0
− log det(P) + trace(SP)︸ ︷︷ ︸

f (P)

+τ ‖vect(P)‖1︸ ︷︷ ︸
ψ(P)

where vect(P) = [P1,1, ...,Pd ,d ]T .
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Atomic-Norm Regularization

Key concept in sparse modeling: synthesize “object” using a few atoms:

x =

|A|∑
i=1

ci ai

A is the set of atoms (the atomic set), or building blocks.

ci ≥ 0 are weights; x is simple/sparse object ⇒ ‖c‖0 � |A|
Formally, A is a compact subset of Rn

The (Minkowski) gauge of A is:

‖x‖A = inf
{
t > 0 : x ∈ t conv(A)

}
Assuming that A centrally symmetry about the origin
(a ∈ A ⇒ −a ∈ A), ‖ · ‖A is a norm, called the atomic norm
(Chandrasekaran et al., 2012).
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Atomic-Norm Regularization

The atomic norm

‖x‖A = inf
{
t > 0 : x ∈ t conv(A)

}
= inf

{ |A|∑
i=1

ci : x =

|A|∑
i=1

ci ai , ci ≥ 0
}

...assuming that the centroid of A is at the origin.

Example: the `1 norm as an atomic norm

A =

{[
0
1

]
,

[
1
0

]
,

[
0
−1

]
,

[
−1
0

]}
conv(A) = B1(1) (`1 unit ball).

‖x‖A = inf
{
t > 0 : x ∈ t B1(1)

}
= ‖x‖1
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Atomic Norms: More Examples
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Atomic-Norm Regularization

Given an atomic set A, we can adopt an Ivanov formulation

min f (x) s.t. ‖x‖A ≤ δ

(for some δ > 0) tends to recover x with sparse atomic representation.

Can formulate algorithms for the various special cases — but is a general
approach available for this formulation?

Yes! The conditional gradient (more later.)
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Summary

Many inference, learning, signal/image processing problems can be
formulated as optimization problems.

Sparsity-inducing regularizers play an important role in these problems

There are several way to induce sparsity

It is possible to formulate structured sparsity

It is possible to extend the sparsity rationale to other objects, namely
matrices

Atomic norms provide a unified framework for sparsity/simplicity
regularization
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Focus (Initially) on Smooth Convex Functions

Consider min
x∈Rn

f (x), with f smooth and convex.

Usually assume µI � ∇2f (x) � LI , ∀x , with 0 ≤ µ ≤ L
(L is a Lipschitz constant of ∇f ).

If µ > 0, then f is µ-strongly convex (as seen in Part 1) and

f (y) ≥ f (x) +∇f (x)T (y − x) +
µ

2
‖y − x‖2

2.

Define conditioning (or condition number) as κ := L/µ.

We are often interested in convex quadratics:

f (x) =
1

2
xTAx , µI � A � LI or

f (x) =
1

2
‖Bx − b‖2

2, µI � BTB � LI
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What’s the Setup?

We consider iterative algorithms

xk+1 = Φ(xk), or xk+1 = Φ(xk , xk−1)

Assume we can evaluate f (xt) and ∇f (xt) at each iteration.

Later, we look at broader classes of problems:

nonsmooth regularization; i.e., instead of just f (x), minimize
f (x) + τψ(x);

nonsmooth f ;

f not available (or too expensive to evaluate exactly);

only an estimate of the gradient is available;

a constraint x ∈ Ω, usually for a simple Ω (e.g. ball, box, simplex).

We focus on algorithms that can be adapted to those scenarios.
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Steepest Descent

Steepest descent (a.k.a. gradient descent):

xk+1 = xk − αk∇f (xk), for some αk > 0.

Different ways to select an appropriate αk .

1 Hard: interpolating scheme with safeguarding to identify an
approximate minimizing αk .

2 Easy: backtracking. ᾱ, 1
2 ᾱ, 1

4 ᾱ, 1
8 ᾱ, ... until sufficient decrease in f

is obtained.

3 Trivial: don’t test for function decrease; use rules based on L and µ.

Analysis of 1 and 2 yields global convergence at unspecified rate, but not
applicable to non-smooth problems.

Analysis of 3 focuses on convergence rate, and leads to accelerated
multi-step methods.
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Constant (Short) Steplength

By elementary use of Taylor’s theorem, and since ∇2f (x) � LI ,

f (xk+1) ≤ f (xk)− αk

(
1− αk

2
L
)
‖∇f (xk)‖2

2

For αk ≡ 1/L, f (xk+1) ≤ f (xk)− 1

2L
‖∇f (xk)‖2

2,

thus ‖∇f (xk)‖2 ≤ 2L[f (xk)− f (xk+1)]

Summing for k = 0, 1, . . . ,N, and telescoping the sum,

N∑
k=0

‖∇f (xk)‖2 ≤ 2L[f (x0)− f (xN+1)].

It follows that ∇f (xk)→ 0 if f is bounded below.

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation 5 / 51



Rate Analysis

Suppose that the minimizer x∗ is unique.

Another elementary use of Taylor’s theorem shows that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − αk

(
2

L
− αk

)
‖∇f (xk)‖2,

so that {‖xk − x∗‖} is decreasing.

Define for convenience: ∆k := f (xk)− f (x∗). By convexity, have

∆k ≤ ∇f (xk)T (xk − x∗) ≤ ‖∇f (xk)‖ ‖xk − x∗‖ ≤ ‖∇f (xk)‖ ‖x0 − x∗‖.

From previous page (subtracting f (x∗) from both sides of the inequality),
and using the inequality above, we have

∆k+1 ≤ ∆k − (1/2L)‖∇f (xk)‖2 ≤ ∆k −
1

2L‖x0 − x∗‖2
∆2

k .
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Weakly convex: 1/k sublinear; Strongly convex: linear

Take reciprocal of both sides and manipulate (using (1− ε)−1 ≥ 1 + ε):

1

∆k+1
≥ 1

∆k
+

1

2L‖x0 − x∗‖2
≥ 1

∆0
+

k + 1

2L‖x0 − x∗‖2
,

which yields

f (xk+1)− f (x∗) ≤ 2L‖x0 − x‖2

k + 1
.

The classic 1/k convergence rate!

By assuming µ > 0, can set αk ≡ 2/(µ+ L) and get a linear (geometric)
rate: Much better than sublinear, in the long run

‖xk − x∗‖2 ≤
(
L− µ
L + µ

)2k

‖x0 − x∗‖2 =

(
1− 2

κ+ 1

)2k

‖x0 − x∗‖2.
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Weakly convex: 1/k sublinear; Strongly convex: linear

Since by Taylor’s theorem we have

∆k = f (xk)− f (x∗) ≤ (L/2)‖xk − x∗‖2,

it follows immediately that

f (xk)− f (x∗) ≤ L

2

(
1− 2

κ+ 1

)2k

‖x0 − x∗‖2.

Note: A geometric/linear rate is generally better than almost any sublinear
(1/k or 1/k2) rate.
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Detour: Convergence Rates

Sequence tk , for k = 1, 2, ..., that converges to zero, limk→∞ tk = 0

Sublinear: tk+1

tk
→ 1 (for example, tk = K/k)

Linear: tk+1

tk
≤ γ, for γ ∈ (0, 1) (for example, tk = γk)

Superlinear: tk+1

tk
→ 0 (for example, tk = γk

2
)

Quadratic: tk+1

(tk )2 → B <∞ (for example, tk = γ2k , with γ ∈ (0, 1))
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Multistep Methods: The Heavy-Ball

Enhanced search direction with a contribution from the previous step.
(known as heavy ball, momentum, or two-step)

Consider first a constant step length α, and a second parameter β for the
“momentum” term:

xk+1 = xk − α∇f (xk) + β(xk − xk−1)

Analyze by defining a composite iterate vector:

wk :=

[
xk − x∗

xk−1 − x∗

]
.

Thus

wk+1 = Bwk + o(‖wk‖), B :=

[
−α∇2f (x∗) + (1 + β)I −βI

I 0

]
.
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Multistep Methods: The Heavy-Ball

Matrix B has same eigenvalues as[
−αΛ + (1 + β)I −βI

I 0

]
, Λ = diag(λ1, λ2, . . . , λn),

where λi are the eigenvalues of ∇2f (x∗).

Choose α, β to explicitly minimize the max eigenvalue of B, obtain

α =
4

L

1

(1 + 1/
√
κ)2

, β =

(
1− 2√

κ+ 1

)2

.

Leads to linear convergence for ‖xk − x∗‖ with rate approximately(
1− 2√

κ+ 1

)
.
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Summary: Linear Convergence, Strictly Convex f

Steepest descent: Linear rate approx
(

1− 2

κ

)
;

Heavy-ball: Linear rate approx
(

1− 2√
κ

)
.

Big difference! To reduce ‖xk − x∗‖ by a factor ε, need k large enough that(
1− 2

κ

)k

≤ ε ⇐ k ≥ κ

2
| log ε| (steepest descent)(

1− 2√
κ

)k

≤ ε ⇐ k ≥
√
κ

2
| log ε| (heavy-ball)

A factor of
√
κ difference; e.g. if κ = 1000 (not at all uncommon in

inverse problems), need ∼ 30 times fewer steps.
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Accelerated First-Order Methods

Accelerate the rate to 1/k2 for weakly convex, while retaining the linear
rate (related to

√
κ) for strongly convex case.

Nesterov (1983) describes a method that requires κ.

Initialize: Choose x0, α0 ∈ (0, 1); set y0 ← x0.

Iterate: xk+1 ← yk − 1
L∇f (yk); (*short-step*)

find αk+1 ∈ (0, 1): α2
k+1 = (1− αk+1)α2

k + αk+1

κ ;

set βk =
αk(1− αk)

α2
k + αk+1

;

set yk+1 ← xk+1 + βk(xk+1 − xk).

Still works for weakly convex (κ =∞).
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Convergence Results: Nesterov

If α0 ≥ 1/
√
κ, have

f (xk)− f (x∗) ≤ c1 min

((
1− 1√

κ

)k

,
4L

(
√
L + c2k)2

)
,

where constants c1 and c2 depend on x0, α0, L.

Linear convergence “heavy-ball” rate for strongly convex f ;

1/k2 sublinear rate otherwise.

In the special case of α0 = 1/
√
κ, this scheme yields

αk ≡
1√
κ
, βk ≡ 1− 2√

κ+ 1
.
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Beck and Teboulle

Beck and Teboulle (2009) propose a similar algorithm.

Initialize: Choose x0; set y1 = x0, t1 = 1;

Iterate: xk ← yk − 1
L∇f (yk);

tk+1 ← 1
2

(
1 +

√
1 + 4t2

k

)
;

yk+1 ← xk +
tk − 1

tk+1
(xk − xk−1).

For (weakly) convex f , converges with f (xk)− f (x∗) ∼ 1/k2.

When L is not known, increase an estimate of L until it’s big enough.

Beck and Teboulle (2009) do the convergence analysis in 2-3 pages;
elementary, but not intuitive.
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A Non-Monotone Gradient Method: Barzilai-Borwein

Barzilai and Borwein (1988) (BB) proposed an unusual choice of αk .
Allows f to increase (sometimes a lot) on some steps: non-monotone.

xk+1 = xk − αk∇f (xk), αk := arg min
α
‖sk − αzk‖2,

where
sk := xk − xk−1, zk := ∇f (xk)−∇f (xk−1).

Explicitly, we have

αk =
sTk zk

zTk zk
.

Note that for f (x) = 1
2x

TAx , we have

αk =
sTk Ask

sTk A2sk
∈
[

1

L
,

1

µ

]
.

BB can be seen as a quasi-Newton method, with Hessian ' α−1
k I .

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation 16 / 51



A Non-Monotone Gradient Method: Barzilai-Borwein

Barzilai and Borwein (1988) (BB) proposed an unusual choice of αk .
Allows f to increase (sometimes a lot) on some steps: non-monotone.

xk+1 = xk − αk∇f (xk), αk := arg min
α
‖sk − αzk‖2,

where
sk := xk − xk−1, zk := ∇f (xk)−∇f (xk−1).

Explicitly, we have

αk =
sTk zk

zTk zk
.

Note that for f (x) = 1
2x

TAx , we have

αk =
sTk Ask

sTk A2sk
∈
[

1

L
,

1

µ

]
.

BB can be seen as a quasi-Newton method, with Hessian ' α−1
k I .

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation 16 / 51



A Non-Monotone Gradient Method: Barzilai-Borwein

Barzilai and Borwein (1988) (BB) proposed an unusual choice of αk .
Allows f to increase (sometimes a lot) on some steps: non-monotone.

xk+1 = xk − αk∇f (xk), αk := arg min
α
‖sk − αzk‖2,

where
sk := xk − xk−1, zk := ∇f (xk)−∇f (xk−1).

Explicitly, we have

αk =
sTk zk

zTk zk
.

Note that for f (x) = 1
2x

TAx , we have

αk =
sTk Ask

sTk A2sk
∈
[

1

L
,

1

µ

]
.

BB can be seen as a quasi-Newton method, with Hessian ' α−1
k I .

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation 16 / 51



A Non-Monotone Gradient Method: Barzilai-Borwein

Barzilai and Borwein (1988) (BB) proposed an unusual choice of αk .
Allows f to increase (sometimes a lot) on some steps: non-monotone.

xk+1 = xk − αk∇f (xk), αk := arg min
α
‖sk − αzk‖2,

where
sk := xk − xk−1, zk := ∇f (xk)−∇f (xk−1).

Explicitly, we have

αk =
sTk zk

zTk zk
.

Note that for f (x) = 1
2x

TAx , we have

αk =
sTk Ask

sTk A2sk
∈
[

1

L
,

1

µ

]
.

BB can be seen as a quasi-Newton method, with Hessian ' α−1
k I .

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation 16 / 51



Comparison: BB vs Greedy Steepest Descent
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Extending to the Constrained Case: x ∈ Ω

How to change these methods to handle the constraint x ∈ Ω ?

(Ω is a closed convex set)

Some algorithms and theory stay much the same,

...if we can involve the constraint x ∈ Ω explicity in the subproblems.

Example: Nesterov’s constant step scheme requires just one calculation to
be changed from the unconstrained version.

Initialize: Choose x0, α0 ∈ (0, 1); set y0 ← x0.

Iterate: xk+1 ← arg miny∈Ω
1
2‖y − [yk − 1

L∇f (yk)]‖2
2;

find αk+1 ∈ (0, 1): α2
k+1 = (1− αk+1)α2

k + αk+1

κ ;

set βk = αk (1−αk )
α2
k+αk+1

;

set yk+1 ← xk+1 + βk(xk+1 − xk).

Convergence theory is unchanged.
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...if we can involve the constraint x ∈ Ω explicity in the subproblems.

Example: Nesterov’s constant step scheme requires just one calculation to
be changed from the unconstrained version.

Initialize: Choose x0, α0 ∈ (0, 1); set y0 ← x0.

Iterate: xk+1 ← arg miny∈Ω
1
2‖y − [yk − 1

L∇f (yk)]‖2
2;

find αk+1 ∈ (0, 1): α2
k+1 = (1− αk+1)α2

k + αk+1

κ ;

set βk = αk (1−αk )
α2
k+αk+1

;

set yk+1 ← xk+1 + βk(xk+1 − xk).

Convergence theory is unchanged.
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Regularized Optimization

How to change these methods to handle regularizers?

min
x

f (x) + τψ(x),

where f is convex and smooth, while ψ is convex but usually nonsmooth.

Often, all that is needed is to change the update step to

xk+1 = arg min
x
‖x − Φ(xk)‖2

2 + λψ(x).

where Φ(xk) is gradient descent step, or something more complicated
(such as heavy ball, with Φ(xk , xk−1), or some other accelerated method).

This is the shrinkage/tresholding step; how to solve it with a nonsmooth
ψ? That is the topic of the following slides.
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Handling Nonsmoothness (e.g. `1 Norm)

Convexity ⇒ continuity (on the domain of the function).

Convexity 6⇒ differentiability (e.g., ψ(x) = ‖x‖1).

Subgradients generalize gradients for general convex functions:

v is a subgradient of f at x if f (x ′) ≥ f (x) + vT (x ′ − x)

Subdifferential: ∂f (x) = {all subgradients of f at x}

If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound nondifferentiable case
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More on Subgradients and Subdifferentials

The subdifferential is a set-valued function:

f : Rd → R ⇒ ∂f : Rd → 2R
d

(power set of Rd)

Example:

f (x) =


−2x − 1, x ≤ −1
−x , −1 < x ≤ 0
x2/2, x > 0

∂f (x) =


{−2}, x < −1

[−2, −1], x = −1
{−1}, −1 < x < 0

[−1, 0], x = 0
{x}, x > 0

Fermat’s Rule: x ∈ arg minx f (x) ⇔ 0 ∈ ∂f (x)
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A Key Tool: Moreau’s Proximity Operators

Moreau (1962) proximity operator

x̂ ∈ arg min
x

1

2
‖x − y‖2

2 + ψ(x) =: proxψ(y)

...well defined for convex ψ, since ‖ · −y‖2
2 is coercive and strictly convex.

Example: (seen above) proxτ |·|(y) = soft(y , τ) = sign(y) max{|y | − τ, 0}

Block separability: x = (x1, ..., xN) (a partition of the components of x)

ψ(x) =
∑
i

ψi (xi ) ⇒ (proxψ(y))i = proxψi
(yi )

Relationship with subdifferential: z = proxψ(y) ⇔ z − y ∈ ∂ψ(z)

Resolvent: z = proxψ(y) ⇔ 0 ∈ ∂ψ(z) + (z − y) ⇔ y ∈ (∂ψ + I )z

proxψ(y) = (∂ψ + I )−1y
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Important Proximity Operators

Soft-thresholding is the proximity operator of the `1 norm.

Consider the indicator ιS of a convex set S;

proxιS (u) = arg min
x

1

2
‖x − u‖2

2 + ιS(x) = arg min
x∈S

1

2
‖x − y‖2

2 = PS(u)

...the Euclidean projection on S.

Squared Euclidean norm (separable, smooth):

proxτ‖·‖2
2
(y) = arg min

x
‖x − y‖2

2 + τ‖x‖2
2 =

y

1 + τ

Euclidean norm (not separable, nonsmooth):

proxτ‖·‖2
(y) =

{ x
‖x‖2

(‖x‖2 − τ), if ‖x‖2 > τ

0 if ‖x‖2 ≤ τ
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More Proximity Operators

(Combettes and Pesquet, 2011)
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Another Key Tool: Fenchel-Legendre Conjugates

The Fenchel-Legendre conjugate of a proper convex function f — denoted
by f ∗ : Rn → R̄ — is defined by

f ∗(u) = sup
x

xTu − f (x)

Main properties and relationship with proximity operators:

Biconjugation: if f is convex and proper, f ∗∗ = f .

Moreau’s decomposition: proxf (u) + proxf ∗(u) = u

...meaning that, if you know proxf , you know proxf ∗ , and vice-versa.

Conjugate of indicator: if f (x) = ιC (x), where C is a convex set,

f ∗(u) = sup
x

xTu − ιC (x) = sup
x∈C

xTu ≡ σC (u) (support function of C ).
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From Conjugates to Proximity Operators

Notice that |u| = supx∈[−1,1] x
Tu = σ[−1,1](u), thus | · |∗ = ι[−1,1].

Using Moreau’s decomposition, we easily derive the soft-threshold:

proxτ |·| = 1− proxι[−τ,τ ]
= 1− P[−τ,τ ] = soft(·, τ)

Conjugate of a norm: if f (x) = τ‖x‖p then f ∗ = ι{x :‖x‖q≤τ},

where 1
q + 1

p = 1 (a Hölder pair, or Hölder conjugates).

That is, ‖ · ‖p and ‖ · ‖q are dual norms:

‖z‖q = sup{xT z : ‖x‖p ≤ 1} = sup
x∈Bp(1)

xT z = σBp(1)(z)

M. Figueiredo, 2021 First-Order Methods CIMI-ANITI Optimisation 26 / 51



From Conjugates to Proximity Operators

Notice that |u| = supx∈[−1,1] x
Tu = σ[−1,1](u), thus | · |∗ = ι[−1,1].

Using Moreau’s decomposition, we easily derive the soft-threshold:

proxτ |·| = 1− proxι[−τ,τ ]
= 1− P[−τ,τ ] = soft(·, τ)

Conjugate of a norm: if f (x) = τ‖x‖p then f ∗ = ι{x :‖x‖q≤τ},

where 1
q + 1
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From Conjugates to Proximity Operators

Proximity of norm:

proxτ‖·‖p = I − PBq(τ)

where Bq(τ) = {x : ‖x‖q ≤ τ} and 1
q + 1

p = 1.

Example: computing prox‖·‖∞ (notice `∞ is not separable):

Since 1
∞ + 1

1 = 1,
proxτ‖·‖∞ = I − PB1(τ)

... the proximity operator of `∞ norm is the residual of the projection
on an `1 ball.

Projection on `1 ball has no closed form, but there are efficient (linear
cost) algorithms (Brucker, 1984), (Maculan and de Paula, 1989).
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Geometry and Effect of prox`∞

Whereas `1 promotes sparsity, `∞ promotes equality (in absolute value).
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From Conjugates to Proximity Operators

The dual of the `2 norm is the `2 norm.
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Matrix Nuclear Norm and its Prox Operator

Recall the trace/nuclear norm: ‖X‖∗ =

min{m,n}∑
i=1

σi .

The dual of a Schatten p-norm is a Schatten q-norm, with
1
q + 1

p = 1. Thus, the dual of the nuclear norm is the spectral norm:

‖X‖∞ = max
{
σ1, ..., σmin{m,n}

}
.

If Y = UΛV T is the SVD of Y , we have

proxτ‖·‖∗(Y ) = UΛV T − P{X :max{σ1,...,σmin{m,n}}≤τ}(UΛV T )

= U soft
(
Λ, τ

)
V T .
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Atomic Norms: A Unified View
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Another Use of Fenchel-Legendre Conjugates

The original problem min
x

f (x) + ψ(x)

... often has the form: min
x

g(Ax) + ψ(x)

Using the definition of conjugate g(Ax) = supu uTAx − g∗(u)

min
x

g(Ax) + ψ(x) = inf
x

sup
u

uTAx − g∗(u) + ψ(x)

= sup
u

(−g∗(u) + inf
x

uTAx + ψ(x))

= sup
u

(−g∗(u)− sup
x
−xTATu − ψ(x)︸ ︷︷ ︸
ψ∗(−ATu)

)

= − inf
u
g∗(u) + ψ∗(−ATu)

The problem infu g
∗(u) + ψ∗(−ATu) is sometimes easier to handle.
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uTAx − g∗(u) + ψ(x)

= sup
u

(−g∗(u) + inf
x

uTAx + ψ(x))

= sup
u

(−g∗(u)− sup
x
−xTATu − ψ(x)︸ ︷︷ ︸
ψ∗(−ATu)

)

= − inf
u
g∗(u) + ψ∗(−ATu)

The problem infu g
∗(u) + ψ∗(−ATu) is sometimes easier to handle.
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Basic Proximal-Gradient Algorithm

Use basic structure:

xk = arg min
x
‖x − Φ(xk)‖2

2 + ψ(x).

with Φ(xk) a simple gradient descent step, thus

xk+1 = proxαkψ

(
xk − αk∇f (xk)

)

This approach goes by many names, such as

“proximal gradient algorithm” (PGA),

“iterative shrinkage/thresholding” (IST),

“forward-backward splitting” (FBS)

Reinvented several times in different communities: optimization, PDEs,
convex analysis, signal processing, machine learning.
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Convergence of the Proximal-Gradient Algorithm

Basic algorithm: xk+1 = proxαkψ

(
xk − αk∇f (xk)

)

Generalized (possibly inexact) version:

xk+1 = (1− λk)xk + λk

(
proxαkψ

(
xk − αk∇f (xk) + bk

)
+ ak

)
where ak and bk are “errors” in computing the prox and the gradient;
λk is an over-relaxation parameter.

Convergence is guaranteed (Combettes and Wajs, 2006) if

X 0 < inf αk ≤ supαk <
2
L

X λk ∈ (0, 1], with inf λk > 0

X
∑∞

k ‖ak‖ <∞ and
∑∞

k ‖bk‖ <∞
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Proximal-Gradient Algorithm: Quadratic Case

Consider the quadratic case (of great interest): f (x) = 1
2‖B x − b‖2

2.

Here, ∇f (x) = BT (B x − b) and the IST/PGA/FBS algorithm is

xk+1 = proxαkψ

(
xk − αkB

T (B x − b)
)

requires only matrix-vector multiplications with B and BT .

Very important in large-scale applications, e.g., image processing.

Often, fast algorithms exist for computing these products (e.g. fast
Fourier transforms or wavelet transforms), but these matrices cannot
be formed and stored explicitly.

In this case, some more refined convergence results are available.

Even more refined results are available if ψ(x) = τ‖x‖1
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More on IST/FBS/PGA for the `2-`1 Case

Problem: x̂ ∈ G = arg min
x∈Rn

1
2‖B x − b‖2

2 + τ‖x‖1 (recall BTB � LI )

IST/FBS/PGA becomes xk+1 = soft
(
xk − αBT (B x − b), ατ

)
with α < 2/L.

The zero set: Z ⊆ {1, ..., n} : x̂ ∈ G ⇒ x̂Z = 0

Zeros are found in a finite number of iterations (Hale et al., 2008):
after a finite number of iterations (xk)Z = 0.

After that, if BT
ZBZ � µI , with µ > 0 (thus κ(BT

ZBZ) = L/µ <∞),
we have linear convergence

‖xk+1 − x̂‖2 ≤
1− κ
1 + κ

‖xk − x̂‖2

for the optimal choice α = 2/(L + µ) (see unconstrained theory).
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Heavy Ball Acceleration: FISTA

FISTA (fast iterative shrinkage-thresholding algorithm) is
heavy-ball-type acceleration of IST (based on Nesterov (1983)) (Beck
and Teboulle, 2009).

Initialize: Choose α ≤ 1/L, x0; set y1 = x0, t1 = 1;

Iterate: xk ← proxταψ
(
yk − α∇f (yk)

)
;

tk+1 ← 1
2

(
1 +

√
1 + 4t2

k

)
;

yk+1 ← xk +
tk − 1

tk+1
(xk − xk−1).

Acceleration:

FISTA: f (xk)− f (x̂) ∼ O

(
1

k2

)
IST: f (xk)− f (x̂) ∼ O

(
1

k

)
.

When L is not known, increase an estimate of L until it’s big enough.
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Heavy Ball Acceleration: TwIST

TwIST (two-step iterative shrinkage-thresholding (Bioucas-Dias and
Figueiredo, 2007)) is a heavy-ball-type acceleration of IST, for

min
x

1
2‖B x − b‖2

2 + τψ(x)

Iterations (with α < 2/L)

xk+1 = (γ − β) xk + (1− γ)xk−1 + β proxατψ
(
xk − αBT (B x − b)

)

Analysis in the strongly convex case: µI � BTB � LI , with µ > 0.
Conditioning (as above) κ = L/µ <∞.

Optimal parameters: γ = ρ2 + 1, β = 2α
µ+L , where ρ = 1−

√
κ

1+
√
κ

, yield

linear convergence

‖xk+1 − x̂‖2 ≤
1−
√
κ

1 +
√
κ
‖xk − x̂‖2

(
versus 1−κ

1+κ for IST
)
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Illustration of the TwIST Acceleration
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Acceleration via Larger Steps: SpaRSA

The standard step-size αk ≤ 2
L in IST too timid

The SpARSA (sparse reconstruction by separable approximation)
framework proposes bolder choices of αk (Wright et al., 2009):

X Barzilai-Borwein (see above), to mimic Newton steps — or at least get
the scaling right.

X keep increasing αk until monotonicity is violated: backtrack.

Convergence to critical points (minima in the convex case) is
guaranteed for a safeguarded version: ensure sufficient decrease w.r.t.
the worst value in previous M iterations.
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Another Approach: Gradient Projection

minx
1
2‖B x − b‖2

2 + τ‖x‖1 can be written as a standard QP:

min
u,v

1

2
‖B(u − v)− b‖2

2 + τuT1 + τuT1 s.t. u ≥ 0, v ≥ 0,

where ui = max{0, xi} and vi = max{0,−xi}.

With z =

[
u
v

]
, problem can be written in canonical form

min
z

1

2
zTQ z + cT z s.t. z ≥ 0

Solving this problem with projected gradient using Barzilai-Borwein
steps: GPSR (gradient projection for sparse reconstruction).
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Speed Comparisons

Lorenz (2011) proposed a way of generating problem instances with
known solution x̂ : useful for speed comparison.

Define: Rk = ‖xk−x̂‖2

‖x̂‖2
and rk = L(xk )−L(x̂)

L(x̂) (where L(x) = f (x) + τψ(x)).
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More Speed Comparisons
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Even More Speed Comparisons
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Acceleration by Continuation

IST/FBS/PGA can be very slow if τ is very small and/or f is poorly
conditioned.

A very simple acceleration strategy: continuation/homotopy

Initialization: Set τ0 � τ , starting point x̄ , factor σ ∈ (0, 1), and k = 0.

Iterations: Find approx solution x(τk) of minx f (x) + τkψ(x), starting from x̄ ;

if τk = τf STOP;

Set τk+1 ← max(τf , στk) and x̄ ← x(τk);

Often the solution path x(τ), for a range of values of τ is desired,
anyway (e.g., within an outer method to choose an optimal τ)

Shown to be very effective in practice (Hale et al., 2008; Wright
et al., 2009). Analyzed by Xiao and Zhang (2012).
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Acceleration by Continuation

IST/FBS/PGA can be very slow if τ is very small and/or f is poorly
conditioned.

A very simple acceleration strategy: continuation/homotopy

Initialization: Set τ0 � τ , starting point x̄ , factor σ ∈ (0, 1), and k = 0.

Iterations: Find approx solution x(τk) of minx f (x) + τkψ(x), starting from x̄ ;

if τk = τf STOP;

Set τk+1 ← max(τf , στk) and x̄ ← x(τk);

Often the solution path x(τ), for a range of values of τ is desired,
anyway (e.g., within an outer method to choose an optimal τ)
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Acceleration by Continuation: An Example

Classical sparse reconstruction problem (Wright et al., 2009)

x̂ ∈ arg min
x

1
2‖B x − b‖2

2 + τ‖x‖1

with B ∈ R1024×4096 (thus x ∈ R4096 and b ∈ R1024).
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A Final Touch: Debiasing

Consider problems of the form x̂ ∈ arg min
x∈Rn

1
2‖B x − b‖2

2 + τ‖x‖1

Often, the original goal was to minimize the quadratic term, after the
support of x had been found. But the `1 shrinks the non-zero values.

Debiasing:

X find the zero set (complement of the support of x̂):
Z(x̂) = {1, ..., n} \ supp(x̂).

X solve minx ‖B x − b‖2
2 s.t. xZ(x̂) = 0. (Fix the zeros and solve an

unconstrained problem over the support.)

X Often, this has to be solved using an algorithm that only uses
products by B and BT , since this matrix cannot be partitioned.
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Effect of Debiasing
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1
Original (n = 4096, number of nonzeros = 160)
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SpaRSA reconstruction (m = 1024, tau =  0.08, MSE = 0.0072)
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Final Example: Matrix Recovery (Toh and Yun, 2010)
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Alternating Direction Methof of Multipliers (ADMM)

Canonical problem:

min
x∈Rn, z∈Rm

f(x) + g(z)

subject to Ax + Bz = b

Functions f : Rn → R̄ and g : Rm → R̄ are closed, proper, and convex

Often used to re-write problems of the form

min
x

f(x) + g(Hx)

as
min
x,z

f(x) + g(z) subject to Hx = z
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Alternating Direction Method of Multipliers (ADMM)

Canonical problem: min
x∈Rn, z∈Rm

f(x) + g(z)

subject to Ax + Bz = b

Canonical ADMM (in scaled form)

xk+1 = arg min
x
f(x) +

ρ

2

∥∥Ax + Bzk − b + uk
∥∥2

2

zk+1 = arg min
z
g(z) +

ρ

2

∥∥Axk+1 + Bz− b + uk
∥∥2

2

uk+1 = uk+1 + Axk+1 + Bzk+1 − b

Can be derived in several ways: method of multipliers (augmented
Lagrangian); Douglas-Rachford for the dual; ...

Introduced by French mathematicians in the 1970s
[Gabay and Mercier, 1976], [Glowinski and Marrocco, 1975]

Cornerstone work in the 1990s by Eckstein and Bertsekas [1992]
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Explosion of Interest in ADMM

Citations to paper by Eckstein and Bertsekas [1992]:

Citations to review paper by Boyd et al. [2011]:
1600

Convergence properties: active research topic
[Aspelmeier et al., 2016], [Bauschke et al., 2015], [Davis and Yin, 2014], [Deng

and Yin, 2012], [Goldstein et al., 2014], [Nishihara et al., 2015], [Liang et al.,

2015], [Patrinos et al., 2014], ...
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Classical Convergence Result

Problem: minx f(x) + g(Hx)

ADMM:

x(k+1) = arg min
x
f(x) +

ρ

2

∥∥Hx− v(k) − u(k)
∥∥2

2

v(k+1) = arg min
v
g(v) +

ρ

2

∥∥Hx(k+1) − v − u(k)
∥∥2

2
,

u(k+1) = u(k) −Hx(k+1) + v(k+1),

Theorem (Eckstein and Bertsekas [1992])

Let H have full column rank, and f : Rn → R̄ and g : Rm → R̄ be closed,
proper, convex functions; let v0,u0 ∈ Rm, and ρ > 0 be given. Then
(x(k))k=1,2,... converges to a solution, if one exists. If no solution exists,
then at least one of the sequences (v(k))k=1,2,... or (u(k))k=1,2,... diverges.
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Two or More Functions

Problem template: min
x∈Rn

J∑
j=1

gj
(
Hj x

)

X gj : Rmj → R̄ are closed, proper, and convex.

X Hj ∈ Rmj×n

Can be re-written in canonical form

min
x

f(x) + g(Hx),

with

f = 0, z =

z
(1)

...

z(J)

, g(z) =
J∑
j=1

gj(z
(j)), H =

H1
...

HJ
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ADMM for Two or More Functions

General problem template: min
x∈Rn

J∑
j=1

gj
(
Hj x

)

ADMM after re-writing in canonical form:

xk+1 = arg min
x

J∑
j=1

‖Hj x− z
(j)
k + u

(j)
k

∥∥2

2

z
(1)
k+1 = arg min

v∈Rm1
g1(v) +

ρ

2

∥∥H1 xk+1 − v + u
(1)
k

∥∥2

2

...
...

z
(J)
k+1 = arg min

v∈RmJ
gJ(v) +

ρ

2

∥∥HJ xk+1 − v + u
(J)
k

∥∥2

2

uk+1 = uk+1 + Axk+1 + Bzk+1

SALSA, PIDAL, PIDSplit, SDMM
[F and Bioucas-Dias, 2010], [Setzer et al., 2010], [Combettes and Pesquet, 2011]
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A Closer Look

A closer look at the algorithm

xk+1 =

( J∑
j=1

HT
j Hj

)−1 J∑
j=1

Hj

(
z

(j)
k − u

(j)
k

)

z
(1)
k+1 = proxg1/ρk

(
H1 xk+1 + u

(1)
k

)
...

...

z
(J)
k+1 = proxgJ/ρk

(
HJ xk+1 + u

(J)
k

)
uk+1 = uk+1 + Axk+1 + Bzk+1

Decoupled: a linear algebraic problem and a set of proximity operators

Hinges on the efficient matrix inversion and simple proximity operators

Matrix inverse independent of ρk (good, if not kept constant)
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Image Restoration/Reconstruction

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

where y are observations and ιC(x) =

{
0 ⇐ x ∈ C
+∞ ⇐ x 6∈ C

Ψ: the observation model (negative log-likelihood); namely,

X Gaussian observations: Ψ(u,y) = 1
2σ2 ‖u− y‖22 = 1

2σ2

∑
i(ui − yi)2

X Poisson observations: Ψ(u,y) =
∑
i

(
ui + ιR+(ui)− yi log(zi)+

)
X Multiplicative noise: Ψ(u,y) = M

∑
i

(
zi + eyi−zi

)

Φ ◦P is a regularizer; e.g., total variation (TV), or Φ is a norm

A: linear observation operator (blur, projections, ...)
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Image Restoration: Observation Models Ψ

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

All the above observation models have simple, component-wise
proximity operators

X Gaussian observations: proxτΨ(u) =
σ2u+ τy

σ2 + τ

X Poisson observations: proxτΨ(u) =
1

2

(
y − τ +

√
(y − τ)2 + 4yτ

)
X Multiplicative noise: proxτΨ(u) uses Lambert’s W -function

The proximity operator of ιC is simply an Euclidean projection:

proxιC (u) = projC(u);

e.g., if C = Rn+, then
(
projC(u)

)
i

= max{0, ui}
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Image Restoration: Regularizers Φ

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

Classical regularizers with simple proximity operators

X `1 norm:
(
proxτ‖·‖1(u)

)
i

= sign(ui) max{0, ui − τ}

= soft(ui, τ)

X Squared `2 norm: proxτ‖·‖22(u) =
u

1 + τ

(linear shrinkage)

X `2 norm: proxτ‖·‖2(u) =
u max{0, ‖u‖2 − τ}

max{0, ‖u‖2 − τ}+ τ

= vect-soft(u, τ)

Total variation can be written as Φ ◦P, where

P : Rn → (R2)n, with (Px)i =

[
xi − xh(i)

xi − xv(i)

]
, and Φ(v) =

∑
i

‖vi‖2

with h(i) and v(i) the horizontal and vertical neighbours of pixel i
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Image Restoration: Synthesis Formulation

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px)

Synthesis formulation: A = BW and P = I

X W the synthesis operator of a Parseval frame: WWT = I

X B is the observation operator

X x contains the representation coefficients, not the image itself

Using the Sherman-Morrison-Woodbury matrix inversion formula(
WTBTBW + I

)−1
= I−WTBT

(
BTB + I

)−1
BW

Can BTB+ I be inverted efficiently?
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Image Restoration: Analysis Formulation

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px)

Analysis formulation: A = B

X P the analysis operator of a Parseval frame: PTP = I

X B is the observation operator

X x contains the image itself

Matrix inversion:(
BTB + PTP

)−1
=
(
BTB + I

)−1

Can BTB + I be inverted efficiently?
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Image Restoration: Constrained (Morozov) Formulations

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px)

Constrained (or Morozov) formulation:

x̂ ∈ min
x∈Rn

Φ(Px) subject to Λ(Ax,y) ≤ 1

Can be written in the general formulation, with

Ψ(Ax,y) = ιD(y)(Ax), with D(y) = {x : Λ(x,y) ≤ 1}

Classical example: x̂ ∈ arg minx∈Rn Φ(Px) s.t. ξ‖Ax− y‖2 ≤ 1

Thus, D(y) is a unit Euclidean ball around y; projection is trivial.

Applies both to synthesis and analysis formulations
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Image Restoration: Matrix Inversions

The required inversion
(
BTB+ I

)−1
is simple in many relevant cases:

[Afonso et al., 2011], [F and Bioucas-Dias, 2010]

X Periodic deconvolution: B = UHFU,

F is diagonal; U is the DFT matrix (UHU = UUH = I)(
BTB + I

)−1
= UH

(
|F|2 + I

)−1︸ ︷︷ ︸
diagonal

U

X Inpainting: B ∈ {0, 1}m×n, with m rows of I; thus, BTB is diagonal

X Compressive Fourier imaging (MRI, multi-coil MRI): B = MU, where
M ∈ {0, 1}m×n, with m rows of I; thus, MMT = I(

BTB + I
)−1

= I− 1

2
UH MTM︸ ︷︷ ︸

diagonal

U

Cost is at most O(n log n)
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Non-periodic Deconvolution

Periodic boundary conditions are usually unnatural

...as are other standard BC: Neumann, Dirichlet.

A more natural choice: unknown boundaries [Reeves, 2005],
[Chan et al., 2005], [Almeida and F, 2013a], [Ramani and Fessler, 2013]
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Non-periodic Deconvolution (2)

Gaussian noise model: Ψ(Bx,y) = 1
2σ2 ‖

mask︷︸︸︷
M UHFU︸ ︷︷ ︸

period. conv.

x− y‖22

Choosing B = MUHFU, makes
(
BTB+ I

)−1
hard to compute

Better option: B = UHFU (as in periodic deconvolution), and

Ψ(u,y) =
1

2σ2
‖Mu− y‖22

The proximity operator is still simple:

proxτΨ(u) =
(
τMTM + σ2I

)−1︸ ︷︷ ︸
diagonal

(
τMTy + σ2u

)
Similar formulations:

X deconvolution + inpainting (M masks the boundary and missing pixels)

X super-resolution (filtering + downsampling mask)
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Deconvolution with Unknown Boundaries: Example
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Deconvolution + Inpainting with Unknown BC: Example
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Speed

Benchmark deblurring problem (9× 9 blur, 40dB SNR, Haar frame, `1)

and inpainting problem (50% missing data) [Afonso et al., 2011]

Deconvolution with unknown BC [Almeida and F, 2013a], [Ramani and

Fessler, 2013]
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Summaryzing

...a flexible toolbox for ADMM-based image restoration:

X Frame-based analysis or synthesis regularization

X Total variation regularization

X ...or combinations thereof

X Tikhonov, Morozov, Ivanov formulations

X Gaussian, Poissonian, multiplicative noise, ...

X Deconvolution, inpainting, compressive Fourier sensing (MRI),
super-resolution, ...

X Periodic or unknown boundaries

X Blind deconvolution

Convergence guaranteed by classical results [Eckstein and Bertsekas, 1992]

...functions are closed, proper, convex; matrices have full column rank
(except blind deconvolution)

Current research: choice of parameter ρk [Xu et al., 2016]
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Blind Deconvolution: Real Examples

Results from [Almeida and F, 2013b]
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Blind Deconvolution: The Importance of Inpainting

blur and saturations blind deblurring

ignoring saturations

blind deblurring

accounting for saturations
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Denoising Step in ADMM

Restoration (w/ Gauss noise): x̂ ∈ arg min
x∈Rn

1

2
‖Ax− y‖22 + Φ(x)

ADMM directly applied to this problem has the form

xk+1 =
(
ATA + ρI

)−1(
ATy + ρ(zk − uk)

)
zk+1 = proxΦ/ρ

(
xk+1 + uk

)
uk+1 = uk+1 + xk+1 − zk+1

The prox of the regularizer Φ is a denoising operation

Prox of convex regularizer (frames, TV): not state-of-the-art denoising

State-of-the-art denoising methods are patch-based, non-local:

X Collaborative filtering (BM3D) [Dabov et al., 2007]

X Non-local Bayes [Lebrun et al., 2013]

X Gaussian mixture models [Zoran and Weiss, 2011], [Teodoro et al., 2015]

Can we use one of these denoisers instead of some proximity operator?
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Plug-and-Play ADMM

Plug a black-box denoiser into ADMM [Venkatakrishnan et al., 2013]

xk+1 =
(
ATA + ρI

)−1(
ATy + ρ(zk − uk)

)
zk+1 = denoise

(
xk+1 + uk

)
uk+1 = uk + xk+1 − zk+1

If denoiser = proxφ, for convex φ, convergence is well-known
[Eckstein and Bertsekas, 1992, Boyd et al., 2011].

...what about convergence of PnP-ADMM?
[Sreehari et al., 2016, Teodoro et al., 2017a, Chan et al., 2017]

Empirical results: competitive!
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GMM-Based Denoising

Observation model: p(y|x) = N (y|x, σ2I)

Decompose noisy image into overlapping patches yi

Denoise each patch independently under GMM prior:

p(xi) =
K∑
j=1

αj N (xi;µj ,Cj)

The minimum mean squared error (MMSE) estimate (not the MAP)
has closed-form:

x̂i = E[Xi|yi]
Assemble the denoised image by putting the estimated patches at
their locations, averaging overlapping pixel estimates

Estimating the mixture:

X From a collection of clean image patches [Zoran and Weiss, 2011]

X From the noisy image itself using EM [Teodoro et al., 2015]
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MMSE Estimate with GMM Prior

Gaussian noisy observations: fY|X(y|x) = N (y|x, σ2I)

Gaussian prior: fX(x) = N (x|µ,C)

MMSE estimate:

arg min
x̂

E[‖x̂−X‖22|y] = E[X|y] =
(
σ2C + I

)−1(
σ2C−1µ + y

)
Gaussian mixture prior: fX(x) =

K∑
j=1

αj N (x|µj ,Cj)

MMSE estimate

(the MAP solution has no closed form)

E[X|y] =

K∑
j=1

βj(y)
(
σ2Cj + I

)−1(
σ2C−1

j µj + y
)

where βj(y) ∝ αjN (y|µj ,Cj + σ2I), with
∑K

j=1 βj(y) = 1
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Plug-and-Play ADMM: Deblurring of Generic Images

Generic GMM prior

Image: Cameraman House

Experiment: 1 2 3 4 5 6 1 2 3 4 5 6

IDD-BM3D [Danielyan et al., 2012] 8.85 7.12 10.45 3.98 4.31 4.89 9.95 8.55 12.89 5.79 5.74 7.13
ADMM-GMM [Teodoro et al., 2016b] 8.39 6.36 9.80 3.47 4.16 4.88 9.66 8.22 12.43 5.50 5.42 6.82

(a) Original (b) Blurred (c) IDD-BM3D (d) ADMM-GMM

For generic natural images: competitive, but does not beat state-of-the-art
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Class-Adapted GMM-Based Restoration

Learn a GMM for class of images, plug the corresponding denoiser
into ADMM [Teodoro et al., 2016b]
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Blind Deblurring

Blind image deblurring/deconvolution

y = h ∗ x + n

= H(h) x + n = X(x) h + n

where both x and h are unknown

Joint criterion (under Gaussian noise) [Almeida and F, 2013b]

(x̂, ĥ) ∈ arg min
x,h

1

2
‖h ∗ x− y‖22 + Φ(x) + Ψ(h)︸ ︷︷ ︸

O(x,h)

where Φ and Ψ are regularizers

Even if Φ and Ψ are convex, this is a non-convex problem
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(x̂, ĥ) ∈ arg min
x,h

1

2
‖h ∗ x− y‖22 + Φ(x) + Ψ(h)︸ ︷︷ ︸

O(x,h)

where Φ and Ψ are regularizers

Even if Φ and Ψ are convex, this is a non-convex problem

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 30 / 52



Blind Deblurring

Blind image deblurring/deconvolution

y = h ∗ x + n = H(h) x + n = X(x) h + n

where both x and h are unknown

Joint criterion (under Gaussian noise) [Almeida and F, 2013b]
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Algorithm

Proximal alternating minimization [Attouch et al., 2007]

Solver for each minimization: ADMM/SALSA

Initialization: x̂ = y, ĥ - identity filter
while stopping criterion is not satisfied do
x̂← argmin

x
O(x, ĥ) + ρx

2 ‖x− x̂previous‖2

ĥ← argmin
h

O(x̂,h) + ρh
2 ‖h− ĥprevious‖2

end while

Image regularizer: class-adapted plug-and-play priors

Filter regularizer: positivity and support, or sparsity
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ĥ← argmin
h

O(x̂,h) + ρh
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Priors

Plug-and-play image priors:

X GMM-based patch denoiser, trained on a dataset of clean images
(text, faces, fingerprint)

X Dictionary-based patch denoiser, learned from clean images (same
classes)

X General-purpose BM3D denoiser.

Blur filter priors

X Constraint: positivity and maximum support

X Sparsity (adequate for motion blur)

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 32 / 52



Priors

Plug-and-play image priors:

X GMM-based patch denoiser, trained on a dataset of clean images
(text, faces, fingerprint)

X Dictionary-based patch denoiser, learned from clean images (same
classes)

X General-purpose BM3D denoiser.

Blur filter priors

X Constraint: positivity and maximum support

X Sparsity (adequate for motion blur)

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 32 / 52



Priors

Plug-and-play image priors:

X GMM-based patch denoiser, trained on a dataset of clean images
(text, faces, fingerprint)

X Dictionary-based patch denoiser, learned from clean images (same
classes)

X General-purpose BM3D denoiser.

Blur filter priors

X Constraint: positivity and maximum support

X Sparsity (adequate for motion blur)

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 32 / 52



Priors

Plug-and-play image priors:

X GMM-based patch denoiser, trained on a dataset of clean images
(text, faces, fingerprint)

X Dictionary-based patch denoiser, learned from clean images (same
classes)

X General-purpose BM3D denoiser.

Blur filter priors

X Constraint: positivity and maximum support

X Sparsity (adequate for motion blur)

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 32 / 52



Priors

Plug-and-play image priors:

X GMM-based patch denoiser, trained on a dataset of clean images
(text, faces, fingerprint)

X Dictionary-based patch denoiser, learned from clean images (same
classes)

X General-purpose BM3D denoiser.

Blur filter priors

X Constraint: positivity and maximum support

X Sparsity (adequate for motion blur)

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 32 / 52



Priors

Plug-and-play image priors:

X GMM-based patch denoiser, trained on a dataset of clean images
(text, faces, fingerprint)

X Dictionary-based patch denoiser, learned from clean images (same
classes)

X General-purpose BM3D denoiser.

Blur filter priors

X Constraint: positivity and maximum support

X Sparsity (adequate for motion blur)

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 32 / 52



Priors

Plug-and-play image priors:

X GMM-based patch denoiser, trained on a dataset of clean images
(text, faces, fingerprint)

X Dictionary-based patch denoiser, learned from clean images (same
classes)

X General-purpose BM3D denoiser.

Blur filter priors

X Constraint: positivity and maximum support

X Sparsity (adequate for motion blur)

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 32 / 52



Results: GMM-based prior for text images

original blurred

[Pan et al., 2014] BM3D: 9.97 dB GMM: 11.16 dB
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Experiments

original blurred

[Almeida and F, 2013b] BM3D: 0.66 dB GMM: 1.19 dB
0.36 dB
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Experiments

(a) Blurred image (b) [Almeida and F, 2013b]

(c) [Pan et al., 2014] (d) Proposed

Uses a concatenation of two dictionaries: face and text
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An Extreme Case of Adaptation: Hyperspectral Fusion

Spectral-spatial resolution trade-off:

Hyper-spectral:

low spatial resolution

high spectral resolution

Multi-spectral:

high spatial resolution

low spectral resolution

Fuse MS and HS data:

high spatial & spectral resolutions

Extreme case: pansharpening (panchromatic rather than MS image).
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Hyperspectral Fusion: Formulation

Observation model [Simões et al., 2015]

Yh =

Z︷︸︸︷
EX BM + Nh hyperspectral data ∈ RLh×nh

Ym = R EX︸︷︷︸
Z

+Nm multispectral data ∈ RLm×nm

Lh > Lm and nh < nm

X E ∈ RLh×p: the p-dimensional subspace containing the fused image Z

X X ∈ Rp×nh : the corresponding coefficients (p� Lh)

X (BM) ∈ Rnm×nh models spatial convolution & subsampling

X R ∈ RLm×Lh models the spectral responses of the MS sensors

X Nh and Nm model noise
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Hyperspectral Fusion via PnP-ADMM

Assuming Gaussian noise:

X̂ ∈ arg min
X∈Rp×nh

1

2
‖EXBM−Yh‖2F +

λm
2
‖REX−Ym‖2F +“φ(X)”

...which fits nicely the SALSA template (J = 3): min
x

J∑
j=1

gj
(
Hj x

)
Matrix inversion computable via FFT (with periodic or unknown BC)

Proximity operators:

X The one involving RE: a single p× p inversion; decoupled across pixels

X The one involving BM: solved by FFT, decoupled across bands

X The prox of φ is replaced by an adapted GMM-based denoiser

The GMM is learned from patches of Ym (high spatial resolution)
[Teodoro et al., 2016a]
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Convergence

PnP-ADMM with a patch-based GMM-MMSE denoiser

xk+1 =
(
ATA + ρI

)−1(
ATy + ρ(zk + uk)

)
zk+1 = denoiser

(
xk+1 − uk, 1/ρ

)
uk+1 = uk+1 − xk+1 + zk+1

denoiser is the prox of a convex function ⇒ convergence.

From Moreau [1965]: some map p : Rn → Rn is the prox of a convex
function if and only if:

a) p is non-expansive, i.e.,
∀x,x′, ‖p(x)− p(x′)‖ ≤ ‖x− x′‖

b) and p is subgradient of a convex function, i.e.,
∃φ : Rn → R : p(x) ∈ ∂φ(x), ∀x

Does the patch-based GMM-MMSE denoiser satisfy these conditions?
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Convergence (2)

Is the patch-based GMM-MMSE denoiser non-expansive?

No! A simple univariate counter-example:

X Spike-and-slab-type prior:
p(x) = 1

2N (x; 0, τ1) + 1
2N (x; 0, τ2), τ2 � τ1

X MMSE estimate under Gaussian noise of unit variance:

x̂ = E[X|y] =

τ1 y
τ1+1 β1(y) + τ2 y

τ2+1 β2(y)

β1(y) + β2(y)
, where βi(y) = N (y; 0, τi+1)

With βi fixed: x̂ = y
(
β1

τ1
τ1+1 + β2

τ2
τ2+1

)
/(β1 + β2)
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Fixed β (slope < 1, ∀ y)
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Convergence (2)

Freeze the weights (βm) after a certain number of iterations.

Patch estimate:

x̂i =

K∑
m=1

βim Cm

(
Cm + σ2 I

)−1
yi

= Fi(σ
2)yi = Fi(σ

2)Pi y

Pi is the operator (binary matrix) that extracts the i-th patch

(weights are normalized, to simplify the notation: βim ← βim/
∑

j β
i
j)

Global image estimate: aggregate the patch estimates:

x̂ =
1

np

N∑
i=1

PT
i Fi(σ

2)Pi y = W(σ2) y

Key properties of W [Teodoro et al., 2017b]: for any σ2 > 0,

W(σ2) = W(σ2)T , W(σ2) � 0, λmax

(
W(σ2)

)
< 1
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Convergence (2)

Freezing the weights (βm) after a certain number of iterations,

denoiser(y, σ2) = W(σ2)y

Recalling Moreau’s corollary, this is a proximity operator:

It is non-expansive: W(σ2) is symmetric with λmax

(
W(σ2)

)
< 1

It is the gradient of a convex function: W(σ2)y = ∇y

(
1
2y

TW(σ2)y
)

Can we identify the function of which this denoiser is the prox?

φ(x) = ιS(W)(x) +
1

2
xT Q̄(Λ̄−1 − I)Q̄Tx

where S(W) is the column span of W, Λ̄ has the positive eigenvalues
of W, and Q̄ the corresponding eigenvectors.

Conclusion: the problem has a solution and PnP-ADMM converges
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Hyperspectral Fusion: Synthetic Example

[Teodoro et al., 2016a]
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Hyperspectral Fusion: Synthetic Example
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Final Remarks

ADMM/SALSA: a flexible toolbox for a variety inverse problems

Its speed hinges on the inversion of (BTB + I) (à la quasi-Newton)

Plug-and-play (PnP) denoisers “can” be used with ADMM

Convergence properties of PnP-ADMM with fixed linear denoiser
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Plug-and-play (PnP) denoisers “can” be used with ADMM

Convergence properties of PnP-ADMM with fixed linear denoiser

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 46 / 52



Final Remarks

ADMM/SALSA: a flexible toolbox for a variety inverse problems

Its speed hinges on the inversion of (BTB + I) (à la quasi-Newton)
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Thank you.
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MathÃ©matique de France, 93:273–299, 1965.

R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. Jordan. A general analysis of the
convergence of ADMM. In International Conference on Machine Learning, pages 343–352,
2015.

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 50 / 52



References IV

J. Pan, Z. Hu, Z. Su, and M. Yang. Deblurring text images via `0-regularized intensity and
gradient prior. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2014.

P. Patrinos, L. Stella, and A. Bemporad. Douglas-Rachford splitting: Complexity estimates and
accelerated variants. In IEEE Conference on Decision and Control, pages 4234–4239, 2014.

A. Matakos S. Ramani and J. Fessler. Accelerated edge-preserving image restoration without
boundary artifacts. IEEE Transactions on Image Processing, 22:2019–2029, 2013.

S. Reeves. Fast image restoration without boundary artifacts. IEEE Transactions on Image
Processing, 14:1448–1453, 2005.

S. Setzer, G. Steidl, and T. Teuber. Deblurring Poissonian images by split Bregman techniques.
Journal of Visual Communication and Image Representation, 21:193–199, 2010.

M. Simões, J. Bioucas-Dias, L. Almeida, and J. Chanussot. A convex formulation for
hyperspectral image superresolution via subspace-based regularization. IEEE Trans.
Geoscience and Remote Sensing, 55:3373–3388, 2015.

S. Sreehari, S. Venkatakrishnan, B. Wohlberg, G. Buzzard, L. Drummy, J. Simmons, and
A. Bouman. Plug-and-play priors for bright field electron tomography and sparse
interpolation. IEEE Transactions on Computational Imaging, 2:408–423, 2016.

A. Teodoro, M. Almeida, and M. Figueiredo. Single-frame image denoising and inpainting using
Gaussian mixtures. In 4th International Conference on Pattern Recognition Applications and
Methods, 2015.

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 51 / 52



References V

A. Teodoro, J. Bioucas-Dias, and M. F. Sharpening hyperspectral images using plug-and-play
priors. submitted, 2016a.

A. Teodoro, J. Bioucas-Dias, and M. Figueiredo. Image restoration and reconstruction using
variable splitting and class-adapted image priors. In IEEE International Conference on Image
Processing, 2016b.

A. Teodoro, J. Bioucas-Dias, and M. Figueiredo. Hyperspectral sharpening using class-adapted
Gaussian mixture priors, 2017a. submitted.

A. Teodoro, J. Bioucas-Dias, and M. Figueiredo. Scene-adapted plug-and-play with convergence
guarantees. In IEEE International Workshop on Machine Learning for Signal Processing,
2017b.

S. Venkatakrishnan, C. Bouman, E. Chu, and B. Wohlberg. Plug-and-play priors for model
based reconstruction. In IEEE Global Conference on Signal and Information Processing,
pages 945–948, 2013.

Z. Xu, M. Figueiredo, and T. Goldstein. Adaptive ADMM with spectral penalty parameter
selection. arXiv:1605.07246, 2016.

D. Zoran and Y. Weiss. From learning models of natural image patches to whole image
restoration. In International Conference on Computer Vision, pages 479–486, 2011.

M. Figueiredo, 2021 Augmented Lagrangian Methods CIMI-ANITI Optimisation 52 / 52


	Figueiredo_CIMI_Toulouse_2021_A
	References
	References

	Figueiredo_CIMI_Toulouse_2021_B
	References
	References

	Figueiredo_CIMI_Toulouse_2021_C

