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Klein’s Theorem

A classical result of F. Klein (1877) states that:
If

y ′′ + a(t)y ′ + b(t)y = 0 (a(t), b(t) ∈ C(t))

has finite projective monodromy group G, then two solutions to
the equation are of the form:

y(t) = f (t) · 2F1(α,β;γ)(P(t))

where f (t) is a solution to a first order homogeneous linear
differential equation i.e. f ′

f (t) ∈ C(t), 2F1(α,β;γ)(t) is a
hypergeometric function and P(t) ∈ C(t).



Klein’s Theorem

y(t) = f (t) · 2F1(α,β,γ)(P(t))

Nowadays we say
“y ′′ + a(t)y ′ + b(t)y = 0 is projectively equivalent to the pullback
of a hypergeometric equation by a rational map.”
This result was revisited by Dwork and Baldassari (1979) and
algorithmically implemented in a joint work of M. Berkenbosch, M.
van Hoeij and J.A. Weil (2005). The three latter authors realized
that the f (z) and the P(z) can be computed very efficiently.



Klein’s Theorem

y(t) = f (t) · 2F1(α,β,γ)(P(t))

The triple (α, β; γ) is chosen so that the projective monodromy
group of the corresponding hypergeometric equation corresponds
to the deck transformations of the Galois covering of the Riemann
sphere by the Riemann sphere.

one finite group G ⊆ PSL2(C), one hypergeometric equation.



Klein’s Theorem

y(t) = f (t) · 2F1(α,β,γ)(P(t))

All this means that, starting from the original equation

y ′′ + a(t)y ′ + b(t)y = 0,

we change the dependent variable to

u =
1

f
y

and the independent variable to

z = P(t),

and it becomes a hypergeometric equation with finite Galois
group.The f and P(t) are read-off the coefficient a(t) and the
rational linear first integral of minimum degree (Kovacic’s
algorithm).



Klein’s Theorem

Equation y ′′ + a(t)y ′ + b(t)y = 0 (with algebraic solutions)
Solution y(t) = f (t) · 2F1(α,β,γ)(P(t))

Change of variables u = 1
f y z = P(t)

New equation z(1− z)u′′ + [c − (a + b + 1)z ]u′ − abu = 0

4a = 1− λ2, 4b = 1− µ2, 4c = 1− (λ2 + µ2 + ν2)

where (λ, µ, ν) is

D2·n  (1/2, 1/2, 1/n)

A4  (1/3, 1/2, 1/3)

S4  (1/3, 1/2, 1/4)

A5  (1/3, 1/2, 1/5)



Klein’s Theorem - Example

Pépin’s equation (1881)
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has projective monodromy group isomorphic to A5.
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Standard 2nd order Equations

z(1− z)u′′ + [c − (a + b + 1)z ]u′ − abu = 0

with

4a = 1− λ2, 4b = 1− µ2, 4c = 1− (λ2 + µ2 + ν2)

where (λ, µ, ν) is

D2·n  (1/2, 1/2, 1/n)

A4  (1/3, 1/2, 1/3)

S4  (1/3, 1/2, 1/4)

A5  (1/3, 1/2, 1/5)



What about higher order?

Ulmer’s G54-equation (2003):
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What about higher order?

Geilselmann-Ulmer F36-equation (1997):
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What about higher order?

These two equations are projectively equivalent to a pullback of
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which is the generalized hypergeometric equation defining
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3rd order Klein-style Theorem

M. Berkenbosch (2006):
If

y ′′′ + a(t)y ′′ + b(t)y ′ + c(t)y = 0 (a(t), b(t), c(t) ∈ C(t))

has finite Galois group, then the solutions to the equation are of
the form:

y(t) = f (t) · FStd(P(t))

where f (t) is a solution to a first order homogeneous linear
differential equation i.e. f ′

f (t) ∈ C(t), FStd(t) is a solution to a
Standard equation and P(t) ∈ C(t).
.... there are infinitely many standard equations for each finite
group of SL3(C).



Proving Klein’s Theorem - Galois Coverings

If X is a proyective curve and G a finite group acting on X .

g ∈ G : X −→ X

p 7−→ g · p

Projecting into the orbits space X/G , we obtain a ramified
covering:

Π : X −→ X/G

p 7−→ Gp



Proving Klein’s Theorem - Galois Coverings

Algebraically, the action of G corresponds to an action over the
field of meromorphic functions over X , K = C(X ).

g ∈ G : K −→ K

f 7−→ g∗f : p 7→ f (g−1 · p)

Taking G -invariant functions, KG = {f |f = g∗f ∀g ∈ G}, we
obtain an algebraic extension:

ı : KG −→ K

f 7−→ f



Proving Klein’s Theorem - Galois Coverings

C(X/G ) = KG

G = D2·4, X = P1(C):

{t 7→ t, t 7→
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t
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Taking K = C(t). We get KG = C(z)→ K = C(t)

z = P(t) =
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Proving Klein’s Theorem - Galois Coverings

Given X and the action of G explicitly, the map Π : X → X/G can
be described algebraically. What about the other direction?

Can one describe algebraically the sections of Π?

X

Π
��

U

σ

77

ı
// X/G

F. Klein and H. Schwarz knew the answer when X = P1(C) and G
is finite: use Gauss’ hypergeometric functions



Proving Klein’s Theorem - Galois Coverings

Take two linearly independent solution u1, u2 to the equation:

z(1− z)u′′ + [c − (a + b + 1)z ]u′ − abu = 0.

The image of H = {im(z) > 0} in P1(C) by the map

D(λ,µ,ν)(z) = (u1(z) : u2(z))

is a curvilinear triangle.



Proving Klein’s Theorem - Galois Coverings

F. Beukers, Gauss’ hypergeometric function



Proving Klein’s Theorem - Galois Coverings

F. Beukers, Gauss’ hypergeometric function



Proving Klein’s Theorem - Galois Coverings

Take two linearly independent solution u1, u2 to the equation:

z(1− z)u′′ + [c − (a + b + 1)z ]u′ − abu = 0

where (a, b, c) are such that (λ, µ, ν) is (1/2, 1/2, 1/n),
(1/3, 1/2, 1/3), (1/3, 1/2, 1/4) or (1/3, 1/2, 1/5) and

4a = 1− λ2, 4b = 1− µ2, 4c = 1− (λ2 + µ2 + ν2)

then the image of H = {im(z) > 0} in P1(C) by the map

D(λ,µ,ν)(z) = (u1(z) : u2(z))

is a curvilinear triangle... evenly tiling the sphere.



Proving Klein’s Theorem - Galois Coverings

M. Yoshida, Hypergeometric functions, My Love



Proving Klein’s Theorem - Galois Coverings

M. Yoshida, Hypergeometric functions, My Love



Proving Klein’s Theorem - Galois Coverings

Summary:

It is all about describing the sections of Galois coverings of
projective curves

X

Π
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U

σ
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// X/G



What does projective equivalence mean in linear ODEs?

y(t) = f (t) · FStd(P(t))

Let r : (a, b) ⊆ R→ Rn be a smooth curve. Set
r ′(t) = y(t) = (y1(t), . . . , yn(t)).
There is a linear dependence between y(t), y ′(t), . . . , y (n)(t):

0 = an(t)y (n)(t) + . . .+ a1(t)y ′(t) + a0(t)y(t)

In particular, y1, . . . , yn are solutions to

an(t)y (n) + . . .+ a1(t)y ′ + a0(t)y = 0



What does projective equivalence mean in linear ODEs?

r : (a, b) ⊆ R→ Rn r ′(t) = y(t) = (y1(t), . . . , yn(t))
Set z =

∫ t
f (τ)dτ so that

d

dz
t(z) =

1
d
dt z(t)

=
1

f (t)

and
d

dz
r(z) =

1

f (t)
y(t) = u(z).



What does projective equivalence mean in linear ODEs?

It means reparametrization: z =
∫ t

f (τ)dτ
And sometimes it is useful to pick a new parameter in order to
make geometric invariant quantities explicit (e.g. curvature,
torsion, Frenet-Serret formulas... pick f (t) = ‖y‖(t) so that

〈 d
dz

r ,
d

dz
r〉(z) =

1

‖y‖2
〈y , y〉(t)

becomes constant)



What does projective equivalence mean in linear ODEs?

Once a good parameter has been chosen, one can think of a
suitable frame to study the curve.
e.g. Frenet-Serret frame: z arc-length parameter and
orthonormalization:
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How to choose a good parameter?

Regardless of the parameter for our original smooth curve

r : (a, b) ⊆ R→ Rn,

the projective curve given by the image of the map

(a, b) −→ Pn−1(R)

t 7−→ (y1(t) : . . . : yn(t))

is always the same. Think of it as a proyective version of a Gauss
map.



How to choose a good parameter?

Let us now start from an irreducible linear ODE

an(t)y (n) + . . .+ a1(t)y ′ + a0(t)y = 0 (ai ∈ C(t)) ,

and we assume that its projective monodromy group G is finite.
Pick U ⊆ P1(C) (simple open, e.g. disk) avoiding all singularities
and zeroes of the wronskian. Let y1, . . . , yn : U → C be n-linearly
independent solutions. Consider the analytic map

D : U ⊆ P1 (C) −→ Pn−1(C)

t 7−→ (y1(t) : . . . : yn(t))

We extend analytically all we can the image D(U). We obtain an
algebraic curve in Pn−1(C) and its Zariski-closure, X , is a
projective curve (Fano Curve).



How to choose a good parameter?

X ⊆ Pn−1(C)

U

D

88

The genus g of the projective curve X can be obtained from the
local (rational) exponents at the singularities of the equation.∑

p∈S

(
1

ep
− 1

)
= −2− 2(g − 1)

M

where S is the set of singularities, ep the least common
denominator of the differences of all the local exponents at p and
M is the size of G .



How to choose a good parameter?

X ⊆ Pn−1(C)

U

D

88

letting the projective monodromy group G act by projective
transformations on Pn−1(C), we can post-compose D by the
quotient

Pn−1(C) −→ Pn−1(C)/G



How to choose a good parameter?

X

��

Pn−1(C)

��
U

D

88

DG

// X/G Pn−1(C)/G

by Galois correspondence the bottom arrow is algebraic; and
therefore DG can be extended to an algebraic map

DG : P1(C) −→ X/G ⊆ Pn−1(C)/G



How to choose a good parameter?

DG : P1(C) −→ X/G ⊆ Pn−1(C)/G

By Lüroth Theorem X/G = DG

(
P1(C)

)
= X0 ' P1(C). If

C(X0) = C(z), we have

z = D∗G (z) = P(t) ∈ C(t)



Standard Equation

X

��

Pn−1(C)

��
U

D

99

DG

// X0 Pn−1(C)/G

When DG is birational, C(z) = C(t), and we say that the original
equation

an(t)y (n) + an−1(t)y (n−1) + . . .+ a1(t)y ′ + a0(t)y = 0

is Standard. If it is not then the equation is a pullback by the
rational map DG (z = P(t)) of the Standard Equation whose
solutions give the sections of the Galois covering X → X0 ' P1(C)
(reparametrize it using z).



nth order Klein-style Theorem

If

an(t)y (n) + . . .+ a1(t)y ′ + a0(t)y = 0 (ai (t) ∈ C(t))

has finite Galois group, then the solutions to the equation are of
the form:

y(t) = f (t) · FStd(P(t))

where f (t) is a solution to a first order homogeneous linear
differential equation i.e. f ′

f (t) ∈ C(t), FStd(t) is a solution to a
Standard equation and P(t) ∈ C(t).
.... Is there a way to classify the involved Standard Equations?.



Classifying Standard Equations

A ruled surface S is the total space of a fiber bundle over a
projective curve where each fiber is isomorphic to P1(C).

π : S −→ C with π−1(p) ' P1(C)



Classifying Standard Equations

The simplest ruled surface is P1(C)× P1(C).
In general, a ruled surface over C corresponds to the bundle
obtained by the projective spaces defined by the fibers of a rank-2
vector bundle over C :

S = P(OC (n)⊕ OC (m)).

The isomorphism class of the ruled surface S is determined by the
quantity m − n... or (m − n)2.



Classifying Standard Equations

S = P(O(n)⊕ O(m)).

Line bundles over P1(C) correspond to algebraic maps

P1(C) −→ PN(C)

Given a Standard Equation we take the algebraic maps

DG : P1(C) −→ X0 ' P1(C)

z 7−→ (u1(z) : . . . : un(z)) · G

giving us O(n); and,

D ′G : P1(C) −→ X ′0 ' P1(C)

z 7−→ (u′1(x) : . . . : u′n(x)) · G

giving us O(m).



Classifying Standard Equations - Examples

A4  P
(
O(2)⊕ O(26)

)
S4  P

(
O(1)⊕ O(25)

)
A5  P

(
O(1)⊕ O(61)

)
D2·n  P

(
O(2)⊕ O(2[2n + 1])

)
if 26 |n

D2·n  P
(
O(1)⊕ O(2n + 1)

)
if 2|n



Classifying Standard Equations

If the equation is not standard, we can still define a ruled surface
through the maps

DG : P1(C) −→ X0 ' P1(C)

t 7−→ (y1(t) : . . . : yn(t)) · G

giving us O(n); and,

D ′G : P1(C) −→ X0 ' P1(C)

t 7−→ (y ′1(t) : . . . : y ′n(t)) · G

giving us O(m).
The value (n −m)2 identifies which standard equation associated
to the group G is needed to make-up a solution to our equation.



nth order Klein Theorem

If

an(t)y (n) + . . .+ a1(t)y ′ + a0(t)y = 0 (ai (t) ∈ C(t))

has finite projective monodromy group G, then the solutions to the
equation are of the form:

y(t) = f (t) · GF(n−m)2(P(t))

where f (t) is a solution to a first order homogeneous linear
differential equation i.e. f ′

f (t) ∈ C(t), GF(n−m)2(z) is a solution to

the Standard Equation
(
G , (n −m)2

)
and P(t) ∈ C(t).



One of the oldest Standard Equations in the literature is Hurwitz’:

u′′′ +
1

4

13z − 7

z(z − 1)
u′′ +

1

112

137z − 14

z2(z − 1)
u′ +

27

21952

1

z2(z − 1)
u = 0

The map D associated describes Klein’s quartic and taking
curvilinear triangles we get:



taken from Wikipedia. Cheers!
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