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Wreath products

Definition

Given two groups F and H, the wreath product F o H is defined as the semidirect
product

(⊕
H F
)
o H where H acts on the direct sum by permuting the

coordinates.

“Well-understood side” of wreath products:

F lF oH ≈ F l
F lF
H (Erschler)

Random walks: (probablity of return) (Varopoulos/Pittet-Saloff-Coste)...

Coarse embeddability into Lp-spaces (Naor-Peres).

a-T-menability/ actions on CAT(0) cubical complexes:
(Cornulier-Stalder-Valette/Chifan-Ioanna/Genevois).
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Lamplighters

If F is finite, then F o H is called a Lamplighters group.
non stability under QI of the class of solvable groups (Erschler 00): Z60 o Z
and A5 o Z are quasi-isometric (trivial).

(Dymartz 15) Examples of pairs of groups that are QI but not bilpschitz
equivalent (very hard).

Problem

Let F1,F2 be two finite groups and H1,H2 two finitely generated groups. When
are F1 o H1 and F2 o H2 quasi-isometric? When are they bilpschitz equivalent?
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Lamplighters over general graphs

Definition

Let X be a graph and n ≥ 2 an integer. The lamplighter graph Ln(X ) is the
graph

whose vertices are the pairs (c, x) with c : V (X )→ Z/nZ is a finitely
supported coloring and x ∈ V (X ) a vertex;

and whose edges connect (c1, x1) and (c2, x2) either if c1 = c2 and x1, x2
are adjacent, or if x1 = x2 and c1, c2 differ only at this vertex.

Remark

If X = (H, S) is a Cayley graph then this coincides with the Cayley graph
associated to the generating subset S ∪ δ1H .
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Rigidity for H = Z

Theorem (Eskin-Fischer-Whyte (Annals 13’))

Ln1 (Z) and Ln2 (Z) are quasi-isometric if and only if n1 and n2 are powers of a
common integer q, i.e. n1 = qr1 and m = qr2 .

This paper is the last one of a sequence of many papers started by Farb
and Mosher (Inventiones 98’).

Extremely involved (rely on some notion of “large-scale differentiability”).

Theorem (Eskin-Fischer-Whyte)

Given a prime p ≥ 2, Lpk1 (Z) and Lpk2 (Z) are bilipschitz equivalent if and only if
k1 and k2 are powers of p.

Romain Tessera Quasi-isometry rigidity of lamplighter groups



Quasi-
isometry
rigidity of

lamplighter
groups

Romain
Tessera

Rigidity for H = Z

Theorem (Eskin-Fischer-Whyte (Annals 13’))

Ln1 (Z) and Ln2 (Z) are quasi-isometric if and only if n1 and n2 are powers of a
common integer q, i.e. n1 = qr1 and m = qr2 .

This paper is the last one of a sequence of many papers started by Farb
and Mosher (Inventiones 98’).

Extremely involved (rely on some notion of “large-scale differentiability”).

Theorem (Eskin-Fischer-Whyte)

Given a prime p ≥ 2, Lpk1 (Z) and Lpk2 (Z) are bilipschitz equivalent if and only if
k1 and k2 are powers of p.

Romain Tessera Quasi-isometry rigidity of lamplighter groups



Quasi-
isometry
rigidity of

lamplighter
groups

Romain
Tessera

Rigidity for H = Z

Theorem (Eskin-Fischer-Whyte (Annals 13’))

Ln1 (Z) and Ln2 (Z) are quasi-isometric if and only if n1 and n2 are powers of a
common integer q, i.e. n1 = qr1 and m = qr2 .

This paper is the last one of a sequence of many papers started by Farb
and Mosher (Inventiones 98’).

Extremely involved (rely on some notion of “large-scale differentiability”).

Theorem (Eskin-Fischer-Whyte)

Given a prime p ≥ 2, Lpk1 (Z) and Lpk2 (Z) are bilipschitz equivalent if and only if
k1 and k2 are powers of p.

Romain Tessera Quasi-isometry rigidity of lamplighter groups



Quasi-
isometry
rigidity of

lamplighter
groups

Romain
Tessera

Rigidity for H = Z

Theorem (Eskin-Fischer-Whyte (Annals 13’))

Ln1 (Z) and Ln2 (Z) are quasi-isometric if and only if n1 and n2 are powers of a
common integer q, i.e. n1 = qr1 and m = qr2 .

This paper is the last one of a sequence of many papers started by Farb
and Mosher (Inventiones 98’).

Extremely involved (rely on some notion of “large-scale differentiability”).

Theorem (Eskin-Fischer-Whyte)

Given a prime p ≥ 2, Lpk1 (Z) and Lpk2 (Z) are bilipschitz equivalent if and only if
k1 and k2 are powers of p.

Romain Tessera Quasi-isometry rigidity of lamplighter groups



Quasi-
isometry
rigidity of

lamplighter
groups

Romain
Tessera

A general QI-rigidity result

Theorem (Genevois-T 20)

Assume H1 and H2 are finitely presented groups and H1 is one-ended. Assume
Ln1 (H1) and Ln2 (H2) are quasi-isometric. Then H1 and H2 are quasi-isometric
and:

1 If H1 is amenable, then n1 and n2 are powers of a common integer q, i.e.
n1 = qr1 and m = qr2 .

2 If H1 is non-amenable, then n1 and n2 have same prime divisors.

The condition is an “if and only if” in the non-amenable case, but not quite
in the amenable case: not all possible QI between H1 and H2 are allowed!

The theorem holds more generally for bounded degree graphs X1 and X2
(instead of H1 and H2), under the assumption that they are uniformly
one-ended and coarsely simply connected.
The theorem is true if H1 is 2-ended thanks by Eskin-Fischer-Whyte. It is
open if H1 is infinitely ended (e.g. free groups).
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Stronger version (if and only if)

All graphs are assumed to have bounded degree...

Theorem (Genevois-T 20)

Let n1, n2 ≥ 2 be two integers and X1,X2 two coarsely simply connected graphs.
Assume that X1 is uniformly one-ended.

1 If X1 is amenable, then Ln1 (X1) and Ln2 (X2) are quasi-isometric if and
only if n1 and n2 are powers of a common integer, and there exists a
quasi-(n2/n1)-to-one quasi-isometry X1 → X2.

2 If H1 is non-amenable, then Ln1 (X1) and Ln2 (X2) are quasi-isometric if and
only if X1,X2 are quasi-isometric and n1, n2 have the same prime divisors.
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Amenable case

Corollary (Lamp-rigidity)

Let n1, n2 ≥ 2 and X be an amenable a coarsely simply connected, uniformly one
ended graph. Then Ln1 (X ) and Ln2 (X ) are biLipschitz equivalent if and only if
n1 = n2.

Application

In particular, L2(Z2) and L4(Z2) are QI but not bilip. By contrast: L2(Z) and
L4(Z) are bilip.
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Amenable versus non-amenable case

Corollary (Space-rigidity)

Let X and Y be a coarsely simply connected, uniformly one ended graphs. Then
for all n ≥ 2, any quasi-isometry Ln(X )→ Ln(Y ) lies at bounded distance from a
biLipschitz equivalence.

Theorem (Dymarz, Peng, and Taback 15’)

There exists two finitely presented one-ended amenable groups H1,H2 that are
quasi-isometric but not bilipschitz equivalent.

Combining these two results:

Let n ≥ 2. There exist two finitely presented one-ended amenable groups H1,H2
that are quasi-isometric such that Ln(H1) and Ln(H2) are not quasi-isometric.
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Amenable versus non-amenable case

Theorem (Flexibility)

If X is a non-amenable graph, and n1 and n2 have same prime divisors (e.g.
n1 = 6, n2 = 12), then Ln1 (X ) and Ln2 (X ) are quasi-isometric.

Note that there is no assumption on the graph here... Already surprising when X
is the free group!

Corollary (Amenability criterion)

Let X be a coarsely simply connected, uniformly one ended graph. Then X is
amenable if and only if L6(X ) and L12(X ) are quasi-isometric.

Romain Tessera Quasi-isometry rigidity of lamplighter groups



Quasi-
isometry
rigidity of

lamplighter
groups

Romain
Tessera

Amenable versus non-amenable case

Lemma

For every non-amenable finitely generated group H and every n ≥ 2, there exists
an n-to-one quasi-isometry H → H at finite distance from the identity.

Such a map never exists for amenable groups.

 finite

 has size 
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Quasi-κ-to-one quasi-isometries

Definition

Let f : X → Y be a proper map between two graphs X ,Y and let κ > 0. Then f
is quasi-κ-to-one if there exists a constant C > 0 such that∣∣κ|A| − |f −1(A)|

∣∣ ≤ C |∂A|

for all finite subset A ⊂ Y .

Remark

If X is non-amenable, then all quasi-isometries are quasi-1-to-one.

Theorem (Whyte 99’)

A quasi-isometry is quasi-one-to-one if and only if it lies at bounded distance
from a biLipschitz equivalence.
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Functoriality

Proposition (Genevois-T)

Let X ,Y ,Z be three connected graphs with bounded degree, κ1, κ2 > 0 two real
numbers, and f , h : X → Y and g : Y → Z three quasi-isometries.

(i) If f , h are at bounded distance and if f is quasi-κ1-to-one, then h is also
quasi-κ1-to-one.

(ii) If f and g are respectively quasi-κ1-to-one and quasi-κ2-to-one, then g ◦ f
is quasi-κ1κ2-to-one.

(iii) If f̄ is a quasi-inverse of f and if f is quasi-κ1-to-one, then f̄ is
quasi-(1/κ1)-to-one.

Romain Tessera Quasi-isometry rigidity of lamplighter groups



Quasi-
isometry
rigidity of

lamplighter
groups

Romain
Tessera

Functoriality

Proposition (Genevois-T)

Let X ,Y ,Z be three connected graphs with bounded degree, κ1, κ2 > 0 two real
numbers, and f , h : X → Y and g : Y → Z three quasi-isometries.

(i) If f , h are at bounded distance and if f is quasi-κ1-to-one, then h is also
quasi-κ1-to-one.

(ii) If f and g are respectively quasi-κ1-to-one and quasi-κ2-to-one, then g ◦ f
is quasi-κ1κ2-to-one.

(iii) If f̄ is a quasi-inverse of f and if f is quasi-κ1-to-one, then f̄ is
quasi-(1/κ1)-to-one.

Romain Tessera Quasi-isometry rigidity of lamplighter groups



Quasi-
isometry
rigidity of

lamplighter
groups

Romain
Tessera

Functoriality

Proposition (Genevois-T)

Let X ,Y ,Z be three connected graphs with bounded degree, κ1, κ2 > 0 two real
numbers, and f , h : X → Y and g : Y → Z three quasi-isometries.

(i) If f , h are at bounded distance and if f is quasi-κ1-to-one, then h is also
quasi-κ1-to-one.

(ii) If f and g are respectively quasi-κ1-to-one and quasi-κ2-to-one, then g ◦ f
is quasi-κ1κ2-to-one.

(iii) If f̄ is a quasi-inverse of f and if f is quasi-κ1-to-one, then f̄ is
quasi-(1/κ1)-to-one.

Romain Tessera Quasi-isometry rigidity of lamplighter groups



Quasi-
isometry
rigidity of

lamplighter
groups

Romain
Tessera

Case where κ is rational

Using Whyte’s theorem, we can prove.

Proposition (Genevois-T)

Let m, n ≥ 1 be natural integers and f : X → Y a quasi-isometry between two
graphs with bounded degree. The following statements are equivalent:

(i) f is quasi-(m/n)-to-one;

(ii) the map ι ◦ f ◦ π is at bounded distance from a bijection, where
π : X × Z/nZ � X is the canonical embedding and ι : Y ↪→ Y × Z/mZ the
canonical projection.

(iii) there exist a partition PX (resp. PY ) of X (resp. of Y ) with uniformly
bounded pieces of size m (resp. n) and a bijection ψ : PX → PY “at
bounded distance” from f .
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Key rigidity results

Theorem (Embedding result)

Let X ,Z be two graphs, n ≥ 2 an integer, and ρ : Z → Ln(X ) a coarse
embedding. If Z is a coarsely simply connected, uniformly one ended graph, then
the image of ρ lies in the neighborhood of a natural copy of X in Ln(X ).

Definition (Aptolic quasi-isometries)

Let n1, n2 ≥ 2 two integers and X1,X2 two graphs. A map q : Ln1 (X )→ Ln2 (Y )

is of aptolic form if there exist α : Z(X1)
n1 → Z(X2)

n2 and β : X1 → X2 such that
q(c, x) = (α(c), β(x)) for all (c, x) ∈ Ln1 (X1). A quasi-isometry
Ln1 (X )→ Ln2 (Y ) is aptolic if it is of aptolic form and if it admits a quasi-inverse
of aptolic form.

Theorem (Characterization of QIs)

Let n1, n2 ≥ 2 be two integers and X1,X2 two coarsely simply connected
uniformly one-ended graphs. Then every quasi-isometry Ln1 (X1)→ Ln2 (X2) is at
bounded distance from an aptolic quasi-isometry.

The assumptions are optimal: false for Z (Eskin-Fisher-Whyte), or for infinitely
ended groups (Genevois-T).
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Heuristic behind the embedding result

Ingredients:

1 Main observation: The Cayley graph of F o H is foliated by left cosets of H,
the “leaves”.

2 Leaves“diverge from one another”.

3 the Cayley graph of F o H may be thought of as a “graph of leaves”: we
expect a suitable cover C to behave like a “tree of leaves”.

4 Strategy: use the simple connectedness of Z to lift its embedding to F o H
to an embedding to C and show there that it must lie close to a leaf (using
Z is one-ended!).

5 Problem: C does not really have a tree-structure. Instead it has a median
space structure, whose hyperplanes are unbounded, but project to
bounded subsets in F o H.
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Main steps of the proof (1)

Presentation of the lamplighter:

Case X = H is a group. The wreath product F o H admits

〈H,Fh (h ∈ H) | [F1,Fh] = 1 (h ∈ H), gFhg
−1 = Fgh (g , h ∈ H)〉

as a relative presentation, where each Fh is a copy of F .

Truncated presentation:

Given a finite subset S ⊂ H, we define a new group F�SH from the truncated
presentation

〈H,Fh (h ∈ H) | [F1,Fh] = 1 (h ∈ S), gFhg
−1 = Fgh (g , h ∈ H)〉.

Key observation:

F�SH decomposes as the semi-direct product

〈Fh (h ∈ H) | [Fg ,Fh] = 1 (g−1h ∈ S)〉 o H = ΓF o H

where Γ := Cayl(H, S) and where ΓF denotes the graph product(
∗

h∈V (Γ)
Fh

)
/〈〈[a, b] = 1 if a ∈ Fg and b ∈ Fh with g , h adjacent in Γ〉〉.
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Main steps of the proof (2)

1 (Lifting the coarse embedding) since Z is coarsely simply connected, its
coarse embedding to F o H lifts to a coarse embedding to F�SH for some
large enough finite S .

Z

((��

F�SH // F o H

2 (Median geometry) F�SH acts on a median space (1-skeleton of a
CAT(0)-cubical complex).

3 (Relative tree-like structure) Hyperplanes project to bounded subsets in
F o H.

4 Use that Z is uniformly one-ended to prove the theorem.
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Towards superrigidity

Exploiting a recent result of Martínez Pedrosa and Sánchez Saldaña, we obtain

Theorem (Algebraic constraints on a group QI to a lamplighter)

Let F be a non-trivial finite group, H a finitely presented one-ended group, and G
a finitely generated group. If G is quasi-isometric to F o H, then there exist
finitely many subgroups H1, . . . ,Hn ≤ G such that:

H1, . . . ,Hn are all quasi-isometric to H;

the collection {H1, . . . ,Hn} is almost malnormal;

for every finitely presented one-ended subgroup K ≤ G , there exist g ∈ G
and 1 ≤ i ≤ n such that K ≤ gHig

−1.

Corollary (Rigidity of permutational lamplighters)

Let F1,F2 two non-trivial finite groups and H1,H2 be finitely presented one-ended
groups respectively acting on two sets X1,X2 with finitely many orbits. Assume
that F1 oX1 H1 and F2 oX2 H2 are quasi-isometric. If H1 acts on X1 with finite
stabilisers, then H2 also acts on X2 with finite stabilisers.
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