Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Quasi-isometry rigidity of lamplighter groups

Romain Tessera

CNRS, Paris Diderot

February 2, 2021

イロト イヨト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Definition

Given two groups F and H, the wreath product $F \wr H$ is defined as the semidirect product $(\bigoplus_{H} F) \rtimes H$ where H acts on the direct sum by permuting the coordinates.

"Well-understood side" of wreath products:

• $FI_{F \wr H} \approx FI_{H}^{FI_{F}}$ (Erschler)

(日) (四) (三) (三) (三) (三)

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Definition

Given two groups F and H, the wreath product $F \wr H$ is defined as the semidirect product $(\bigoplus_H F) \rtimes H$ where H acts on the direct sum by permuting the coordinates.

"Well-understood side" of wreath products:

- $FI_{F \wr H} \approx FI_{H}^{FI_{F}}$ (Erschler)
- Random walks: (probablity of return) (Varopoulos/Pittet-Saloff-Coste)...

イロト イヨト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Definition

Given two groups F and H, the wreath product $F \wr H$ is defined as the semidirect product $(\bigoplus_{H} F) \rtimes H$ where H acts on the direct sum by permuting the coordinates.

"Well-understood side" of wreath products:

- $FI_{F \wr H} \approx FI_{H}^{FI_{F}}$ (Erschler)
- Random walks: (probablity of return) (Varopoulos/Pittet-Saloff-Coste)...
- Coarse embeddability into L^p-spaces (Naor-Peres).

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Definition

Given two groups F and H, the wreath product $F \wr H$ is defined as the semidirect product $(\bigoplus_{H} F) \rtimes H$ where H acts on the direct sum by permuting the coordinates.

"Well-understood side" of wreath products:

- $FI_{F \wr H} \approx FI_{H}^{FI_{F}}$ (Erschler)
- Random walks: (probablity of return) (Varopoulos/Pittet-Saloff-Coste)...
- Coarse embeddability into L^p-spaces (Naor-Peres).
- a-T-menability/ actions on CAT(0) cubical complexes: (Cornulier-Stalder-Valette/Chifan-Ioanna/Genevois).

Lamplighters

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

If F is finite, then $F \wr H$ is called a **Lamplighters group**.

- non stability under QI of the class of solvable groups (Erschler 00): $\mathbb{Z}_{60} \wr \mathbb{Z}$ and $\mathfrak{A}_5 \wr \mathbb{Z}$ are quasi-isometric (trivial).
- (Dymartz 15) Examples of pairs of groups that are QI but not bilpschitz equivalent (very hard).

Problem

Let F_1 , F_2 be two finite groups and H_1 , H_2 two finitely generated groups. When are $F_1 \wr H_1$ and $F_2 \wr H_2$ quasi-isometric? When are they bilpschitz equivalent?

Lamplighters over general graphs

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Definition

Let X be a graph and $n \ge 2$ an integer. The *lamplighter graph* $\mathcal{L}_n(X)$ is the graph

- whose vertices are the pairs (c, x) with $c : V(X) \to \mathbb{Z}/n\mathbb{Z}$ is a finitely supported coloring and $x \in V(X)$ a vertex;
- and whose edges connect (c_1, x_1) and (c_2, x_2) either if $c_1 = c_2$ and x_1, x_2 are adjacent, or if $x_1 = x_2$ and c_1, c_2 differ only at this vertex.

Remark

If X = (H, S) is a Cayley graph then this coincides with the Cayley graph associated to the generating subset $S \cup \delta_{1_H}$.

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Eskin-Fischer-Whyte (Annals 13'))

 $\mathcal{L}_{n_1}(\mathbb{Z})$ and $\mathcal{L}_{n_2}(\mathbb{Z})$ are quasi-isometric if and only if n_1 and n_2 are powers of a common integer q, i.e. $n_1 = q^{r_1}$ and $m = q^{r_2}$.

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Eskin-Fischer-Whyte (Annals 13'))

 $\mathcal{L}_{n_1}(\mathbb{Z})$ and $\mathcal{L}_{n_2}(\mathbb{Z})$ are quasi-isometric if and only if n_1 and n_2 are powers of a common integer q, i.e. $n_1 = q^{r_1}$ and $m = q^{r_2}$.

 This paper is the last one of a sequence of many papers started by Farb and Mosher (Inventiones 98').

イロト イヨト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Eskin-Fischer-Whyte (Annals 13'))

 $\mathcal{L}_{n_1}(\mathbb{Z})$ and $\mathcal{L}_{n_2}(\mathbb{Z})$ are quasi-isometric if and only if n_1 and n_2 are powers of a common integer q, i.e. $n_1 = q^{r_1}$ and $m = q^{r_2}$.

- This paper is the last one of a sequence of many papers started by Farb and Mosher (Inventiones 98').
- Extremely involved (rely on some notion of "large-scale differentiability").

イロト イポト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Eskin-Fischer-Whyte (Annals 13'))

 $\mathcal{L}_{n_1}(\mathbb{Z})$ and $\mathcal{L}_{n_2}(\mathbb{Z})$ are quasi-isometric if and only if n_1 and n_2 are powers of a common integer q, i.e. $n_1 = q^{r_1}$ and $m = q^{r_2}$.

- This paper is the last one of a sequence of many papers started by Farb and Mosher (Inventiones 98').
- Extremely involved (rely on some notion of "large-scale differentiability").

Theorem (Eskin-Fischer-Whyte)

Given a prime $p \ge 2$, $\mathcal{L}_{p^{k_1}}(\mathbb{Z})$ and $\mathcal{L}_{p^{k_2}}(\mathbb{Z})$ are bilipschitz equivalent if and only if k_1 and k_2 are powers of p.

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Genevois-T 20)

Assume H_1 and H_2 are finitely presented groups and H_1 is one-ended. Assume $\mathcal{L}_{n_1}(H_1)$ and $\mathcal{L}_{n_2}(H_2)$ are quasi-isometric. Then H_1 and H_2 are quasi-isometric and:

イロト イポト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Genevois-T 20)

Assume H_1 and H_2 are finitely presented groups and H_1 is one-ended. Assume $\mathcal{L}_{n_1}(H_1)$ and $\mathcal{L}_{n_2}(H_2)$ are quasi-isometric. Then H_1 and H_2 are quasi-isometric and:

1 If H_1 is amenable, then n_1 and n_2 are powers of a common integer q, i.e. $n_1 = q^{r_1}$ and $m = q^{r_2}$.

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Genevois-T 20)

Assume H_1 and H_2 are finitely presented groups and H_1 is one-ended. Assume $\mathcal{L}_{n_1}(H_1)$ and $\mathcal{L}_{n_2}(H_2)$ are quasi-isometric. Then H_1 and H_2 are quasi-isometric and:

- **1** If H_1 is amenable, then n_1 and n_2 are powers of a common integer q, i.e. $n_1 = q^{r_1}$ and $m = q^{r_2}$.
- **2** If H_1 is non-amenable, then n_1 and n_2 have same prime divisors.

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Genevois-T 20)

Assume H_1 and H_2 are finitely presented groups and H_1 is one-ended. Assume $\mathcal{L}_{n_1}(H_1)$ and $\mathcal{L}_{n_2}(H_2)$ are quasi-isometric. Then H_1 and H_2 are quasi-isometric and:

- **1** If H_1 is amenable, then n_1 and n_2 are powers of a common integer q, i.e. $n_1 = q^{r_1}$ and $m = q^{r_2}$.
- **2** If H_1 is non-amenable, then n_1 and n_2 have same prime divisors.
 - The condition is an "if and only if" in the non-amenable case, but not quite in the amenable case: not all possible QI between H_1 and H_2 are allowed!

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Genevois-T 20)

Assume H_1 and H_2 are finitely presented groups and H_1 is one-ended. Assume $\mathcal{L}_{n_1}(H_1)$ and $\mathcal{L}_{n_2}(H_2)$ are quasi-isometric. Then H_1 and H_2 are quasi-isometric and:

- **1** If H_1 is amenable, then n_1 and n_2 are powers of a common integer q, i.e. $n_1 = q^{r_1}$ and $m = q^{r_2}$.
- **2** If H_1 is non-amenable, then n_1 and n_2 have same prime divisors.
 - The condition is an "if and only if" in the non-amenable case, but not quite in the amenable case: not all possible QI between H₁ and H₂ are allowed!
 - The theorem holds more generally for bounded degree graphs X₁ and X₂ (instead of H₁ and H₂), under the assumption that they are uniformly one-ended and coarsely simply connected.

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Genevois-T 20)

Assume H_1 and H_2 are finitely presented groups and H_1 is one-ended. Assume $\mathcal{L}_{n_1}(H_1)$ and $\mathcal{L}_{n_2}(H_2)$ are quasi-isometric. Then H_1 and H_2 are quasi-isometric and:

- **1** If H_1 is amenable, then n_1 and n_2 are powers of a common integer q, i.e. $n_1 = q^{r_1}$ and $m = q^{r_2}$.
- **2** If H_1 is non-amenable, then n_1 and n_2 have same prime divisors.
 - The condition is an "if and only if" in the non-amenable case, but not quite in the amenable case: not all possible QI between H₁ and H₂ are allowed!
 - The theorem holds more generally for bounded degree graphs X₁ and X₂ (instead of H₁ and H₂), under the assumption that they are uniformly one-ended and coarsely simply connected.
 - The theorem is true if H₁ is 2-ended thanks by Eskin-Fischer-Whyte. It is open if H₁ is infinitely ended (e.g. free groups).

イロト イポト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Genevois-T 20)

Assume H_1 and H_2 are finitely presented groups and H_1 is one-ended. Assume $\mathcal{L}_{n_1}(H_1)$ and $\mathcal{L}_{n_2}(H_2)$ are quasi-isometric. Then H_1 and H_2 are quasi-isometric and:

- **1** If H_1 is amenable, then n_1 and n_2 are powers of a common integer q, i.e. $n_1 = q^{r_1}$ and $m = q^{r_2}$.
- **2** If H_1 is non-amenable, then n_1 and n_2 have same prime divisors.
 - The condition is an "if and only if" in the non-amenable case, but not quite in the amenable case: not all possible QI between H₁ and H₂ are allowed!
 - The theorem holds more generally for bounded degree graphs X₁ and X₂ (instead of H₁ and H₂), under the assumption that they are uniformly one-ended and coarsely simply connected.
 - The theorem is true if H₁ is 2-ended thanks by Eskin-Fischer-Whyte. It is open if H₁ is infinitely ended (e.g. free groups).

イロト イポト イヨト イヨト

Stronger version (if and only if)

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

All graphs are assumed to have bounded degree...

Theorem (Genevois-T 20)

Let $n_1, n_2 \ge 2$ be two integers and X_1, X_2 two coarsely simply connected graphs. Assume that X_1 is uniformly one-ended.

1 If X_1 is amenable, then $\mathcal{L}_{n_1}(X_1)$ and $\mathcal{L}_{n_2}(X_2)$ are quasi-isometric if and only if n_1 and n_2 are powers of a common integer, and there exists a quasi- (n_2/n_1) -to-one quasi-isometry $X_1 \rightarrow X_2$.

Stronger version (if and only if)

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

All graphs are assumed to have bounded degree...

Theorem (Genevois-T 20)

Let $n_1, n_2 \ge 2$ be two integers and X_1, X_2 two coarsely simply connected graphs. Assume that X_1 is uniformly one-ended.

- **1** If X_1 is amenable, then $\mathcal{L}_{n_1}(X_1)$ and $\mathcal{L}_{n_2}(X_2)$ are quasi-isometric if and only if n_1 and n_2 are powers of a common integer, and there exists a quasi- (n_2/n_1) -to-one quasi-isometry $X_1 \rightarrow X_2$.
- 2 If H_1 is non-amenable, then $\mathcal{L}_{n_1}(X_1)$ and $\mathcal{L}_{n_2}(X_2)$ are quasi-isometric if and only if X_1, X_2 are quasi-isometric and n_1, n_2 have the same prime divisors.

イロト イポト イヨト イヨト

Amenable case

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Corollary (Lamp-rigidity)

Let $n_1, n_2 \ge 2$ and X be an **amenable** a coarsely simply connected, uniformly one ended graph. Then $\mathcal{L}_{n_1}(X)$ and $\mathcal{L}_{n_2}(X)$ are biLipschitz equivalent if and only if $n_1 = n_2$.

イロト イヨト イヨト イヨト

Amenable case

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Corollary (Lamp-rigidity)

Let $n_1, n_2 \ge 2$ and X be an **amenable** a coarsely simply connected, uniformly one ended graph. Then $\mathcal{L}_{n_1}(X)$ and $\mathcal{L}_{n_2}(X)$ are biLipschitz equivalent if and only if $n_1 = n_2$.

Application

In particular, $\mathcal{L}_2(\mathbb{Z}^2)$ and $\mathcal{L}_4(\mathbb{Z}^2)$ are QI but not bilip. By contrast: $\mathcal{L}_2(\mathbb{Z})$ and $\mathcal{L}_4(\mathbb{Z})$ are bilip.

(日) (四) (三) (三) (三) (三)

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Corollary (Space-rigidity)

Let X and Y be a coarsely simply connected, uniformly one ended graphs. Then for all $n \ge 2$, any quasi-isometry $\mathcal{L}_n(X) \to \mathcal{L}_n(Y)$ lies at bounded distance from a biLipschitz equivalence.

イロト イポト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Corollary (Space-rigidity)

Let X and Y be a coarsely simply connected, uniformly one ended graphs. Then for all $n \ge 2$, any quasi-isometry $\mathcal{L}_n(X) \to \mathcal{L}_n(Y)$ lies at bounded distance from a biLipschitz equivalence.

Theorem (Dymarz, Peng, and Taback 15')

There exists two finitely presented one-ended amenable groups H_1 , H_2 that are quasi-isometric but not bilipschitz equivalent.

イロト イポト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Corollary (Space-rigidity)

Let X and Y be a coarsely simply connected, uniformly one ended graphs. Then for all $n \ge 2$, any quasi-isometry $\mathcal{L}_n(X) \to \mathcal{L}_n(Y)$ lies at bounded distance from a biLipschitz equivalence.

Theorem (Dymarz, Peng, and Taback 15')

There exists two finitely presented one-ended amenable groups H_1 , H_2 that are quasi-isometric but not bilipschitz equivalent.

Combining these two results:

Let $n \ge 2$. There exist two finitely presented one-ended amenable groups H_1, H_2 that are quasi-isometric such that $\mathcal{L}_n(H_1)$ and $\mathcal{L}_n(H_2)$ are not quasi-isometric.

イロト イポト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Flexibility)

If X is a non-amenable graph, and n_1 and n_2 have same prime divisors (e.g. $n_1 = 6$, $n_2 = 12$), then $\mathcal{L}_{n_1}(X)$ and $\mathcal{L}_{n_2}(X)$ are quasi-isometric.

Note that there is no assumption on the graph here... Already surprising when X is the free group!

Corollary (Amenability criterion)

Let X be a coarsely simply connected, uniformly one ended graph. Then X is amenable if and only if $\mathcal{L}_6(X)$ and $\mathcal{L}_{12}(X)$ are quasi-isometric.

イロト イポト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Lemma

For every non-amenable finitely generated group H and every $n \ge 2$, there exists an n-to-one quasi-isometry $H \rightarrow H$ at finite distance from the identity.

Such a map never exists for amenable groups.

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Lemma

For every non-amenable finitely generated group H and every $n \ge 2$, there exists an n-to-one quasi-isometry $H \rightarrow H$ at finite distance from the identity.

Such a map never exists for amenable groups.

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Lemma

For every non-amenable finitely generated group H and every $n \ge 2$, there exists an n-to-one quasi-isometry $H \rightarrow H$ at finite distance from the identity.

Such a map never exists for amenable groups.

Quasi- κ -to-one quasi-isometries

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Definition

Let $f: X \to Y$ be a proper map between two graphs X, Y and let $\kappa > 0$. Then f is *quasi-\kappa-to-one* if there exists a constant C > 0 such that

$$|\kappa|A| - |f^{-1}(A)|| \leq C |\partial A|$$

for all finite subset $A \subset Y$.

イロン イヨン イヨン イヨン

Quasi- κ -to-one quasi-isometries

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Definition

Let $f: X \to Y$ be a proper map between two graphs X, Y and let $\kappa > 0$. Then f is *quasi-\kappa-to-one* if there exists a constant C > 0 such that

$$|\kappa|A| - |f^{-1}(A)|| \le C|\partial A|$$

for all finite subset $A \subset Y$.

Remark

If X is non-amenable, then all quasi-isometries are quasi-1-to-one.

イロン イヨン イヨン イヨン

Quasi- κ -to-one quasi-isometries

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Definition

Let $f: X \to Y$ be a proper map between two graphs X, Y and let $\kappa > 0$. Then f is *quasi-\kappa-to-one* if there exists a constant C > 0 such that

$$|\kappa|A| - |f^{-1}(A)|| \le C|\partial A|$$

for all finite subset $A \subset Y$.

Remark

If X is non-amenable, then all quasi-isometries are quasi-1-to-one.

Theorem (Whyte 99')

A quasi-isometry is quasi-one-to-one if and only if it lies at bounded distance from a biLipschitz equivalence.

イロン イヨン イヨン イヨン

Functoriality

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Proposition (Genevois-T)

Let X, Y, Z be three connected graphs with bounded degree, $\kappa_1, \kappa_2 > 0$ two real numbers, and f, $h: X \to Y$ and $g: Y \to Z$ three quasi-isometries.

 (i) If f, h are at bounded distance and if f is quasi-κ₁-to-one, then h is also quasi-κ₁-to-one.

Functoriality

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Proposition (Genevois-T)

Let X, Y, Z be three connected graphs with bounded degree, $\kappa_1, \kappa_2 > 0$ two real numbers, and f, $h: X \to Y$ and $g: Y \to Z$ three quasi-isometries.

- (i) If f, h are at bounded distance and if f is quasi-κ₁-to-one, then h is also quasi-κ₁-to-one.
- (ii) If f and g are respectively quasi- κ_1 -to-one and quasi- κ_2 -to-one, then $g \circ f$ is quasi- $\kappa_1\kappa_2$ -to-one.

イロト イポト イヨト イヨト

Functoriality

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Proposition (Genevois-T)

Let X, Y, Z be three connected graphs with bounded degree, $\kappa_1, \kappa_2 > 0$ two real numbers, and f, $h: X \to Y$ and $g: Y \to Z$ three quasi-isometries.

- (i) If f, h are at bounded distance and if f is quasi- κ_1 -to-one, then h is also quasi- κ_1 -to-one.
- (ii) If f and g are respectively quasi- κ_1 -to-one and quasi- κ_2 -to-one, then $g \circ f$ is quasi- $\kappa_1\kappa_2$ -to-one.
- (iii) If \bar{f} is a quasi-inverse of f and if f is quasi- κ_1 -to-one, then \bar{f} is quasi- $(1/\kappa_1)$ -to-one.

イロト イポト イヨト イヨト

Case where κ is rational

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Using Whyte's theorem, we can prove.

Proposition (Genevois-T)

Let $m, n \ge 1$ be natural integers and $f : X \to Y$ a quasi-isometry between two graphs with bounded degree. The following statements are equivalent:

(i) f is quasi-(m/n)-to-one;

イロン イヨン イヨン イヨン

Case where κ is rational

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Using Whyte's theorem, we can prove.

Proposition (Genevois-T)

Let $m, n \ge 1$ be natural integers and $f : X \to Y$ a quasi-isometry between two graphs with bounded degree. The following statements are equivalent:

- (i) f is quasi-(m/n)-to-one;
- (ii) the map $\iota \circ f \circ \pi$ is at bounded distance from a bijection, where $\pi : X \times \mathbb{Z}/n\mathbb{Z} \twoheadrightarrow X$ is the canonical embedding and $\iota : Y \hookrightarrow Y \times \mathbb{Z}/m\mathbb{Z}$ the canonical projection.

イロト イポト イヨト イヨト

Case where κ is rational

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Using Whyte's theorem, we can prove.

Proposition (Genevois-T)

Let $m, n \ge 1$ be natural integers and $f : X \to Y$ a quasi-isometry between two graphs with bounded degree. The following statements are equivalent:

- (i) f is quasi-(m/n)-to-one;
- (ii) the map $\iota \circ f \circ \pi$ is at bounded distance from a bijection, where $\pi : X \times \mathbb{Z}/n\mathbb{Z} \twoheadrightarrow X$ is the canonical embedding and $\iota : Y \hookrightarrow Y \times \mathbb{Z}/m\mathbb{Z}$ the canonical projection.
- (iii) there exist a partition P_X (resp. P_Y) of X (resp. of Y) with uniformly bounded pieces of size m (resp. n) and a bijection ψ : P_X → P_Y "at bounded distance" from f.

イロト イポト イヨト イヨト 二日

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Embedding result)

Let X, Z be two graphs, $n \ge 2$ an integer, and $\rho : Z \to \mathcal{L}_n(X)$ a coarse embedding. If Z is a coarsely simply connected, uniformly one ended graph, then the image of ρ lies in the neighborhood of a natural copy of X in $\mathcal{L}_n(X)$.

(日) (四) (三) (三) (三) (三)

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Embedding result)

Let X, Z be two graphs, $n \ge 2$ an integer, and $\rho : Z \to \mathcal{L}_n(X)$ a coarse embedding. If Z is a coarsely simply connected, uniformly one ended graph, then the image of ρ lies in the neighborhood of a natural copy of X in $\mathcal{L}_n(X)$.

Definition (Aptolic quasi-isometries)

Let $n_1, n_2 \geq 2$ two integers and X_1, X_2 two graphs. A map $q : \mathcal{L}_{n_1}(X) \to \mathcal{L}_{n_2}(Y)$ is of *aptolic form* if there exist $\alpha : \mathbb{Z}_{n_1}^{(X_1)} \to \mathbb{Z}_{n_2}^{(X_2)}$ and $\beta : X_1 \to X_2$ such that $q(c, x) = (\alpha(c), \beta(x))$ for all $(c, x) \in \mathcal{L}_{n_1}(X_1)$. A quasi-isometry $\mathcal{L}_{n_1}(X) \to \mathcal{L}_{n_2}(Y)$ is *aptolic* if it is of aptolic form and if it admits a quasi-inverse of aptolic form.

イロト イポト イヨト イヨト 二日

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Embedding result)

Let X, Z be two graphs, $n \ge 2$ an integer, and $\rho : Z \to \mathcal{L}_n(X)$ a coarse embedding. If Z is a coarsely simply connected, uniformly one ended graph, then the image of ρ lies in the neighborhood of a natural copy of X in $\mathcal{L}_n(X)$.

Definition (Aptolic quasi-isometries)

Let $n_1, n_2 \geq 2$ two integers and X_1, X_2 two graphs. A map $q : \mathcal{L}_{n_1}(X) \to \mathcal{L}_{n_2}(Y)$ is of *aptolic form* if there exist $\alpha : \mathbb{Z}_{n_1}^{(X_1)} \to \mathbb{Z}_{n_2}^{(X_2)}$ and $\beta : X_1 \to X_2$ such that $q(c, x) = (\alpha(c), \beta(x))$ for all $(c, x) \in \mathcal{L}_{n_1}(X_1)$. A quasi-isometry $\mathcal{L}_{n_1}(X) \to \mathcal{L}_{n_2}(Y)$ is *aptolic* if it is of aptolic form and if it admits a quasi-inverse of aptolic form.

Theorem (Characterization of QIs)

Let $n_1, n_2 \ge 2$ be two integers and X_1, X_2 two coarsely simply connected uniformly one-ended graphs. Then every quasi-isometry $\mathcal{L}_{n_1}(X_1) \to \mathcal{L}_{n_2}(X_2)$ is at bounded distance from an aptolic quasi-isometry.

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Theorem (Embedding result)

Let X, Z be two graphs, $n \ge 2$ an integer, and $\rho : Z \to \mathcal{L}_n(X)$ a coarse embedding. If Z is a coarsely simply connected, uniformly one ended graph, then the image of ρ lies in the neighborhood of a natural copy of X in $\mathcal{L}_n(X)$.

Definition (Aptolic quasi-isometries)

Let $n_1, n_2 \geq 2$ two integers and X_1, X_2 two graphs. A map $q : \mathcal{L}_{n_1}(X) \to \mathcal{L}_{n_2}(Y)$ is of *aptolic form* if there exist $\alpha : \mathbb{Z}_{n_1}^{(X_1)} \to \mathbb{Z}_{n_2}^{(X_2)}$ and $\beta : X_1 \to X_2$ such that $q(c, x) = (\alpha(c), \beta(x))$ for all $(c, x) \in \mathcal{L}_{n_1}(X_1)$. A quasi-isometry $\mathcal{L}_{n_1}(X) \to \mathcal{L}_{n_2}(Y)$ is *aptolic* if it is of aptolic form and if it admits a quasi-inverse of aptolic form.

Theorem (Characterization of QIs)

Let $n_1, n_2 \ge 2$ be two integers and X_1, X_2 two coarsely simply connected uniformly one-ended graphs. Then every quasi-isometry $\mathcal{L}_{n_1}(X_1) \to \mathcal{L}_{n_2}(X_2)$ is at bounded distance from an aptolic quasi-isometry.

The assumptions are optimal: false for \mathbb{Z} (Eskin-Fisher-Whyte), or for infinitely ended groups (Genevois-T).

Quasiisometry rigidity of lamplighter groups

Ingredients:

Romain Tessera **1** Main observation: The Cayley graph of $F \wr H$ is foliated by left cosets of H, the "leaves".

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Ingredients:

- **1** Main observation: The Cayley graph of $F \wr H$ is foliated by left cosets of H, the "leaves".
- 2 Leaves"diverge from one another".

э

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Ingredients:

- **1** Main observation: The Cayley graph of $F \wr H$ is foliated by left cosets of H, the "leaves".
- **2** Leaves"diverge from one another".
- **3** the Cayley graph of $F \wr H$ may be thought of as a "graph of leaves": we expect a **suitable cover** C to behave like a "tree of leaves".

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Ingredients:

- **1** Main observation: The Cayley graph of $F \wr H$ is foliated by left cosets of H, the "leaves".
- 2 Leaves"diverge from one another".
- **3** the Cayley graph of $F \wr H$ may be thought of as a "graph of leaves": we expect a **suitable cover** C to behave like a "tree of leaves".
- 4 Strategy: use the simple connectedness of Z to lift its embedding to $F \wr H$ to an embedding to C and show there that it must lie close to a leaf (using Z is one-ended!).

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Ingredients:

- **1** Main observation: The Cayley graph of $F \wr H$ is foliated by left cosets of H, the "leaves".
- 2 Leaves"diverge from one another".
- **3** the Cayley graph of $F \wr H$ may be thought of as a "graph of leaves": we expect a **suitable cover** C to behave like a "tree of leaves".
- 4 Strategy: use the simple connectedness of Z to lift its embedding to $F \wr H$ to an embedding to C and show there that it must lie close to a leaf (using Z is one-ended!).
- 5 Problem: C does not really have a tree-structure. Instead it has a median space structure, whose hyperplanes are unbounded, but project to bounded subsets in F ≀ H.

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Presentation of the lamplighter:

Case X = H is a group. The wreath product $F \wr H$ admits

$$\langle H, F_h \ (h \in H) \mid [F_1, F_h] = 1 \ (h \in H), \ gF_hg^{-1} = F_{gh} \ (g, h \in H) \rangle$$

as a relative presentation, where each F_h is a copy of F.

イロン イヨン イヨン イヨン

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Presentation of the lamplighter:

Case X = H is a group. The wreath product $F \wr H$ admits

 $\langle H, F_h \ (h \in H) \mid [F_1, F_h] = 1 \ (h \in H), \ gF_hg^{-1} = F_{gh} \ (g, h \in H) \rangle$

as a relative presentation, where each F_h is a copy of F.

Truncated presentation:

Given a finite subset $S \subset H$, we define a new group $F \Box_S H$ from the truncated presentation

$$\langle H, F_h \ (h \in H) \mid [F_1, F_h] = 1 \ (h \in S), \ gF_hg^{-1} = F_{gh} \ (g, h \in H) \rangle.$$

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Presentation of the lamplighter:

Case X = H is a group. The wreath product $F \wr H$ admits

 $\langle H, F_h \ (h \in H) \mid [F_1, F_h] = 1 \ (h \in H), \ gF_hg^{-1} = F_{gh} \ (g, h \in H) \rangle$

as a relative presentation, where each F_h is a copy of F.

Truncated presentation:

Given a finite subset $S \subset H$, we define a new group $F \Box_S H$ from the truncated presentation

$$\langle H, F_h \ (h \in H) \mid [F_1, F_h] = 1 \ (h \in S), \ gF_hg^{-1} = F_{gh} \ (g, h \in H) \rangle.$$

Key observation:

 $F \square_S H$ decomposes as the semi-direct product

$$\langle F_h \ (h \in H) \mid [F_g, F_h] = 1 \ (g^{-1}h \in S) \rangle \rtimes H = \Gamma F \rtimes H$$

Romain Tessera

Quasi-isometry rigidity of lamplighter groups

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

1 (Lifting the coarse embedding) since Z is coarsely simply connected, its coarse embedding to $F \wr H$ lifts to a coarse embedding to $F \Box_S H$ for some large enough finite S.

Quasiisometry rigidity of lamplighter groups

Romain

1 (Lifting the coarse embedding) since Z is coarsely simply connected, its coarse embedding to $F \wr H$ lifts to a coarse embedding to $F \Box_{S} H$ for some large enough finite S.

2 (Median geometry) $F \Box_S H$ acts on a median space (1-skeleton of a CAT(0)-cubical complex).

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

1 (Lifting the coarse embedding) since Z is coarsely simply connected, its coarse embedding to $F \wr H$ lifts to a coarse embedding to $F \Box_S H$ for some large enough finite S.

- **2** (Median geometry) $F \square_S H$ acts on a median space (1-skeleton of a CAT(0)-cubical complex).
- 3 (Relative tree-like structure) Hyperplanes project to bounded subsets in $F \wr H$.

イロト イポト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

1 (Lifting the coarse embedding) since Z is coarsely simply connected, its coarse embedding to $F \wr H$ lifts to a coarse embedding to $F \square_S H$ for some large enough finite S.

- **2** (Median geometry) $F \square_S H$ acts on a median space (1-skeleton of a CAT(0)-cubical complex).
- 3 (Relative tree-like structure) Hyperplanes project to bounded subsets in $F \wr H$.
- **4** Use that *Z* is **uniformly one-ended** to prove the theorem.

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Exploiting a recent result of Martínez Pedrosa and Sánchez Saldaña, we obtain

Theorem (Algebraic constraints on a group QI to a lamplighter)

Let F be a non-trivial finite group, H a finitely presented one-ended group, and G a finitely generated group. If G is quasi-isometric to $F \ H$, then there exist finitely many subgroups $H_1, \ldots, H_n \leq G$ such that:

■ *H*₁,..., *H_n* are all quasi-isometric to *H*;

イロト イポト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Exploiting a recent result of Martínez Pedrosa and Sánchez Saldaña, we obtain

Theorem (Algebraic constraints on a group QI to a lamplighter)

Let F be a non-trivial finite group, H a finitely presented one-ended group, and G a finitely generated group. If G is quasi-isometric to $F \ H$, then there exist finitely many subgroups $H_1, \ldots, H_n \leq G$ such that:

- *H*₁,..., *H_n* are all quasi-isometric to *H*;
- the collection $\{H_1, \ldots, H_n\}$ is almost malnormal;

イロト イポト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Exploiting a recent result of Martínez Pedrosa and Sánchez Saldaña, we obtain

Theorem (Algebraic constraints on a group QI to a lamplighter)

Let F be a non-trivial finite group, H a finitely presented one-ended group, and G a finitely generated group. If G is quasi-isometric to $F \ H$, then there exist finitely many subgroups $H_1, \ldots, H_n \leq G$ such that:

- *H*₁,..., *H_n* are all quasi-isometric to *H*;
- the collection $\{H_1, \ldots, H_n\}$ is almost malnormal;
- for every finitely presented one-ended subgroup K ≤ G, there exist g ∈ G and 1 ≤ i ≤ n such that K ≤ gH_ig⁻¹.

イロト イポト イヨト イヨト

Quasiisometry rigidity of lamplighter groups

> Romain Tessera

Exploiting a recent result of Martínez Pedrosa and Sánchez Saldaña, we obtain

Theorem (Algebraic constraints on a group QI to a lamplighter)

Let F be a non-trivial finite group, H a finitely presented one-ended group, and G a finitely generated group. If G is quasi-isometric to $F \ H$, then there exist finitely many subgroups $H_1, \ldots, H_n \leq G$ such that:

- *H*₁,..., *H_n* are all quasi-isometric to *H*;
- the collection $\{H_1, \ldots, H_n\}$ is almost malnormal;
- for every finitely presented one-ended subgroup K ≤ G, there exist g ∈ G and 1 ≤ i ≤ n such that K ≤ gH_ig⁻¹.

Corollary (Rigidity of permutational lamplighters)

Let F_1 , F_2 two non-trivial finite groups and H_1 , H_2 be finitely presented one-ended groups respectively acting on two sets X_1 , X_2 with finitely many orbits. Assume that $F_1 \wr_{X_1} H_1$ and $F_2 \wr_{X_2} H_2$ are quasi-isometric. If H_1 acts on X_1 with finite stabilisers, then H_2 also acts on X_2 with finite stabilisers.

イロト イポト イヨト イヨト 二日