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product (P F) x H where H acts on the direct sum by permuting the
coordinates.

“Well-understood side” of wreath products:
w Fley = FIF (Erschler)
m Random walks: (probablity of return) (Varopoulos/Pittet-Saloff-Coste)...
m Coarse embeddability into LP-spaces (Naor-Peres).

m a-T-menability/ actions on CAT(0) cubical complexes:
(Cornulier-Stalder-Valette /Chifan-loanna/Genevois).
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If F is finite, then F { H is called a Lamplighters group.

Romain
Le===a m non stability under QI of the class of solvable groups (Erschler 00): Zeo ! Z
and A5 2 Z are quasi-isometric (trivial).

m (Dymartz 15) Examples of pairs of groups that are QI but not bilpschitz
equivalent (very hard).

Problem

Let F1, F> be two finite groups and Hi, H> two finitely generated groups. When
are F1 ! Hy and F2 Hy quasi-isometric? When are they bilpschitz equivalent?
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Lamplighters over general graphs

Definition
Let X be a graph and n > 2 an integer. The lamplighter graph L£,(X) is the
graph
m whose vertices are the pairs (¢, x) with ¢ : V(X) — Z/nZ is a finitely
supported coloring and x € V(X) a vertex;

m and whose edges connect (c1,x1) and (c2, x2) either if c1 = ¢2 and x1, x2
are adjacent, or if x;1 = xo and c1, ¢, differ only at this vertex.

Remark

If X = (H, S) is a Cayley graph then this coincides with the Cayley graph
associated to the generating subset S U d1,,.
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S Lny (Z) and Ln,(Z) are quasi-isometric if and only if ny and n> are powers of a

common integer q, i.e. n1 = q"™ and m = q"2.
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m This paper is the last one of a sequence of many papers started by Farb
and Mosher (Inventiones 98').
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S Lny (Z) and Ln,(Z) are quasi-isometric if and only if ny and n> are powers of a

common integer q, i.e. n1 = q"™ and m = q"2.

m This paper is the last one of a sequence of many papers started by Farb
and Mosher (Inventiones 98').

m Extremely involved (rely on some notion of “large-scale differentiability”).

Theorem (Eskin-Fischer-Whyte)

Given a prime p > 2, [Zpkl (Z) and Epkz (Z) are bilipschitz equivalent if and only if
ki and ky are powers of p.
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A general Ql-rigidity result

Theorem (Genevois-T 20)

Assume Hy and Hy are finitely presented groups and H; is one-ended. Assume
Ln, (H1) and L, (H2) are quasi-isometric. Then Hy and Ho are quasi-isometric
and:

If Hy is amenable, then ny and ny are powers of a common integer q, i.e.
ny =q"™ and m= q"™.
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A general Ql-rigidity result

Theorem (Genevois-T 20)

Assume Hy and Hy are finitely presented groups and H; is one-ended. Assume
Ln, (H1) and L, (H2) are quasi-isometric. Then Hy and Ho are quasi-isometric
and:
If Hy is amenable, then ny and ny are powers of a common integer q, i.e.
ny =q"™ and m= q"™.

If Hy is non-amenable, then ny and na have same prime divisors.

The condition is an “if and only if" in the non-amenable case, but not quite
in the amenable case: not all possible QI between H; and H» are allowed!
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Tessera and:

If Hy is amenable, then ny and ny are powers of a common integer q, i.e.
ny =q"™ and m= q"™.

If Hy is non-amenable, then ny and na have same prime divisors.

The condition is an “if and only if" in the non-amenable case, but not quite
in the amenable case: not all possible QI between H; and H» are allowed!
The theorem holds more generally for bounded degree graphs X; and Xz
(instead of Hy and H>), under the assumption that they are uniformly
one-ended and coarsely simply connected.
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in the amenable case: not all possible QI between H; and H» are allowed!

m The theorem holds more generally for bounded degree graphs X; and Xa
(instead of Hy and H>), under the assumption that they are uniformly
one-ended and coarsely simply connected.

m The theorem is true if H; is 2-ended thanks by Eskin-Fischer-Whyte. It is
open if Hj is infinitely ended (e.g. free groups).
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Theorem (Genevois-T 20)

Let n1,n2 > 2 be two integers and X1, X2 two coarsely simply connected graphs.
Assume that Xy is uniformly one-ended.

If X1 is amenable, then L, (X1) and Ln,(X2) are quasi-isometric if and
only if ny and ny are powers of a common integer, and there exists a
quasi-(nz/n1)-to-one quasi-isometry X1 — Xo.
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Theorem (Genevois-T 20)

Let n1,n2 > 2 be two integers and X1, X2 two coarsely simply connected graphs.
Assume that Xy is uniformly one-ended.

If X1 is amenable, then L, (X1) and Ln,(X2) are quasi-isometric if and
only if ny and ny are powers of a common integer, and there exists a
quasi-(nz/n1)-to-one quasi-isometry X1 — Xo.

If Hy is non-amenable, then L, (X1) and Ln,(X2) are quasi-isometric if and

only if X1, X2 are quasi-isometric and n1, no have the same prime divisors.
w
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Corollary (Lamp-rigidity)

Let n1,n2 > 2 and X be an amenable a coarsely simply connected, uniformly one
ended graph. Then L, (X) and L, (X) are biLipschitz equivalent if and only if
n = ny.
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Corollary (Lamp-rigidity)

Let n1,n2 > 2 and X be an amenable a coarsely simply connected, uniformly one
ended graph. Then L, (X) and L, (X) are biLipschitz equivalent if and only if
n = ny.

Application

In particular, £2(Z?) and £4(Z?) are QI but not bilip. By contrast: £»(Z) and
L4(Z) are bilip.
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Tessera for all n > 2, any quasi-isometry L,(X) — Ln(Y) lies at bounded distance from a
biLipschitz equivalence.
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Theorem (Dymarz, Peng, and Taback 15')

There exists two finitely presented one-ended amenable groups Hi, Hy that are
quasi-isometric but not bilipschitz equivalent.
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T Corollary (Space-rigidity)

Ronn Let X and Y be a coarsely simply connected, uniformly one ended graphs. Then
Tessera for all n > 2, any quasi-isometry L,(X) — Ln(Y) lies at bounded distance from a

biLipschitz equivalence.
i

Theorem (Dymarz, Peng, and Taback 15')

There exists two finitely presented one-ended amenable groups Hi, Hy that are
quasi-isometric but not bilipschitz equivalent.

Combining these two results:

Let n > 2. There exist two finitely presented one-ended amenable groups Hi, H>
that are quasi-isometric such that £,(H1) and £,(H>) are not quasi-isometric.

Romain Tessera Quasi-isometry rigidity of lamplighter groups



Amenable versus non-amenable case

Quasi-
isometry
rigidity of
lamplighter
groups
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If X is a non-amenable graph, and ny and na have same prime divisors (e.g.

ny =6, no = 12), then L, (X) and L, (X) are quasi-isometric.

Note that there is no assumption on the graph here... Already surprising when X
is the free group!

Corollary (Amenability criterion)

Let X be a coarsely simply connected, uniformly one ended graph. Then X is
amenable if and only if L6(X) and L12(X) are quasi-isometric.
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roups . . . . . .
Ll an n-to-one quasi-isometry H — H at finite distance from the identity.
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Tessera Such a map never exists for amenable groups.

A C 77 finite
' (A) hessize 7/A
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A C 7 finite
F7H(A) hessize n|A
F7H(A) € AT forsome € >0

I/ (A) - 1Al _ [AT\A|

n—1= <
|A] |A]
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Romain is quasi-rk-to-one if there exists a constant C > 0 such that
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Definition

|kIA] - |F1(A)|| < CloA|

for all finite subset A C Y.
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If X is non-amenable, then all quasi-isometries are quasi-1-to-one.
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L Let f : X — Y be a proper map between two graphs X, Y and let & > 0. Then f

Romain is quasi-rk-to-one if there exists a constant C > 0 such that

Tessera

Definition

|kIA] - |F1(A)|| < CloA|

for all finite subset A C Y.

If X is non-amenable, then all quasi-isometries are quasi-1-to-one.

Theorem (Whyte 99')

A quasi-isometry is quasi-one-to-one if and only if it lies at bounded distance
from a bilipschitz equivalence.
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Let X,Y,Z be three connected graphs with bounded degree, k1,2 > 0 two real
numbers, and f,h: X — Y and g : Y — Z three quasi-isometries.

(i) Iff,h are at bounded distance and if f is quasi-k1-to-one, then h is also
quasi-k1-to-one.
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Let X,Y,Z be three connected graphs with bounded degree, k1,2 > 0 two real
numbers, and f,h: X — Y and g : Y — Z three quasi-isometries.

(i) Iff,h are at bounded distance and if f is quasi-k1-to-one, then h is also
quasi-k1-to-one.

(i) If f and g are respectively quasi-r1-to-one and quasi-k2-to-one, then g o f

is quasi-Kk1 Ka-to-one.
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Romain Proposition (Genevois-T)
Tessera

Let X,Y,Z be three connected graphs with bounded degree, k1,2 > 0 two real
numbers, and f,h: X — Y and g : Y — Z three quasi-isometries.

(i) Iff,h are at bounded distance and if f is quasi-k1-to-one, then h is also
quasi-k1-to-one.
(i) If f and g are respectively quasi-r1-to-one and quasi-k2-to-one, then g o f
is quasi-Kk1 Ka-to-one.
(iii) If f is a quasi-inverse of f and if f is quasi-ry-to-one, then f is
quasi-(1/k1)-to-one.
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Case where & is rational
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Proposition (Genevois-T)

Let m,n > 1 be natural integers and f : X — Y a quasi-isometry between two
graphs with bounded degree. The following statements are equivalent:

(i) f is quasi-(m/n)-to-one;
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Tessera Proposition (Genevois-T)

Let m,n > 1 be natural integers and f : X — Y a quasi-isometry between two
graphs with bounded degree. The following statements are equivalent:

(i) f is quasi-(m/n)-to-one;

(if) the map vo f o7 is at bounded distance from a bijection, where
m: X X Z/nZ — X is the canonical embedding and v : Y — Y X Z/mZ the
canonical projection.
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Case where & is rational

Using Whyte's theorem, we can prove.

Proposition (Genevois-T)

Let m,n > 1 be natural integers and f : X — Y a quasi-isometry between two
graphs with bounded degree. The following statements are equivalent:
(i) f is quasi-(m/n)-to-one;
(if) the map vo f o7 is at bounded distance from a bijection, where
m: X X Z/nZ — X is the canonical embedding and v : Y — Y X Z/mZ the
canonical projection.
(iii) there exist a partition Px (resp. Py ) of X (resp. of Y') with uniformly

bounded pieces of size m (resp. n) and a bijection ¢ : Px — Py “at
bounded distance” from f.
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Key rigidity results
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groups embedding. If Z is a coarsely simply connected, uniformly one ended graph, then

the image of p lies in the neighborhood of a natural copy of X in Ln(X).

Theorem (Embedding result)
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| \

Definition (Aptolic quasi-isometries)

Let n1, n2 > 2 two integers and X1, X> two graphs. A map q: Ln, (X) = Lny(Y)
is of aptolic form if there exist « : Zﬁ,)fi) — Zs,)Z(Z) and B : X1 — Xz such that
q(c,x) = (a(c), B(x)) for all (c,x) € L, (X1). A quasi-isometry

Lny (X) = Ln,(Y) is aptolic if it is of aptolic form and if it admits a quasi-inverse
of aptolic form.

v
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Definition (Aptolic quasi-isometries)

Let n1, n2 > 2 two integers and X1, X> two graphs. A map q: Ln, (X) = Lny(Y)
is of aptolic form if there exist « : Zﬁ,)fi) — Zﬁ,’f) and B : X1 — Xz such that
q(c,x) = (a(c), B(x)) for all (c,x) € L, (X1). A quasi-isometry

Lny (X) = Ln,(Y) is aptolic if it is of aptolic form and if it admits a quasi-inverse

of aptolic form.
.

Theorem (Characterization of Qls)

Let n1,n» > 2 be two integers and X1, X> two coarsely simply connected
uniformly one-ended graphs. Then every quasi-isometry Ln, (X1) — Ln, (X2) is at
bounded distance from an aptolic quasi-isometry.

y
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Key rigidity results

Theorem (Embedding result)

Let X, Z be two graphs, n > 2 an integer, and p : Z — L,(X) a coarse
embedding. If Z is a coarsely simply connected, uniformly one ended graph, then
the image of p lies in the neighborhood of a natural copy of X in Ln(X).

| 5\

Definition (Aptolic quasi-isometries)

Let n1, n2 > 2 two integers and X1, X> two graphs. A map q: Ln, (X) = Lny(Y)
is of aptolic form if there exist « : Zﬁ,’fi) — Zﬁ,’f) and B : X1 — Xz such that
q(c,x) = (afc), B(x)) for all (c,x) € Ly, (X1). A quasi-isometry

Lny (X) = Ln,(Y) is aptolic if it is of aptolic form and if it admits a quasi-inverse

of aptolic form.
.

Theorem (Characterization of Qls)

Let n1,n» > 2 be two integers and X1, X> two coarsely simply connected
uniformly one-ended graphs. Then every quasi-isometry L, (X1) — Ln,(X2) is at
bounded distance from an aptolic quasi-isometry.

y

The assumptions are optimal: false for Z (Eskin-Fisher-Whyte), or for infinitely
ended groups (Genevois-T).
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Tessera the “leaves”.
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Heuristic behind the embedding result

Ingredients:

Main observation: The Cayley graph of F ! H is foliated by left cosets of H,
the “leaves”.

Leaves"diverge from one another”.

the Cayley graph of F ! H may be thought of as a “graph of leaves”: we
expect a suitable cover C to behave like a “tree of leaves”.

Strategy: use the simple connectedness of Z to lift its embedding to F1 H
to an embedding to C and show there that it must lie close to a leaf (using
Z is one-ended!).

Problem: C does not really have a tree-structure. Instead it has a median
space structure, whose hyperplanes are unbounded, but project to
bounded subsets in F H.
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Main steps of the proof (1)

e Presentation of the lamplighter:
isometry

rigidity of Case X = H is a group. The wreath product F ! H admits
lamplighter
groups
Romain <H7 Fh (h € H) | [F17 Fh] =1 (h € H)7 thg_l = th (gvh € H))
Tessera

as a relative presentation, where each Fp, is a copy of F.
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_Quasi- Presentation of the lamplighter:
isometry

rigidity of Case X = H is a group. The wreath product F ! H admits
lamplighter

groups

(H,Fy (h€ H) | [F1,Fs] =1 (h € H), gFrg™ ' = Fgn (g, h € H))

Romain
Tessera

as a relative presentation, where each Fp, is a copy of F.

Truncated presentation:

Given a finite subset S C H, we define a new group FOgsH from the truncated
presentation

(H,Fy (h€ H) | [F1,Fa] =1 (h€S), gFrg™" = Fgn (g, h € H)).
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Main steps of the proof (1)

Presentation of the lamplighter:

Case X = H is a group. The wreath product F ! H admits

(H,Fh (h € H) | [F1,Fy] = 1 (h € H), gFrg™" = Fon (g, h € H))

as a relative presentation, where each Fj, is a copy of F.

Truncated presentation:

Given a finite subset S C H, we define a new group FOgsH from the truncated
presentation

(H,Fh (h€ H) | [F1,Fy] =1 (h € S), gFrg™" = Fen (g, h € H)).

Key observation:

FOsH decomposes as the semi-direct product

(Fh (h€ H) | [Fe, Fil=1 (g the S))xH=TFxH
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Main steps of the proof (2)

Quasi-
isometry
rigidity of
lamplighter
groups (Lifting the coarse embedding) since Z is coarsely simply connected, its
R coarse embedding to F ! H lifts to a coarse embedding to FCgH for some

TeEmE large enough finite S.

V4

|

FOsH ———  FQH
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Main steps of the proof (2)

Quasi-
isometry
rigidity of
lamplighter
groups (Lifting the coarse embedding) since Z is coarsely simply connected, its
R coarse embedding to F ! H lifts to a coarse embedding to FCgH for some

TeEmE large enough finite S.

V4

|

FOsH ———  FQH

(Median geometry) FsH acts on a median space (1-skeleton of a
CAT(0)-cubical complex).

(Relative tree-like structure) Hyperplanes project to bounded subsets in
FUH.

A Use that Z is uniformly one-ended to prove the theorem.
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Towards superrigidity

Quasi-
isometry Exploiting a recent result of Martinez Pedrosa and Sanchez Saldafia, we obtain
rigidity of

lamplighter
groups

Theorem (Algebraic constraints on a group QI to a lamplighter)

Ronn Let F be a non-trivial finite group, H a finitely presented one-ended group, and G
Tessera a finitely generated group. If G is quasi-isometric to F ! H, then there exist
finitely many subgroups Hu, ..., H, < G such that:

m Hi,...,H, are all quasi-isometric to H;
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Ronn Let F be a non-trivial finite group, H a finitely presented one-ended group, and G
Tessera a finitely generated group. If G is quasi-isometric to F ! H, then there exist
finitely many subgroups Hu, ..., H, < G such that:

m Hi,...,H, are all quasi-isometric to H;
m the collection {Hx, ..., Hn} is almost malnormal;

m for every finitely presented one-ended subgroup K < G, there exist g € G
and 1 < i < n such that K < gH;g—*.
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Towards superrigidity

Exploiting a recent result of Martinez Pedrosa and Sanchez Saldafia, we obtain

Theorem (Algebraic constraints on a group QI to a lamplighter)

Let F be a non-trivial finite group, H a finitely presented one-ended group, and G
a finitely generated group. If G is quasi-isometric to F ! H, then there exist
finitely many subgroups Hu, ..., H, < G such that:

m Hi,...,H, are all quasi-isometric to H;
m the collection {Hx, ..., Hn} is almost malnormal;

m for every finitely presented one-ended subgroup K < G, there exist g € G
and 1 < i < n such that K < gH;g~*

Corollary (Rigidity of permutational lamplighters)

| A,

Let F1, F> two non-trivial finite groups and Hy, H> be finitely presented one-ended
groups respectively acting on two sets X1, X2 with finitely many orbits. Assume
that F1 1x, H1 and F3 x, H2 are quasi-isometric. If Hy acts on Xy with finite
stabilisers, then H> also acts on X> with finite stabilisers.
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