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8ème école du GdR EGRIN

Clémentine Prieur (AIRSEA) Global Sensitivity Analysis EGRIN 1 / 39



Part II

Clémentine Prieur (AIRSEA) Global Sensitivity Analysis EGRIN 2 / 39



Introduction

Outline

Introduction

Limits of variance based SA in the general framework

An alternative, the Shapley effects

Aggregated Shapley effects

Application: snow avalanche modeling

Clémentine PRIEUR Shapley Effects for Sensitivity Analysis with Correlated Inputs



Introduction

Introduction

In this talk, we consider

M :

{
X = X1 × . . .Xd → Y
x = (x1, . . . , xd ) 7→ y =M(x)

with
• M : mathematical or numerical model,
• x : uncertain input parameters,
• y : output.
We model the uncertain input parameters by a probability
distribution P on X and get

Y =M(X1, . . . ,Xd )

with the vector X = (X1, . . . ,Xd ) distributed as P.
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Introduction

Introduction

Independent framework: P(dx) = P1(dx1) . . .Pd (dxd )

Why is the independent framework not always the right one?

In the following, we consider an application to long-term avalanche
hazard assessment. The model under consideration is:

I a snow avalanche model, joint work with INRAE (Grenoble,
FRANCE).
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Introduction

Snow avalanche modeling

Model based on depth-averaged Saint-Venant equations (see
[Heredia et al., 2020] for more details)

∂h
∂t

+
∂hv
∂x

= 0

∂hv
∂t

+
∂

∂x

(
hv2 +

h2

2

)
= h (g sin θ − F)

with v = ‖~v‖ the flow velocity, h the flow depth, θ the local angle, t the time, g the
gravity constant and F = ‖~F‖ a frictional force. The model uses the Voellmy frictional
force F = µgcosθ + g/(ξh)v2, where µ and ξ are friction parameters.

The equations are solved with a finite volume scheme
[Naaim, 1998]. The topography is the one of a path located in
Bessans, France.
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Introduction

In the following, we consider two scenarii. Let us present the first
scenario as an introductory example.

Input Description Distribution
µ Static friction coefficient U [0.05, 0.65]
ξ Turbulent friction [m/s2] U [400, 10000]
lstart Length of the release zone [m] U [5, 300]
hstart Mean snow depth in the release zone [m] U [0.05, 3]
xstart Release abscissa [m] U [0, 1600]

Let’s volstart = lstart × hstart × 72.3/ cos(35◦) instead of hstart and lstart.

AR rules:
I avalanche simulation is flowing

in [1600m, 2412m],
I vol > 7000m3,
I runout distance < 2500m (end

of the path).

From n0 = 100 000 initial runs, we
keep n1 = 6152 constrained ones.
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Limits of variance based SA in the general framework

Variance based SA in the general framework

We still consider M :

{
Rd → R

x = (x1, . . . , xd ) 7→ y =M(x)

Uncertain parameters are no longer assumed independent, thus
P(dx) is not necessarily equal to P1(dx1) . . .Pd (dxd ). We have
FX(x) = C (FX1(x1), . . . ,FXd (xd )) (Sklar’s Theorem) with FXi (·)
and FX(·) the cdf of Xi , X . If the FXi are continuous, then the
copula C is unique.

We still define, for any i ∈ {1, . . . , d}: Si =
V [E [Y |Xi ]]

V [Y ]
and

Stot
i =

E [V [Y |X−i ]]

V [Y ]
·

However, nice properties due to orthogonality are lost.

Clémentine PRIEUR Shapley Effects for Sensitivity Analysis with Correlated Inputs



An alternative, the Shapley effects
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An alternative, the Shapley effects Definition

An alternative, the Shapley effects
Let D = {1, . . . , d}. Let team u ⊆ D create value val(u). Total
value is val(D). We attribute φi of this to i ∈ D.

Shapley axioms [Shapley, 1953]

I Efficiency
∑d

i=1 φi = val(D)
I Dummy If val(u ∪ {i}) = val(u) for all u ⊆ D, then φi = 0
I Symmetry If val(u ∪ {i}) = val(u ∪ {j}) for all u ∩ {i , j} = ∅,

then φi = φj
I Additivity If games val, val’ have values φ, φ′, then val + val’

has value φ+ φ′

Unique solution

φi =
1
d
∑

u⊆−{i}

(
d − 1
|u|

)−1(
val(u + i)− val(u)

)
Clémentine PRIEUR Shapley Effects for Sensitivity Analysis with Correlated Inputs



An alternative, the Shapley effects Definition

Let X1, . . . ,Xd be the team members trying to explain the
variability of M. The value of any u ∈ D is how much can be
explained by Xu.

We choose val(u) =
V [E [Y |Xu]]

V [Y ]
which leads to the definition of

Shapley effects [Owen, 2014]:

φi =
1
d
∑

u⊆−{i}

(
d − 1
|u|

)−1(V [E [Y |Xu,Xi ]]

V [Y ]
− V [E [Y |Xu]]

V [Y ]

)

It is equivalent to consider to choose ṽal(u) =
E [V [Y |X−u]]

V [Y ]
[Song et al., 2016].

Clémentine PRIEUR Shapley Effects for Sensitivity Analysis with Correlated Inputs



An alternative, the Shapley effects Main properties

Main properties

Independent framework: ∀ i = 1, . . . , d , φi =
∑
u:i∈u

1
|u|Su

We also have: ∀ i = 1, . . . , d , 0 ≤ Si ≤ φi ≤ Stot
i ≤ 1 and∑d

i=1 φi = 1.

Dependent framework:

In this framework, we still have 0 ≤ φi ≤ 1 and
∑d

i=1 φi = 1

We do not necessarily have Si ≤ φi ≤ Stot
i

The Shapley allocation rule is based on an equitable principle,
which ensures that φi ≈ 0⇒ Xi has no significant contribution to
Var[Y ], neither by its interactions nor by its dependencies with
other inputs.
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An alternative, the Shapley effects Main properties

Main properties

Independent framework: ∀ i = 1, . . . , d , φi =
∑
u:i∈u

1
|u|Su

We also have: ∀ i = 1, . . . , d , 0 ≤ Si ≤ φi ≤ Stot
i ≤ 1 and∑d

i=1 φi = 1.

Dependent framework:

In this framework, we still have 0 ≤ φi ≤ 1 and
∑d

i=1 φi = 1

We do not necessarily have Si ≤ φi ≤ Stot
i

The Shapley allocation rule is based on an equitable principle,
which ensures that φi ≈ 0⇒ Xi has no significant contribution to
Var[Y ], neither by its interactions nor by its dependencies with
other inputs.
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An alternative, the Shapley effects Examples

What happens on simple models?
Ex. 1: Gaussian framework, affine model, d = 2
[Owen and Prieur, 2017, Iooss and Prieur, 2019]

X ∼ N2(µ,Σ) and Y = β0 + βTX, with

µ =

(
µ1
µ2

)
,β =

(
β1
β2

)
,Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
, ρ ∈ [−1, 1] , σi > 0.

We have σ2 = V [Y ] = β2
1σ

2
1 + 2ρβ1β2σ1σ2 + β2

2σ
2
2. Then

σ2φ1 = β2
1σ

2
1(1−ρ

2

2 ) + ρβ1β2σ1σ2 + β2
2σ

2
2
ρ2

2 ,

σ2 S1 = β2
1σ

2
1 + 2ρβ1β2σ1σ2 + ρ2β2

2σ
2
2 and σ2Stot

1 = β2
1σ

2
1(1− ρ2).

(i) φi ≤ Stot
i ⇔ (ii) Si ≤ φi ⇔ (iii) ρ (ρ

β2
1σ

2
1 + β2

2σ
2
2

2 + β1β2σ1σ2) ≤ 0.
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An alternative, the Shapley effects Examples
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Figure: Sensitivity indices on the linear model (β1 = 1, β2 = 1) with two
Gaussian inputs. (a): (σ1, σ2) = (1, 1). (b): (σ1, σ2) = (1, 2).
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An alternative, the Shapley effects Examples

Ex. 2: correlated input not included in the model
Y =M(X1,X2) = X1 with (X1,X2) two dependent standard
Gaussian variables with a correlation coefficient ρ.

Shapley effects: φ1 = 1− ρ2

2 and φ2 =
ρ2

2 .

If ρ is close to zero, φ2 is small and X2 can be fixed without
changing the output variance (Factor Fixing Setting).

Sobol’ indices: S1 = 1 , Stot
1 = 1− ρ2 , S2 = ρ2 , Stot

2 = 0.

X2 is only important because of its correlation with X1. One
should be able to evaluate the uncertainty of Y accurately by only
accounting for the uncertainty in X1.

For a black box model, if Stot
i = 0, the model output is a

measurable function of (X1, . . . ,Xi−1,Xi+1, . . . ,Xd ) only. Then, if
then Si > 0, Xi is correlated to (X1, . . . ,Xi−1,Xi+1, . . . ,Xd ).
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An alternative, the Shapley effects Examples

Ex. 2: correlated input not included in the model
Y =M(X1,X2) = X1 with (X1,X2) two dependent standard
Gaussian variables with a correlation coefficient ρ.

Shapley effects: φ1 = 1− ρ2

2 and φ2 =
ρ2

2 .

If ρ is close to zero, φ2 is small and X2 can be fixed without
changing the output variance (Factor Fixing Setting).

Sobol’ indices: S1 = 1 , Stot
1 = 1− ρ2 , S2 = ρ2 , Stot

2 = 0.

X2 is only important because of its correlation with X1. One
should be able to evaluate the uncertainty of Y accurately by only
accounting for the uncertainty in X1.

For a black box model, if Stot
i = 0, the model output is a

measurable function of (X1, . . . ,Xi−1,Xi+1, . . . ,Xd ) only. Then, if
then Si > 0, Xi is correlated to (X1, . . . ,Xi−1,Xi+1, . . . ,Xd ).
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An alternative, the Shapley effects Algorithms

What about algorithms?

Algorithms to compute Shapley effects [Castro et al., 2009] are

based on the value function u 7→ E[V [Y |X−u]]

V [Y ]
· Note that

φi =
1

d !

∑
π∈Π({1,...,d})

(
ṽal(Pi (π) ∪ {i}))− ṽal(Pi (π))

)
with Π({1, . . . , d}) the set of all possible permutations of the
inputs and for a permutation π ∈ Π({1, . . . , d}), the set Pi (π) is
defined as the inputs that precede input i in π.

Exact permutation algo. (moderate d) all possible permutations
are covered.

Random permutation algo. (d >> 1) it randomly sample
permutations of the inputs.
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An alternative, the Shapley effects Algorithms

In [Song et al., 2016], ṽal(u) → ̂̃val(u).

For each iteration of the loop on the inputs’ permutations, the
expectation of a conditional variance must be computed.

The cost C of these algorithms is the following:

C = Nv + m(d − 1)N0Ni

with Nv the sample size for the variance computation, N0 the
outer loop size for the expectation, Ni the inner loop size for the
conditional variance and m the number of permutations according
to the selected method.

Bootstrap confidence intervals can be computed. A costly model
can be replaced by a metamodel. [Iooss and Prieur, 2019,
Benoumechiara and Elie-Dit-Cosaque, 2019]
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Aggregated Shapley effects Definition

If output is multivariate or the discretization of a functional output
Y = (Y1, . . . ,Yp), we define aggregated Shapley effects as:

∀ 1 ≤ j ≤ p , ∀ 1 ≤ i ≤ d , φagg
i =

∑p
j=1 V [Yj ]φ

j
i∑p

j=1 V [Yj ]

with φj
i defined as the Shapley effect of Yj associated to input Xi

[Heredia et al., 2020] (see also [Lamboni et al., 2011]).

Proposition [Heredia et al., 2020, Prop. 2.1]
The set of aggregated Shapley effects

(
φagg

i , i ∈ {1, . . . , d}
)

correspond to the set of Shapley values with characteristic function:

u ⊆ {1, . . . , d} 7→ val(u) =

∑p
j=1 V [Yj ]valj(u)∑p

j=1 V [Yj ]

with valj(u) =
V [E [Yj |Xu]]

V [Yj ]
or valj(u) =

E [V [Yj |X−u]]

V [Yj ]
.
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Aggregated Shapley effects Estimation

Estimation procedure

It is possible to plug algorithms presented in
[Castro et al., 2009, Song et al., 2016] in the estimation of aggregated
Shapley effects. Those algorithms require the ability to sample
from the distribution of Xu |X−u, ∀u ( {1, . . . , d}.

We rather present here a procedure based on nearest neighbors
[Broto et al., 2020, Heredia et al., 2020].

As already mentioned, a first step is to estimate:

V [Yj ] valj(u) = E [V [Yj |X−u]] = E
[
V j
−u

]
for all u ⊆ {1, . . . , d}, with −u = {1, . . . , d} \ u.
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Aggregated Shapley effects Estimation

Algorithm introduced in [Broto et al., 2020] depends on:
I a n-sample

(
xk , yk)

1≤k≤n (given data),
I Ntot the estimation cost,
I (Nu)u({1,...,d} integers such that

∑
u({1,...,d}Nu = Ntot,

I NI number of neighbors.
Let us describe the three main steps of the algorithm we propose
to estimate aggregated Shapley effects.

Step 1
Let u ( {1, . . . , d}. Let (s`)1≤`≤Nu a sample of uniformly
distributed integers in [1, n]. Then, for any 1 ≤ j ≤ p, compute:

V̂ j
−u,s` =

1
NI − 1

∑
k:xk

−u∈B−u,`

(
yk

j − ȳs`

)2
with ȳs` =

1
NI

∑
v :xk

−u∈Bu,`

yk
j .

with B−u,` the set of NI closest neighbors of x s`
−u.
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Aggregated Shapley effects Estimation

V̂ j
−u,s` =

1
NI − 1

∑
k:xk

−u∈B−u,`

(
yk

j − ȳs`

)2
with ȳs` =

1
NI

∑
v :xk

−u∈Bu,`

yk
j

with B−u,` the set of NI closest neighbors of x s`
−u.

Illustration with n = 10, Nu = 4 and NI = 3

@M.B.Heredia
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Aggregated Shapley effects Estimation

Step 2

2.1 Compute, for all u ( {1, . . . , d},

V [Yj ] v̂alj(u) =
1

Nu

Nu∑
`=1

V̂ j
−u,s` .

2.2 Compute a bootstrap sample
(

V [Yj ] v̂alj(u)
)(b)

, 1 ≤ b ≤ B
by sampling uniformly with replacement in V̂ j

−u,s` .
2.3 Compute a bootstrap sample σ̂2,(b)

j , 1 ≤ b ≤ B of the
empirical variance

σ̂2
j =

1
n − 1

n∑
k=1

(
yj

k − 1
n

n∑
k=1

yj
k

)2

by sampling uniformly with replacement in
(
yj

k)
1≤k≤n.
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Aggregated Shapley effects Estimation

Step 3

3.1 For any i ∈ {1, . . . , d}, compute φ̂i agg (and a bootstrap
sample φ̂i agg(b)

, 1 ≤ b ≤ B) as:∑p
j=1
∑

u⊆−i
(d−1
|u|
)−1 (V [Yj ] ̂valj(u ∪ {i})− V [Yj ] v̂alj(u)

)
d
∑p

j=1 σ̂
2
j

·

3.2 Compute bootstrap confidence intervals from the sample
φ̂i agg(b)

, 1 ≤ b ≤ B.
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Aggregated Shapley effects Estimation

How to choose NI , Ntot and Nu?

Following [Song et al., 2016], we fix NI = 3.

The cost of the estimation procedure is related to the number of
nearest neighbors we seek for. It is proportional to∑
∅(u({1,...,d}Nu. Choosing Nu = n for all u would lead to a cost

Ntot = n(2d − 2) which explodes exponentially with the dimension.

The authors in [Broto et al., 2020] suggest to choose
Nu = N∗u = Round

(
Ntot

( d
|u|
)−1

(d − 1)−1
)

, thus taking into
account the weights in the definition of Shapley effects.
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Application: snow avalanche modeling

Application: snow avalanche modeling

Model based on depth-averaged Saint-Venant equations (see
[Heredia et al., 2020] for more details)

∂h
∂t

+
∂hv
∂x

= 0

∂hv
∂t

+
∂

∂x

(
hv2 +

h2

2

)
= h (g sin θ − F)

with v = ‖~v‖ the flow velocity, h the flow depth, θ the local angle, t the time, g the
gravity constant and F = ‖~F‖ a frictional force. The model uses the Voellmy frictional
force F = µgcosθ + g/(ξh)v2, where µ and ξ are friction parameters.

The equations are solved with a finite volumes scheme
[Naaim, 1998]. The topography is the one of a path located in
Bessans, France.
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Application: snow avalanche modeling Scenario 1

Objective: better understanding the numerical model.
Input Description Distribution
µ Static friction coefficient U [0.05, 0.65]
ξ Turbulent friction [m/s2] U [400, 10000]
lstart Length of the release zone [m] U [5, 300]
hstart Mean snow depth in the release zone [m] U [0.05, 3]
xstart Release abscissa [m] U [0, 1600]

Let’s volstart = lstart × hstart × 72.3/ cos(35◦) instead of hstart and lstart.

AR rules:
I avalanche simulation is flowing

in [1600m, 2412m],
I vol > 7000m3,
I runout distance < 2500m (end

of the path).

From n0 = 100 000 initial runs, we
keep n1 = 6152 constrained ones.
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Application: snow avalanche modeling Scenario 1
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Aggregated Shapley effects of velocity and flow depth curves calculated over space
intervals [x , 2412m] where x ∈ {1600m, 1700m, . . . , 2412m}
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We have n = 6152, Ntot = 2002, B = 500. Effects are estimated using the first (2,
resp. 4) fPCs [Yao et al., 2005, Ramsay and Silverman, 2005] explaining more than
95% of the variance. Local slope is drawn with a gray line. A gray dotted rectangle is
drawn at [2017m, 2412m] where avalanche return periods vary from 10 to 10 000 years.
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Application: snow avalanche modeling Scenario 2

Objective: long-term avalanche hazard assessment to address related risk for

buildings and people inside.
Input Distribution

xnstart = xstart
1600 Beta(1.38, 2.49)

hstart|xnstart Gamma
(

1
0.452 (1.52 + 0.03xnstart )2, 1

0.452 (1.52 + 0.03xnstart )
)

lstart 31.25+87.5hstart
µ|hstart, xnstart N (0.449− 0.013xnstart + 0.025hstart , 0.112)

AR rules:
I avalanche simulation flowing in

[1600m, 2204m] (return periods
from 10 to 300 years),

I avalanche volume ≥ 7 000 m3,
I µ ≤ 0.39 (dry snow avalanches).

From n0 = 100 000 initial runs, we
keep n2 = 1284 constrained ones.

Input distribitions in the table
are obtained from a Bayesian
inference [Eckert et al., 2010].

ξ is fixed to 1300.

We have
lstart = 31.25 + 87.5hstart. Once
more we consider volstart instead
of lstart and hstart .
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Application: snow avalanche modeling Scenario 2
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Ubiquitous Shapley effects of velocity (a), flow depth (b) and runout distance (c).
Shapley effects. Shapley effects are estimated with n = 1284 and Ntot = 800. The
local slope is displayed with a white line. A gray dotted rectangle shows the interval
[2064m, 2204m] where return periods vary from 10 to 300 years. The bootstrap
sample size is fixed to B = 500.

We note that:
I ubiquitous effects show fluctuations corresponding to changes

in local slope;
I concerning runout distance, all inputs appear as relevant.
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Application: snow avalanche modeling Scenario 2
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Aggregated Shapley effects of velocity and flow depth curves calculated over space
intervals [x , 2204] where x ∈ {1600, 1700, . . . , 2204} and using the first fPCs which
have 95% of output variance. Shapley effects are estimated with n = 1284 and
Ntot = 800. The local slope is displayed with a gray line. A gray dotted rectangle is
displayed at [2017m, 2204m] where return periods vary from 10 to 300 years. The
bootstrap sample size is fixed to B = 500.
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Application: snow avalanche modeling Scenario 2

In summary,
I it is fundamental to have a good approximation of the

released volume and abscissa for velocity forecasting, while for
flow depth forecasting, a good approximation of released
volume is desirable;

I nevertheless, none of the other inputs are negligible.

To outperform the estimation accuracy at the end of the path
generating a larger initial sample of avalanches is possible, but the
computational burden is prohibitive.
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Application: snow avalanche modeling Scenario 2

Conclusion, perspectives

Conclusion: Shapley effects present an alternative to allocate parts
of variance in the correlated framework. It is possible to define
aggregated Shapley indices. There exist algorithms to estimate
these indices, see Jupyter notebook Part II.

Open questions
I What about goal-oriented Shapley effects? (see recent work in

[Da Veiga, 2021])
I Nearest neighbor algorithm depends on many parameters to

tune (number of neighbors, total cost, Nu)? Is it possible to
propose an adaptive choice of these parameters?

I How can Shapley effects be related to gradient-based
measures of sensitivity?

I . . .
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