Introduction to Global Sensibility Analysis

Clémentine Prieur

Université Grenoble Alpes，Laboratoire Jean Kuntzmann
Inria project／team AIRSEA
$8^{\text {ème }}$ école du GdR EGRIN

Part I

Overview

inputs$\rightarrow+$ model	\rightarrow output	
$\left.\begin{array}{c}X_{1} \\ \cdot \\ \cdot \\ X_{d}\end{array}\right\}$	$-\mathcal{M}-$	$Y=\mathcal{M}\left(X_{1}, \ldots, X_{d}\right)$

Experimental design:
planification, sampling

Sensitivity analysis: sensitivity indices' inference

Introduction

Background :

$$
\mathcal{M}:\left\{\begin{array}{rll}
\mathbb{R}^{d} & \rightarrow \mathbb{R} \\
\mathrm{x} & \mapsto y=\mathcal{M}\left(x_{1}, \ldots, x_{d}\right)
\end{array}\right.
$$

Goal : find how model outputs vary with inputs changes.

Different strategies

- Qualitative analysis : non-linear behaviors? possible interactions?
ex. : screening
- Quantitative analysis : factorial hierarchisation, statistical tests H_{0} "negligible input"
ex. : sensitivity Sobol' indices
Sensitivity analysis may help identifying inappropriate models.

Introduction

Background :

$$
\mathcal{M}:\left\{\begin{array}{rll}
\mathbb{R}^{d} & \rightarrow \mathbb{R} \\
\mathrm{x} & \mapsto y=\mathcal{M}\left(x_{1}, \ldots, x_{d}\right)
\end{array}\right.
$$

Goal : find how model outputs vary with inputs changes.
Different strategies

- Qualitative analysis : non-linear behaviors? possible interactions? ex. : screening
- Quantitative analysis : factorial hierarchisation, statistical tests H_{0} "negligible input"
ex. : sensitivity Sobol' indices
Sensitivity analysis may help identifying inappropriate models.

Introduction

Background :

$$
\mathcal{M}:\left\{\begin{array}{rll}
\mathbb{R}^{d} & \rightarrow \mathbb{R} \\
\mathrm{x} & \mapsto y=\mathcal{M}\left(x_{1}, \ldots, x_{d}\right)
\end{array}\right.
$$

Goal : find how model outputs vary with inputs changes.
Different strategies:

- Qualitative analysis : non-linear behaviors? possible interactions? ex. : screening .
- Quantitative analysis : factorial hierarchisation, statistical tests H_{0} "negligible input"
ex. : sensitivity Sobol' indices
Sensitivity analysis may help identifying inappropriate models.

Introduction

Various approaches for quantitative sensitivity :
Local approaches :
$\overline{\mathcal{M}}(\mathbf{x}) \approx \mathcal{M}\left(\mathbf{x}^{0}\right)+\sum_{i=1}^{d}\left(\frac{\partial \mathcal{M}}{\partial x_{i}}\right)_{x^{0}}\left(x_{i}-x_{i}^{0}\right)$ (Taylor approximation).
First order sensitivity index for input $\mathrm{i}:\left(\frac{\partial \mathcal{M}}{\partial x_{i}}\right)_{x^{0}}$.
Pros : Low computational cost even for large d
Cons : local approaches, not well-suited for highly nonlinear models

Introduction

Global approaches :
From expert knowledge or observations, we attribute a probability law to the inputs vector.
ex.: If independent inputs, then only margins are needed.

Figure: law (left) unimodal , (right) bimodal

Introduction

We vary inputs w.r.t. their probability distribution.

Figure: Local versus $\operatorname{Global}(G:=\mathcal{M})$

Introduction

We vary input w.r.t. their probability law

Figure: Local versus $\operatorname{Global}(G:=\mathcal{M})$, illustration.

$\mathbb{E}_{X}\left[\left(\left.\frac{\partial \mathcal{M}}{\partial x_{i}}\right|_{\mathrm{X}}\right)^{2}\right]$.
Avantages : particularly interesting if adjoint available
Cons:
(1) does not discriminate enc

Introduction

(2) is known as Derivative-based Global Sensitivity Measures, see Sobol' \& Gresham (1995), Sobol' \& Kucherenko (2009).

This index is more adapted for screening than for hierarchization (e.g. Lamboni et al., 2013).

This lecture targets global approaches that allow to efficiently rank input factors.

However, let us provide, as an introduction, a first outlook to screening most usual methods.

A quick overlook on screening methods

Main objective : to screen among a large amount of inputs which ones are non influential on the quantity of interest (Qol).

Advantages : moderate computational cost.
Drawbacks : partial information, no hierarchisation.

A OAT screening method: Morris, 1991
OAT One At a Time we vary the factors one by one.
The screening method proposed by Morris is a global OAT approach.
Model $Y=\mathcal{M}(\mathbf{X}), \mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$ with the X_{i} s independent uniform random variables on $[0,1]$.

More details on the method:

- input discretization on a grid with p values $\left\{0, \frac{1}{p-1}, \ldots, 1\right\}$.
- Δ a multiple of $1 /(p-1)$, fixed once for all.
$-\Omega:=\left\{0, \frac{1}{p-1}, \ldots, 1\right\}^{d}$.
$-\Omega_{i}^{\Delta}:=\left\{x \in \Omega\right.$ such that $\left.\left(x_{1}, \ldots, x_{i-1}, x_{i}+\Delta, x_{i+1}, \ldots, x_{d}\right) \in \Omega\right\}$.

Definition

Elementary effect of X_{i} computed at $\mathrm{x} \in \Omega_{i}^{\Delta}$,

$$
d_{i}(\mathrm{x})=\frac{1}{\Delta}\left\{\mathcal{M}\left(x_{1}, \ldots, x_{i-1}, x_{i}+\Delta, x_{i+1}, \ldots, x_{d}\right)-\mathcal{M}(\mathrm{x})\right\} .
$$

There are $p^{d-1}(p-\Delta(p-1))$ elementary effects to compute.

Steps :

- one draws uniformly a r-sample in $\Omega_{i}^{\Delta}: \mathbf{x}^{1}, \ldots, \mathbf{x}^{r}$;
- one computes $d_{i}\left(x^{j}\right), j=1, \ldots, r, i=1, \ldots, d$;
- one computes

$$
\left\{\begin{aligned}
\mu_{i} & =\frac{1}{r} \sum_{j=1} d_{i}\left(\mathrm{x}^{j}\right) \\
\sigma_{i}^{2} & =\frac{1}{r} \sum_{j=1}^{r}\left(d_{i}\left(\mathrm{x}^{j}\right)-\mu_{i}\right)^{2} .
\end{aligned}\right.
$$

	σ_{i}^{2} low	σ_{i}^{2} high
$\left\|\mu_{i}\right\|$ low	non influential	nonlinearities and/or interactions
$\left\|\mu_{i}\right\|$ high	influential	nonlinearities and/or interactions

The efficiency of the method "number of elementary effects computed / number of model runs" is equal to $1 / 2$.

Morris (1991) presents an adaptation with an efficiency equal to $d /(d+1)$, with d the input space dimension.

A toy example

Advection-reaction-diffusion equation with Dirichlet boundary condition :

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=-r . u-a \frac{\partial u}{\partial x}+\lambda \frac{\partial^{2} u}{\partial x^{2}}+f \quad x \in[0, L], t \in[0, T] \\
u(x=0, t)=\Psi_{1}(t) \quad t \in[0, T] \\
u(x=L, t)=\Psi_{2}(t) \quad t \in[0, T] \\
u(x, t=0)=g(x) \quad x \in(0, L) .
\end{array}\right.
$$

A : energy norm of the solution at time $t=T$.
Sensitivity of A with respect to (a, r, λ) ? Uncertain input parameters are modeled as $a, r \sim \mathcal{U}([0.4,0.6]), \lambda \sim \mathcal{U}([0.04,0.06])$.
Scheme : 2-stemps Adams-Moulton, sample size equals 2^{13}.
Sensitivity measures based on variance : $S_{a}=0.0188, S_{\lambda}=0.7299$, $S_{r}=0.2488, S_{a}+S_{\lambda}+S_{r}=0.988$.

Figure: Morris with $p=50, \Delta=25 / 49$.

Jupyter
 see
 Jupyter notebook of Part I on local or global OAT sensitivities

Sensitivity measures, definition, estimation

I- Measures based on linear regressions
II- Functional variance analysis
III- Sobol indices inference

- Monte Carlo techniques,
- Spectral techniques

IV- Distributional indices
V- Further topics

I- Measures based on linear regressions

$$
Y=\mathcal{M}\left(X_{1}, \ldots, X_{d}\right)
$$

- Linear correlation

$$
\rho_{i}=\rho\left(X_{i}, Y\right)=\frac{\operatorname{Cov}\left(X_{i}, Y\right)}{\sqrt{\operatorname{Var}\left(X_{i}\right)} \sqrt{\operatorname{Var}(Y)}}
$$

- Partial correlation

$$
\operatorname{PCC}_{i}=P C C\left(X_{i}, Y\right)=\rho\left(Y-\widehat{Y}^{-(i)}, X_{i}-\widehat{X}_{i}^{-(i)}\right)
$$

Remarks
o if $V=\sum_{i-1} \beta_{i} x$, and if inputs are

- if inputs are correlated, PCCs are more suitable.

I- Measures based on linear regressions

$$
Y=\mathcal{M}\left(X_{1}, \ldots, X_{d}\right)
$$

- Linear correlation

$$
\rho_{i}=\rho\left(X_{i}, Y\right)=\frac{\operatorname{Cov}\left(X_{i}, Y\right)}{\sqrt{\operatorname{Var}\left(X_{i}\right)} \sqrt{\operatorname{Var}(Y)}}
$$

- Partial correlation

$$
P^{-1}=P C C\left(X_{i}, Y\right)=\rho\left(Y-\widehat{Y}^{-(i)}, X_{i}-\widehat{X}_{i}^{-(i)}\right)
$$

Remarks:

- if $Y=\sum_{i=1}^{d} \beta_{i} X_{i}$, and if inputs are independent , $\sum_{i=1}^{d} \rho^{2}\left(X_{i}, Y\right)=1$;
- if inputs are correlated, PCCs are more suitable.

I- Measures based on linear regressions

$$
Y=\mathcal{M}\left(X_{1}, \ldots, X_{d}\right)
$$

- Linear correlation

$$
\rho_{i}=\rho\left(X_{i}, Y\right)=\frac{\operatorname{Cov}\left(X_{i}, Y\right)}{\sqrt{\operatorname{Var}\left(X_{i}\right)} \sqrt{\operatorname{Var}(Y)}}
$$

- Partial correlation

$$
\operatorname{PCC}_{i}=P C C\left(X_{i}, Y\right)=\rho\left(Y-\widehat{Y}^{-(i)}, X_{i}-\widehat{X}_{i}^{-(i)}\right)
$$

Remarks:

- if $Y=\sum_{i=1}^{d} \beta_{i} X_{i}$, and if inputs are independent , $\sum_{i=1}^{d} \rho^{2}\left(X_{i}, Y\right)=1$;
- if inputs are correlated , PCCs are more suitable.

I- Measures based on linear regressions

Assessment of linear model?
Toy example : $Y=2 X_{1}+3 X_{2}^{2}+5, X_{i} \sim \mathcal{U}([0,1]), i=1,2, X_{1} \Perp X_{2}$.

We can approximate this model by a linear model :
$Y=\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{0}+\varepsilon, \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
Learning sample : $y_{k}=\mathcal{M}\left(x_{1, k}, \ldots, x_{d, k}\right), k=1, \ldots, 100$
$\Rightarrow \hat{y}=\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}+\hat{\beta}_{0}=2.06 x 1+3.15 \times 2+4.34$.
Which measure to assess the fit of this model?

I- Measures based on linear regressions
\star Coefficient R^{2}

$$
R^{2}=\frac{S C E}{S C T}=\frac{\sum_{k=1}^{m}\left(\hat{y}_{k}-\bar{y}\right)^{2}}{\sum_{k=1}^{m}\left(y_{k}-\bar{y}\right)^{2}},
$$

$\widehat{y}_{k}=\sum_{i=1}^{d} \hat{\beta}_{i} X_{i, k}, \bar{y}=\frac{1}{m} \sum_{k=1}^{m} y_{k}$.

* Prediction error, e.g. cross-validation

I- Measures based on linear regressions
\star Coefficient R^{2}

$$
R^{2}=\frac{S C E}{S C T}=\frac{\sum_{k=1}^{m}\left(\hat{y}_{k}-\bar{y}\right)^{2}}{\sum_{k=1}^{m}\left(y_{k}-\bar{y}\right)^{2}},
$$

$\widehat{y}_{k}=\sum_{i=1}^{d} \hat{\beta}_{i} X_{i, k}, \bar{y}=\frac{1}{m} \sum_{k=1}^{m} y_{k}$.

* Prediction error, e.g. cross-validation :

$$
\frac{1}{m} \frac{\sum_{k=1}^{m}\left(\hat{y}_{k}^{-(k)}-y_{k}\right)^{2}}{\frac{1}{m} \sum_{k=1}^{m}\left(y_{k}-\bar{y}\right)^{2}}
$$

$\widehat{y}_{k}-(k)=\sum_{i=1}^{d} \widehat{\beta}_{i}^{-(k)} x_{i, k}, \widehat{\beta}_{i}^{-(k)}$ inferred from

$$
\left(y_{j}, \mathbf{x}_{j}\right), j=1, \ldots, k-1, k+1, \ldots, m
$$

I- Measures based on linear regressions

If the relationship input/output is no more linear but simply monotonic, we work with ranks.
$y_{k}, x_{i, k}, k=1, \ldots, m, i=1, \ldots, d$
$r_{i, k}$ rank of $x_{i, k}$ in $\left(x_{i, 1}, \ldots, x_{i, m}\right), r_{k}$ rank of y_{k} in $\left(y_{1}, \ldots, y_{m}\right)$

- $\rho_{i}^{S}=\frac{\sum_{k=1}^{m}\left(r_{i, k}-\bar{r}_{i}\right)\left(r_{k}-\bar{r}\right)}{\sqrt{\sum_{k=1}^{m}\left(r_{i, k}-\bar{r}_{i}\right)^{2}} \sqrt{\sum_{k=1}^{m}\left(r_{k}-\bar{r}\right)^{2}}}$
- idem for pcc_{i}

II- Functional variance analysis

ANOVA basics

Y quantity of interest, X_{1} (resp. X_{2}) qualitative factor with / (resp. J) levels.

$$
\underline{\text { model : }} Y_{i j}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i, j}+\varepsilon_{i j}, \quad \varepsilon_{i j} \text { i.i.d. } \mathcal{N}\left(0, \sigma^{2}\right) .
$$

Identifiability constraints : $\sum_{i=1}^{l} \alpha_{i}=0, \sum_{j=1}^{J} \beta_{j}=0, \sum_{i=1}^{l} \gamma_{i j}=0$,
$\sum_{j=1}^{J} \gamma_{i j}=0$.
Inference:
Complete and balanced design with $r>1$ replica $\rightarrow y_{i j k}, k=1, \ldots, r$

$$
\hat{\mu}=\bar{y}, \quad \hat{\alpha}_{i}=\bar{y}_{i . .}-\bar{y}, \quad \hat{\beta}_{j}=\bar{y}_{. j .}-\bar{y}, \quad \hat{\gamma}_{i j}=\bar{y}_{i j .}-\bar{y}_{i . .}-\bar{y}_{. j .}+\bar{y},
$$

with usual notation $\quad \bar{y}=\frac{1}{1 J r} \sum_{i=1}^{l} \sum_{j=1}^{J} \sum_{k=1}^{r} y_{i j k}$,

$$
\bar{y}_{i . .}=\frac{1}{J r} \sum_{j=1}^{J} \sum_{k=1}^{r} y_{i j k}, \quad \bar{y}_{. j}=\frac{1}{I r} \sum_{i=1}^{l} \sum_{k=1}^{r} y_{i j k}, \quad \bar{y}_{i j .}=\frac{1}{r} \sum_{k=1}^{r} y_{i j k} .
$$

II- Functional variance analysis
In the previous model, we define :

- the forecasts $\hat{y}_{i j k}=\bar{y}_{i j}$,
- the residuals $\hat{\varepsilon}_{i j k}=y_{i j k}-\hat{y}_{i j k}=y_{i j k}-\bar{y}_{i j}$.

II- Functional variance analysis
In the previous model, we define :

- the forecasts $\hat{y}_{i j k}=\bar{y}_{i j \text {. }}$,
- the residuals $\hat{\varepsilon}_{i j k}=y_{i j k}-\hat{y}_{i j k}=y_{i j k}-\bar{y}_{i j}$.

Variance decomposition :
$\begin{array}{lll}\text { SCT } & =\text { SCM } & + \text { SCR } \\ \text { total variance } & =\text { variance explained by the model } & + \text { residual variance }\end{array}$

$$
\begin{gathered}
S C M=S C X_{1}+S C X_{2}+S C X_{1} X_{2} \quad \text { with } \\
S C X_{1}=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{r} \hat{\alpha}_{i}^{2}, \quad S C X_{2}=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{r} \hat{\beta}_{j}^{2}, \\
S C X_{1} X_{2}=\sum_{i=1}^{J} \sum_{j=1}^{J} \sum_{k=1}^{r} \hat{\gamma}_{i j}^{2} \\
S C R=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{r} \hat{\varepsilon}_{i j k}^{2} .
\end{gathered}
$$

Hypothesis testing: many possible tests
ex. : H_{0} : additive model versus H_{1} : complete model
Test statistic :

$$
T=\frac{S C X_{1} X_{2} /(I J-I-J+1)}{S C R /(I J r-I J)} \underset{H_{0}}{\sim} F(I J-I-J+1, I J r-I J) .
$$

ANOVA assumptions:

- the factors only impact the mean of the quantitative variable Y, but not its variance;
- All other variations are Gaussian and independent.

II- Functional variance analysis

Functional framework: (Antoniadis, 1984)

$$
Y(s, t)=\mathcal{M}(s, t)+\varepsilon(s, t), \quad(s, t) \in S \times T
$$

with

- $\varepsilon(s, t)$ zero-mean Gaussian process with covariance $K(s, t)$,
- S and T two metric compact spaces

More general setup : (Hoeffding, 1948; Sobol', 1993)

In the following, we assume

Functional framework: (Antoniadis, 1984)

$$
Y(s, t)=\mathcal{M}(s, t)+\varepsilon(s, t), \quad(s, t) \in S \times T
$$

with

- $\varepsilon(s, t)$ zero-mean Gaussian process with covariance $K(s, t)$,
- S and T two metric compact spaces

More general setup : (Hoeffding, 1948; Sobol', 1993)

$$
Y=\mathcal{M}\left(X_{1}, \ldots, X_{d}\right),\left(X_{1}, \ldots, X_{d}\right) \sim P_{X_{1}, \ldots, X_{d}}
$$

Functional framework: (Antoniadis, 1984)

$$
Y(s, t)=\mathcal{M}(s, t)+\varepsilon(s, t), \quad(s, t) \in S \times T
$$

with

- $\varepsilon(s, t)$ zero-mean Gaussian process with covariance $K(s, t)$,
- S and T two metric compact spaces

More general setup : (Hoeffding, 1948; Sobol', 1993)

$$
Y=\mathcal{M}\left(X_{1}, \ldots, X_{d}\right),\left(X_{1}, \ldots, X_{d}\right) \sim P_{X_{1}, \ldots, X_{d}} .
$$

In the following, we assume :
i) the X_{i} are independent ;
ii) $\forall i=1, \ldots, d, X_{i} \sim \mathcal{U}([0,1])$.

In the following, we assume :
i) the X_{i} are independent ;
ii) $\forall i=1, \ldots, d, X_{i} \sim \mathcal{U}([0,1])$.

Assumption ii) is not restrictif : with the inverse technique, $Y=\mathcal{M}\left(X_{1}, \ldots, X_{d}\right)$ can be written as

$$
Y=\mathcal{M}\left(F_{X_{1}}^{-1}\left(U_{1}\right), \ldots, F_{X_{d}}^{-1}\left(U_{d}\right)\right)=\widetilde{\mathcal{M}}\left(U_{1}, \ldots, U_{d}\right)
$$

with $U_{i}, i=1, \ldots d$ independent and for all $i, U_{i} \sim \mathcal{U}([0,1]), F_{X_{i}}^{-1}$ inverse of the cumulative distribution function of X_{i}.

The complex case of correlated inputs will be mentioned at the end of this lecture and in the lecture on Shapley effects.

In the following, we assume :
i) the X_{i} are independent ;
ii) $\forall i=1, \ldots, d, X_{i} \sim \mathcal{U}([0,1])$.

Assumption ii) is not restrictif : with the inverse technique, $Y=\mathcal{M}\left(X_{1}, \ldots, X_{d}\right)$ can be written as

$$
Y=\mathcal{M}\left(F_{X_{1}}^{-1}\left(U_{1}\right), \ldots, F_{X_{d}}^{-1}\left(U_{d}\right)\right)=\widetilde{\mathcal{M}}\left(U_{1}, \ldots, U_{d}\right)
$$

with $U_{i}, i=1, \ldots d$ independent and for all $i, U_{i} \sim \mathcal{U}([0,1]), F_{X_{i}}^{-1}$ inverse of the cumulative distribution function of X_{i}.

The complex case of correlated inputs will be mentioned at the end of this lecture and in the lecture on Shapley effects.

II- Functional variance analysis

Towards Sobol sensitivity indices
Is the output Y more or less variable when input are fixed?
$\operatorname{Var}\left(Y \mid X_{i}=x_{i}\right)$, how to choose x_{i} ?
the smaller this quantity, (i.e. fixing X_{i}), the smaller is the variance of Y when fixing the i th input: variable X_{i} has a strong impact

II- Functional variance analysis
Towards Sobol sensitivity indices
Is the output Y more or less variable when input are fixed?
$\operatorname{Var}\left(Y \mid X_{i}=x_{i}\right)$, how to choose $x_{i} ? \Rightarrow E\left[V\left(Y \mid X_{i}\right)\right]$
the smaller this quantity, (i.e. fixing X_{i}), the smaller is the variance of Y when fixing the i th input: variable X_{i} has a strong impact.

Towards Sobol sensitivity indices
Is the output Y more or less variable when input are fixed?
$\operatorname{Var}\left(Y \mid X_{i}=x_{i}\right)$, how to choose $x_{i} ? \Rightarrow E\left[V\left(Y \mid X_{i}\right)\right]$
the smaller this quantity, (i.e. fixing X_{i}), the smaller is the variance of Y when fixing the i th input: variable X_{i} has a strong impact.

Towards Sobol sensitivity indices
Is the output Y more or less variable when input are fixed?
$\operatorname{Var}\left(Y \mid X_{i}=x_{i}\right)$, how to choose $x_{i} ? \Rightarrow E\left[V\left(Y \mid X_{i}\right)\right]$
the smaller this quantity, (i.e. fixing X_{i}), the smaller is the variance of Y when fixing the i th input: variable X_{i} has a strong impact.

Theorem (Total variance)

$\operatorname{Var}(Y)=\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}\right)\right]+\mathbb{E}\left[\operatorname{Var}\left(Y \mid X_{i}\right)\right]$.

Towards Sobol sensitivity indices
Is the output Y more or less variable when input are fixed?
$\operatorname{Var}\left(Y \mid X_{i}=x_{i}\right)$, how to choose $x_{i} ? \Rightarrow E\left[V\left(Y \mid X_{i}\right)\right]$
the smaller this quantity, (i.e. fixing X_{i}), the smaller is the variance of Y when fixing the i th input: variable X_{i} has a strong impact.

Theorem (Total variance)

$\operatorname{Var}(Y)=\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}\right)\right]+\mathbb{E}\left[\operatorname{Var}\left(Y \mid X_{i}\right)\right]$.

Definition (First order Sobol' Index)

$i=1, \ldots, d$

$$
0 \leq S_{i}=\frac{V\left[E\left(Y \mid X_{i}\right)\right]}{\operatorname{Var}(Y)} \leq 1
$$

II- Functional variance analysis

Towards Sobol sensitivity indices
Is the output Y more or less variable when input are fixed?
$\operatorname{Var}\left(Y \mid X_{i}=x_{i}\right)$, how to choose $x_{i} ? \Rightarrow E\left[V\left(Y \mid X_{i}\right)\right]$
the smaller this quantity, (i.e. fixing X_{i}), the smaller is the variance of Y when fixing the i th input: variable X_{i} has a strong impact.

Theorem (Total variance)

$\operatorname{Var}(Y)=\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}\right)\right]+\mathbb{E}\left[\operatorname{Var}\left(Y \mid X_{i}\right)\right]$.

Definition (First order Sobol' Index)

$i=1, \ldots, d$

$$
0 \leq S_{i}=\frac{V\left[E\left(Y \mid X_{i}\right)\right]}{\operatorname{Var}(Y)} \leq 1
$$

ex. : linear output $Y=\sum_{i=1}^{d} \beta_{i} X_{i}$, we get $S_{i}=\frac{\beta_{i}^{2} \operatorname{Var}\left(X_{i}\right)}{\operatorname{Var}(Y)}=\rho_{i}^{2}$.

II- Functional variance analysis

Toy case:

$$
Y=X_{1}^{2}+X_{2} \quad X_{i} \sim \mathcal{U}([0,1]) \quad X_{1} \Perp X_{2}
$$

$\mathbb{E}\left(Y \mid X_{1}\right)=X_{1}^{2}+\mathbb{E}\left(X_{2}\right) \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{1}\right)\right]=\operatorname{Var}\left(X_{1}^{2}\right)=\frac{4}{45}$
$\mathbb{E}\left(Y \mid X_{2}\right)=\mathbb{E}\left(X_{1}^{2}\right)+X_{2} \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{2}\right)\right]=\operatorname{Var}\left(X_{2}\right)=\frac{1}{12}$

II- Functional variance analysis

Toy case:

$$
Y=X_{1}^{2}+X_{2} \quad X_{i} \sim \mathcal{U}([0,1]) \quad X_{1} \Perp X_{2}
$$

$$
\mathbb{E}\left(Y \mid X_{1}\right)=X_{1}^{2}+\mathbb{E}\left(X_{2}\right) \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{1}\right)\right]=\operatorname{Var}\left(X_{1}^{2}\right)=\frac{4}{45}
$$

II- Functional variance analysis

Toy case:

$$
Y=X_{1}^{2}+X_{2} \quad X_{i} \sim \mathcal{U}([0,1]) \quad X_{1} \Perp X_{2}
$$

$\mathbb{E}\left(Y \mid X_{1}\right)=X_{1}^{2}+\mathbb{E}\left(X_{2}\right) \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{1}\right)\right]=\operatorname{Var}\left(X_{1}^{2}\right)=\frac{4}{45}$
$\mathbb{E}\left(Y \mid X_{2}\right)=\mathbb{E}\left(X_{1}^{2}\right)+X_{2} \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{2}\right)\right]=\operatorname{Var}\left(X_{2}\right)=\frac{1}{12}$

II- Functional variance analysis

Toy case:

$$
Y=X_{1}^{2}+X_{2} \quad X_{i} \sim \mathcal{U}([0,1]) \quad X_{1} \Perp X_{2}
$$

$\mathbb{E}\left(Y \mid X_{1}\right)=X_{1}^{2}+\mathbb{E}\left(X_{2}\right) \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{1}\right)\right]=\operatorname{Var}\left(X_{1}^{2}\right)=\frac{4}{45}$
$\mathbb{E}\left(Y \mid X_{2}\right)=\mathbb{E}\left(X_{1}^{2}\right)+X_{2} \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{2}\right)\right]=\operatorname{Var}\left(X_{2}\right)=\frac{1}{12}$
$\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}^{2}\right)+\operatorname{Var}\left(X_{2}\right)=\frac{31}{180}$

II- Functional variance analysis

Toy case:

$$
Y=X_{1}^{2}+X_{2} \quad X_{i} \sim \mathcal{U}([0,1]) \quad X_{1} \Perp X_{2}
$$

$\mathbb{E}\left(Y \mid X_{1}\right)=X_{1}^{2}+\mathbb{E}\left(X_{2}\right) \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{1}\right)\right]=\operatorname{Var}\left(X_{1}^{2}\right)=\frac{4}{45}$
$\mathbb{E}\left(Y \mid X_{2}\right)=\mathbb{E}\left(X_{1}^{2}\right)+X_{2} \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{2}\right)\right]=\operatorname{Var}\left(X_{2}\right)=\frac{1}{12}$
$\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}^{2}\right)+\operatorname{Var}\left(X_{2}\right)=\frac{31}{180}$

$$
S_{1}=\frac{16}{31} \approx 0,516, S_{2}=\frac{15}{31} \approx 0,484
$$

II- Functional variance analysis

Toy case:

$$
Y=X_{1}^{2}+X_{2} \quad X_{i} \sim \mathcal{U}([0,1]) \quad X_{1} \Perp X_{2}
$$

$\mathbb{E}\left(Y \mid X_{1}\right)=X_{1}^{2}+\mathbb{E}\left(X_{2}\right) \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{1}\right)\right]=\operatorname{Var}\left(X_{1}^{2}\right)=\frac{4}{45}$
$\mathbb{E}\left(Y \mid X_{2}\right)=\mathbb{E}\left(X_{1}^{2}\right)+X_{2} \Rightarrow \operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{2}\right)\right]=\operatorname{Var}\left(X_{2}\right)=\frac{1}{12}$
$\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}^{2}\right)+\operatorname{Var}\left(X_{2}\right)=\frac{31}{180}$

$$
S_{1}=\frac{16}{31} \approx 0,516, S_{2}=\frac{15}{31} \approx 0,484
$$

$S_{1}+S_{2}=1$, additive model

II- Functional variance analysis

More generally,

Theorem (Hoeffding decomposition)

$\mathcal{M}:[0,1]^{d} \rightarrow \mathbb{R}, \int_{[0,1]^{d}} \mathcal{M}^{2}(x) d x<\infty$
\mathcal{M} has an unique decomposition
$\mathcal{M}_{0}+\sum_{i=1}^{d} \mathcal{M}_{i}\left(x_{i}\right)+\sum_{1 \leq i<j \leq d} \mathcal{M}_{i, j}\left(x_{i}, x_{j}\right)+\ldots+\mathcal{M}_{1, \ldots, d}\left(x_{1}, \ldots, x_{d}\right)$
under the constraint

- M_{0} constant,
- $\forall 1 \leq s \leq d, \forall 1 \leq i_{1}<\ldots<i_{s} \leq d, \forall 1 \leq p \leq s$

$$
\int_{0}^{1} \mathcal{M}_{i_{1}, \ldots, i_{s}}\left(x_{i_{1}}, \ldots, x_{i_{s}}\right) d x_{i_{p}}=0
$$

Consequences: $\mathcal{M}_{0}=\int_{[0,1]^{d}} \mathcal{M}(x) d x$ and the terms of the decomposition are orthogonal.

The computation of each term in the decomposition writes:

- $\mathcal{M}_{i}\left(x_{i}\right)=\int_{[0,1]^{d-1}} \mathcal{M}(x) \Pi_{p \neq i} d x_{p}-\mathcal{M}_{0}$

Consequences : $\mathcal{M}_{0}=\int_{[0,1]^{d}} \mathcal{M}(x) d x$ and the terms of the decomposition are orthogonal.

The computation of each term in the decomposition writes:

- $\mathcal{M}_{i}\left(x_{i}\right)=\int_{[0,1]^{d-1}} \mathcal{M}(x) \Pi_{p \neq i} d x_{p}-\mathcal{M}_{0}$
- $i \neq j$

$$
\mathcal{M}_{i, j}\left(x_{i}, x_{j}\right)=\int_{[0,1]^{d-2}} \mathcal{M}(x) \Pi_{p \neq i, j} d x_{p}-\mathcal{M}_{0}-\mathcal{M}_{i}\left(x_{i}\right)-\mathcal{M}_{j}\left(x_{j}\right)
$$

Consequences: $\mathcal{M}_{0}=\int_{[0,1]^{d}} \mathcal{M}(x) d x$ and the terms of the decomposition are orthogonal.

The computation of each term in the decomposition writes:

- $\mathcal{M}_{i}\left(x_{i}\right)=\int_{[0,1]^{d-1}} \mathcal{M}(x) \Pi_{p \neq i} d x_{p}-\mathcal{M}_{0}$
- $i \neq j$
$\mathcal{M}_{i, j}\left(x_{i}, x_{j}\right)=\int_{[0,1]^{d-2}} \mathcal{M}(x) \Pi_{p \neq i, j} d x_{p}-\mathcal{M}_{0}-\mathcal{M}_{i}\left(x_{i}\right)-\mathcal{M}_{j}\left(x_{j}\right)$
- ...
computation of multiple integrals.

Consequences : $\mathcal{M}_{0}=\int_{[0,1]^{d}} \mathcal{M}(x) d x$ and the terms of the decomposition are orthogonal.

The computation of each term in the decomposition writes:

- $\mathcal{M}_{i}\left(x_{i}\right)=\int_{[0,1]^{d-1}} \mathcal{M}(x) \Pi_{p \neq i} d x_{p}-\mathcal{M}_{0}$
- $i \neq j$

$$
\mathcal{M}_{i, j}\left(x_{i}, x_{j}\right)=\int_{[0,1]^{d-2}} \mathcal{M}(x) \Pi_{p \neq i, j} d x_{p}-\mathcal{M}_{0}-\mathcal{M}_{i}\left(x_{i}\right)-\mathcal{M}_{j}\left(x_{j}\right)
$$

- ...
\Rightarrow computation of multiple integrals.

II- Functional variance analysis

Variance decomposition : X_{1}, \ldots, X_{d} i.i.d. $\sim \mathcal{U}([0,1])$

$$
Y=\mathcal{M}(X)=\mathcal{M}_{0}+\sum_{i=1}^{d} \mathcal{M}_{i}\left(X_{i}\right)+\ldots+\mathcal{M}_{1, \ldots, d}\left(X_{1}, \ldots, X_{d}\right)
$$

- $\mathcal{M}_{0}=\mathbb{E}(Y)$,
- $\mathcal{M}_{i}\left(X_{i}\right)=\mathbb{E}\left(Y \mid X_{i}\right)-\mathbb{E}(Y)$,
- $i \neq j \mathcal{M}_{i, j}\left(X_{i}, X_{j}\right)=\mathbb{E}\left(Y \mid X_{i}, X_{j}\right)-\mathbb{E}\left(Y \mid X_{i}\right)-\mathbb{E}\left(Y \mid X_{j}\right)+\mathbb{E}(Y)$,
- ...

II- Functional variance analysis

Variance decomposition : X_{1}, \ldots, X_{d} i.i.d. $\sim \mathcal{U}([0,1])$

$$
Y=\mathcal{M}(X)=\mathcal{M}_{0}+\sum_{i=1}^{d} \mathcal{M}_{i}\left(X_{i}\right)+\ldots+\mathcal{M}_{1, \ldots, d}\left(X_{1}, \ldots, X_{d}\right)
$$

- $\mathcal{M}_{0}=\mathbb{E}(Y)$,
- $\mathcal{M}_{i}\left(X_{i}\right)=\mathbb{E}\left(Y \mid X_{i}\right)-\mathbb{E}(Y)$,
- $i \neq j \mathcal{M}_{i, j}\left(X_{i}, X_{j}\right)=\mathbb{E}\left(Y \mid X_{i}, X_{j}\right)-\mathbb{E}\left(Y \mid X_{i}\right)-\mathbb{E}\left(Y \mid X_{j}\right)+\mathbb{E}(Y)$,
- ...
$\operatorname{Var}(Y)=\sum_{i=1}^{d} \operatorname{Var}\left(\mathcal{M}_{i}\left(X_{i}\right)\right)+\ldots+\operatorname{Var}\left(\mathcal{M}_{1, \ldots, d}\left(X_{1}, \ldots, X_{d}\right)\right)$

II- Functional variance analysis

Definition (Sobol' indices)

$$
\begin{aligned}
& \forall i=1, \ldots, d S_{i}=\frac{\operatorname{Var}\left(\mathcal{M}_{i}\left(X_{i}\right)\right)}{\operatorname{Var}(Y)}=\frac{\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}\right)\right]}{\operatorname{Var}(Y)} \\
& \forall i \neq j S_{i, j}=\frac{\operatorname{Var}\left(\mathcal{M}_{i, j}\left(X_{i}, X_{j}\right)\right)}{\operatorname{Var}(Y)}=\frac{\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}, X_{j}\right)\right]-\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}\right)\right]-\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{j}\right)\right]}{\operatorname{Var}(Y)}
\end{aligned}
$$

$$
1=\sum_{i=1}^{d} S_{i}+\sum_{i \neq j} S_{i, j}+\ldots+S_{1, \ldots, d}
$$

Definition (Total indices)

II- Functional variance analysis

Definition (Sobol' indices)

$$
\begin{aligned}
& \forall i=1, \ldots, d S_{i}=\frac{\operatorname{Var}\left(\mathcal{M}_{i}\left(X_{i}\right)\right)}{\operatorname{Var}(Y)}=\frac{\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}\right)\right]}{\operatorname{Var}(Y)} \\
& \forall i \neq j S_{i, j}=\frac{\operatorname{Var}\left(\mathcal{M}_{i, j}\left(X_{i}, X_{j}\right)\right)}{\operatorname{Var}(Y)}=\frac{\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}, X_{j}\right)\right]-\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{i}\right)\right]-\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{j}\right)\right]}{\operatorname{Var}(Y)}
\end{aligned}
$$

$$
1=\sum_{i=1}^{d} S_{i}+\sum_{i \neq j} S_{i, j}+\ldots+S_{1, \ldots, d}
$$

Definition (Total indices)

$$
i=1, \ldots, d \quad S_{T_{i}}=\sum_{\mathbf{u} \subset\{1, \ldots, d\}, \mathbf{u} \neq \emptyset, i \in \mathbf{u}} S_{\mathbf{u}} .
$$

II- Functional variance analysis

Sobol' indices :

Definition (Total indices)

$$
i=1, \ldots, d \quad S_{T_{i}}=\sum_{\mathbf{u} \subset\{1, \ldots, d\}, \mathbf{u} \neq \emptyset, i \in \mathbf{u}} S_{\mathbf{u}}
$$

$$
X_{(-i)}=\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{d}\right)
$$

Using the theorem of the total variance,

$$
S_{T_{i}}=\frac{\mathbb{E}\left[\operatorname{Var}\left(Y \mid X_{(-i)}\right)\right]}{\operatorname{Var}(Y)}=1-\frac{\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{(-i)}\right)\right]}{\operatorname{Var}(Y)} .
$$

II- Functional variance analysis

Indices with factor:

Indices with groupe of factors:

Fact : Analytical expressions of Sobol' indices, with integrals in high dimensional spaces, are rarely available.

Two inferential approaches

1) Monte-Carlo tyne (hynothesis L^{2} with the model); 2) spectral techniques (additional hypotheses of regularity) If the model is too costly to assess, we fit a metamodel before applying these techniques.
ex.: parametric and non-parametric regressions, Gaussian
metamodel

Fact : Analytical expressions of Sobol' indices, with integrals in high dimensional spaces, are rarely available.

Two inferential approaches

1) Monte-Carlo type (hypothesis \mathbb{L}^{2} with the model);
2) spectral techniques (additional hypotheses of regularity).

If the model is too costly to assess, we fit a metamodel before
applying these techniques.
ex : narametric and non-narametric regressions, Gaussian
metamodel

Fact : Analytical expressions of Sobol' indices, with integrals in high dimensional spaces, are rarely available.

Two inferential approaches

1) Monte-Carlo type (hypothesis \mathbb{L}^{2} with the model);
2) spectral techniques (additional hypotheses of regularity).

If the model is too costly to assess, we fit a metamodel before applying these techniques.
ex.: parametric and non-parametric regressions, Gaussian metamodel...

III- Sobol indices inference

Monte-Carlo type Approaches : (Sobol' 93, Saltelli 02, Mauntz, ...) Idea: $X_{(-i)}^{\prime}$ indep. copy of $X_{(-i)}, Y=\mathcal{M}\left(X_{i}, X_{(-i)}\right), Y^{i}=\mathcal{M}\left(X_{i}, X_{(-i)}^{\prime}\right)$
We have $S_{i}=\frac{\operatorname{Cov}\left(Y, Y^{\prime}\right)}{\operatorname{Var}(Y)}$, the idea is based on empirical formulas.
Two independent samples A and B (Monte-Carlo, LHS)

$$
A=\left(\begin{array}{ccc}
x_{1,1}^{A} & \ldots & x_{d, 1}^{A} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
x_{1, n}^{A} & \ldots & x_{d, n}^{A}
\end{array}\right) \quad B=\left(\begin{array}{ccc}
x_{1,1}^{B} & \ldots & x_{d, 1}^{B} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
x_{1, n}^{B} & \ldots & x_{d, n}^{B}
\end{array}\right)
$$

From A and of B, we create d sampling matrices $C_{i}, i=1, \ldots, d$.

$$
C_{i}=\left(\begin{array}{ccccc}
x_{1,1}^{A} & \ldots & x_{i, 1}^{B} & \ldots & x_{d, 1}^{A} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
x_{1, n}^{A} & \ldots & x_{i, n}^{B} & \ldots & x_{d, n}^{A}
\end{array}\right)
$$

III- Sobol indices inference

We compute $(1+d) \times n$ the model \mathcal{M} :

$$
y^{B}=\left(\begin{array}{c}
y_{1}^{B} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}^{B}
\end{array}\right) \quad \text { and } \quad \forall 1 \leq i \leq d \quad y^{C_{i}}=\left(\begin{array}{c}
y_{1}^{C_{i}} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}^{C_{i}}
\end{array}\right)
$$

III- Sobol' indices inference

sobolEff () (Janon et al., 2012 \& 2013)

- $\hat{V}_{i}=\frac{1}{n} \sum_{k=1}^{n} y_{k}^{B} y_{k}^{C_{i}}-\left(\frac{1}{n} \sum_{k=1}^{n} \frac{y_{k}^{B}+y_{k}^{c_{i}}}{2}\right)^{2}$ numerator of the first-order index
- $\hat{V}=\frac{1}{n} \sum_{k=1}^{n} \frac{\left(y_{k}^{B}\right)^{2}+\left(y_{k}^{c_{i}}\right)^{2}}{2}-\left(\frac{1}{n} \sum_{k=1}^{n} \frac{y_{k}^{B}+y_{k}^{c_{i}}}{2}\right)^{2}$ denominator
asymptotic or bootstrap confidence intervals (see practical session) asymptotic efficiency of the estimator

Remark :

We can also replace the MC or LHS samplings with QMC (hyp. of regular variations).

III- Sobol indices inference

The g-function of Sobol' : $f(x)=f_{1}\left(x_{1}\right) * f_{2}\left(x_{2}\right)$ with $f_{i}\left(x_{i}\right)=\frac{\left|4 x_{i}-2\right|+a_{i}}{1+a_{i}}$, $a_{1}=9, a_{2}=1$.
$S_{1} \approx 0.038, S_{2} \approx 0.958$.
$n=1000, b=100, \operatorname{IC}(0.95)$ sobolEff (left), sobol2007 (right)

Replicate latin hypercubes: (Tissot et al.)

Definition (Replicated Latin Hypercube Sampling)

$$
k=1, \ldots, n
$$

$$
\mathbf{x}_{k}=\left(\frac{\pi_{1}(k)-U_{1, \pi_{1}(k)}}{n}, \ldots, \frac{\pi_{d}(k)-U_{d, \pi_{d}(k)}}{n}\right)
$$

$$
\tilde{\mathbf{x}}_{k}=\left(\frac{\tilde{\pi}_{1}(k)-U_{1, \tilde{\pi}_{1}(k)}}{n}, \ldots, \frac{\tilde{\pi}_{d}(k)-U_{d, \tilde{\pi}_{d}(k)}}{n}\right)
$$

We have two matrices B and \widetilde{B} at our disposal

III- Sobol' indices inference

$$
B=\left(\begin{array}{ccc}
x_{1,1} & \ldots & x_{d, 1} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
x_{1, n} & \ldots & x_{d, n}
\end{array}\right) \quad \widetilde{B}=\left(\begin{array}{ccc}
\tilde{x}_{1,1} & \ldots & \tilde{x}_{d, 1} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\tilde{x}_{1, n} & \ldots & \tilde{x}_{d, n}
\end{array}\right)
$$

We compute the model $\mathcal{M} 2 n$ times (on the n lines of B and the n lines of B).
permut. of lines
$\left\{\begin{array}{lll}\widetilde{B}=\left(\tilde{x}_{k, l}\right)_{1 \leq k \leq n, 1 \leq 1 \leq d} & \rightarrow & \widetilde{B}_{i}=\left(\tilde{x}_{k, l}^{i}\right)_{1 \leq k \leq n, 1 \leq 1 \leq d} \\ L_{k} & \mapsto & L_{\tilde{\pi}_{i}^{-1} \circ \pi_{i}(k)}, k=1, \ldots, n\end{array}\right.$
Then, $\tilde{x}_{k, i}^{i}=\tilde{x}_{\tilde{\pi}_{i}^{-1} \circ \pi_{i}(k), i}=x_{k, i}, k=1, \ldots, n$.
To estimate S_{i}, we replace C_{i} with \widetilde{B}_{i} (same column number i).

III- Sobol' indices inference

Caption: point $1 \circ$ point 2Δ point $3+$ point $4 \times$ point $5 \diamond$

Design B (left), B and \widetilde{B} (right, black and red)

III- Sobol' indices inference

Design \widetilde{B}_{1} (left), \widetilde{B}_{2} (right)

Possible extension to indices of order two (via orthogonal arrays of strength 2).

III- Sobol' indices inference

Design \widetilde{B}_{1} (left), \widetilde{B}_{2} (right)

Asymptotic confidence intervals with variance smaller than for MC.
Possible extension to indices of order two (via orthogonal arrays of strength 2).

III- Sobol' indices inference

Spectral approaches: (case $d=2$)
$Y=\sum_{\mathbf{k}=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2}} c_{\mathbf{k}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)$
with, for all $i=1,2,\left(\Phi_{i, k}\right)_{k \in \mathbb{Z}}$ is an orthonormal basis of $\mathbb{L}^{2}([0,1])$ and $\Phi_{i, 0} \equiv 1$.

III- Sobol' indices inference

Spectral approaches: (case $d=2$)
$Y=\sum_{\mathbf{k}=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2}} c_{\mathbf{k}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)$
with , for all $i=1,2,\left(\Phi_{i, k}\right)_{k \in \mathbb{Z}}$ is an orthonormal basis of $\mathbb{L}^{2}([0,1])$ and $\Phi_{i, 0} \equiv 1$.
$\mathcal{M}_{0}=c_{0}(\mathcal{M})$,
$\mathcal{M}_{1}\left(X_{1}\right)=\sum_{k_{1} \in \mathbb{Z}^{*}} c_{k_{1}, 0}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right)$,
$\mathcal{M}_{2}\left(X_{2}\right)=\sum_{k_{2} \in \mathbb{Z}^{*}} c_{0, k_{2}}(\mathcal{M}) \Phi_{2, k_{2}}\left(X_{2}\right)$,
$\mathcal{M}_{1,2}\left(X_{1}, X_{2}\right)=\sum_{k_{1} \in \mathbb{Z}^{*}, k_{2} \in \mathbb{Z}^{*}} c_{k_{1}, k_{2}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)$.

III- Sobol' indices inference

Spectral approaches: (case $d=2$)
$Y=\sum_{\mathbf{k}=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2}} c_{\mathbf{k}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)$
with , for all $i=1,2,\left(\Phi_{i, k}\right)_{k \in \mathbb{Z}}$ is an orthonormal basis of $\mathbb{L}^{2}([0,1])$ and $\Phi_{i, 0} \equiv 1$.
$\mathcal{M}_{0}=c_{0}(\mathcal{M})$,
$\mathcal{M}_{1}\left(X_{1}\right)=\sum_{k_{1} \in \mathbb{Z}^{*}} c_{k_{1}, 0}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right)$,
$\mathcal{M}_{2}\left(X_{2}\right)=\sum_{k_{2} \in \mathbb{Z}^{*}} c_{0, k_{2}}(\mathcal{M}) \Phi_{2, k_{2}}\left(X_{2}\right)$,
$\mathcal{M}_{1,2}\left(X_{1}, X_{2}\right)=\sum_{k_{1} \in \mathbb{Z}^{*}, k_{2} \in \mathbb{Z}^{*}} c_{k_{1}, k_{2}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)$.
We have with Parseval identity:

- $\operatorname{Var}\left(\mathcal{M}_{1}\left(X_{1}\right)\right)=\sigma_{1}^{2}=\sum_{k_{1} \in \mathbb{Z}^{*}}\left|c_{k_{1}, 0}(\mathcal{M})\right|^{2}$, (idem for $\left.\sigma_{2}^{2}\right)$,
- $\operatorname{Var}\left(\mathcal{M}_{1,2}\left(X_{1}, X_{2}\right)\right)=\sigma_{1,2}^{2}=\sum_{k_{1} \in \mathbb{Z}^{*}, k_{2} \in \mathbb{Z}^{*}}\left|c_{k_{1}, k_{2}}(\mathcal{M})\right|^{2}$,
- $\operatorname{Var}(Y)=\sigma^{2}=\sum_{\left(k_{1}, k_{2}\right) \in \mathbb{Z} \times \mathbb{Z},\left(k_{1}, k_{2}\right) \neq(0,0)}\left|c_{k_{1}, k_{2}}(\mathcal{M})\right|^{2}$.

III- Sobol' indices inference

Spectral approaches: (case $d=2$)
$Y=\sum_{\mathbf{k}=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2}} c_{\mathbf{k}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)$
with, for all $i=1,2,\left(\Phi_{i, k}\right)_{k \in \mathbb{Z}}$ is an orthonormal basis of $\mathbb{L}^{2}([0,1])$ and $\Phi_{i, 0} \equiv 1$.
$\mathcal{M}_{0}=c_{0}(\mathcal{M})$,
$\mathcal{M}_{1}\left(X_{1}\right)=\sum_{k_{1} \in \mathbb{Z}^{*}} c_{k_{1}, 0}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right)$,
$\mathcal{M}_{2}\left(X_{2}\right)=\sum_{k_{2} \in \mathbb{Z}^{*}} c_{0, k_{2}}(\mathcal{M}) \Phi_{2, k_{2}}\left(X_{2}\right)$,
$\mathcal{M}_{1,2}\left(X_{1}, X_{2}\right)=\sum_{k_{1} \in \mathbb{Z}^{*}, k_{2} \in \mathbb{Z}^{*}} c_{k_{1}, k_{2}}(\mathcal{M}) \Phi_{1, k_{1}}\left(X_{1}\right) \Phi_{2, k_{2}}\left(X_{2}\right)$.
We have with Parseval identity:

- $\operatorname{Var}\left(\mathcal{M}_{1}\left(X_{1}\right)\right)=\sigma_{1}^{2}=\sum_{k_{1} \in \mathbb{Z}^{*}}\left|c_{k_{1}, 0}(\mathcal{M})\right|^{2}$, (idem for $\left.\sigma_{2}^{2}\right)$,
- $\operatorname{Var}\left(\mathcal{M}_{1,2}\left(X_{1}, X_{2}\right)\right)=\sigma_{1,2}^{2}=\sum_{k_{1} \in \mathbb{Z}^{*}, k_{2} \in \mathbb{Z}^{*}}\left|c_{k_{1}, k_{2}}(\mathcal{M})\right|^{2}$,
- $\operatorname{Var}(Y)=\sigma^{2}=\sum_{\left(k_{1}, k_{2}\right) \in \mathbb{Z} \times \mathbb{Z},\left(k_{1}, k_{2}\right) \neq(0,0)}\left|c_{k_{1}, k_{2}}(\mathcal{M})\right|^{2}$.
ex. : orthogonal polynomials, wavelet basis, Fourier basis.

III- Sobol' indices inference

Inference scheme:

If D is an experimental design with $[0,1]^{2}$, we propose the quadrature formula:

$$
\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)=\frac{1}{\operatorname{card} D} \sum_{x=\left(x_{1}, x_{2}\right) \in D} \mathcal{M}(x) e^{-2 i \pi\left(k_{1} x_{1}+k_{2} x_{2}\right)} .
$$

III- Sobol' indices inference

Inference scheme:

If D is an experimental design with $[0,1]^{2}$, we propose the quadrature formula:

$$
\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)=\frac{1}{\operatorname{card} D} \sum_{x=\left(x_{1}, x_{2}\right) \in D} \mathcal{M}(x) e^{-2 i \pi\left(k_{1} x_{1}+k_{2} x_{2}\right)} .
$$

We then infer each part of variance with a truncation:

- $\hat{\sigma}_{1}^{2}\left(\mathcal{M}, K_{1}, D\right)=\sum_{k_{1} \in K_{1}}\left|\hat{c}_{k_{1}, 0}(\mathcal{M}, D)\right|^{2}$, with $K_{1} \subset \mathbb{Z}^{*}$ of finite cardinal, (idem for $\hat{\sigma}_{2}^{2}$),
- $\hat{\sigma}_{1,2}^{2}\left(\mathcal{M}, K_{1,2}, D\right)=\sum_{\left(k_{1}, k_{2}\right) \in K_{1,2}}\left|\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)\right|^{2}$, with $K_{1,2} \subset \mathbb{Z}^{*} \times \mathbb{Z}^{*}$ of finite cardinal.

III- Sobol' indices inference

Inference scheme:

If D is an experimental design with $[0,1]^{2}$, we propose the quadrature formula:

$$
\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)=\frac{1}{\operatorname{card} D} \sum_{\mathrm{x}=\left(x_{1}, x_{2}\right) \in D} \mathcal{M}(x) e^{-2 i \pi\left(k_{1} x_{1}+k_{2} x_{2}\right)} .
$$

We then infer each part of variance with a truncation:

- $\hat{\sigma}_{1}^{2}\left(\mathcal{M}, K_{1}, D\right)=\sum_{k_{1} \in K_{1}}\left|\hat{c}_{k_{1}, 0}(\mathcal{M}, D)\right|^{2}$, with $K_{1} \subset \mathbb{Z}^{*}$ of finite cardinal, (idem for $\hat{\sigma}_{2}^{2}$),
- $\hat{\sigma}_{1,2}^{2}\left(\mathcal{M}, K_{1,2}, D\right)=\sum_{\left(k_{1}, k_{2}\right) \in K_{1,2}}\left|\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)\right|^{2}$, with $K_{1,2} \subset \mathbb{Z}^{*} \times \mathbb{Z}^{*}$ of finite cardinal.

We infer the total variance with $\hat{\sigma}^{2}(\mathcal{M}, D)=\hat{c}_{0,0}\left(\mathcal{M}^{2}, D\right)-\hat{c}_{0,0}(\mathcal{M}, D)^{2}$.

III- Sobol' indices inference

Inference scheme:

If D is an experimental design with $[0,1]^{2}$, we propose the quadrature formula:

$$
\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)=\frac{1}{\operatorname{card} D} \sum_{\mathrm{x}=\left(x_{1}, x_{2}\right) \in D} \mathcal{M}(x) e^{-2 i \pi\left(k_{1} x_{1}+k_{2} x_{2}\right)} .
$$

We then infer each part of variance with a truncation:

- $\hat{\sigma}_{1}^{2}\left(\mathcal{M}, K_{1}, D\right)=\sum_{k_{1} \in K_{1}}\left|\hat{c}_{k_{1}, 0}(\mathcal{M}, D)\right|^{2}$, with $K_{1} \subset \mathbb{Z}^{*}$ of finite cardinal, (idem for $\hat{\sigma}_{2}^{2}$),
- $\hat{\sigma}_{1,2}^{2}\left(\mathcal{M}, K_{1,2}, D\right)=\sum_{\left(k_{1}, k_{2}\right) \in K_{1,2}}\left|\hat{c}_{k_{1}, k_{2}}(\mathcal{M}, D)\right|^{2}$, with $K_{1,2} \subset \mathbb{Z}^{*} \times \mathbb{Z}^{*}$ of finite cardinal.

We infer the total variance with
$\hat{\sigma}^{2}(\mathcal{M}, D)=\hat{c}_{0,0}\left(\mathcal{M}^{2}, D\right)-\hat{c}_{0,0}(\mathcal{M}, D)^{2}$.
The estimators of Sobol' indices can be written as:

$$
\hat{S}_{i}=\frac{\hat{\sigma}_{i}^{2}}{\hat{\sigma}^{2}}, i=1,2, \quad S_{1,2}=\frac{\hat{\sigma}_{1,2}^{2}}{\hat{\sigma}^{2}} .
$$

III- Sobol' indices inference

Classical designs:

(a) grille régulière

(c) grille creuse

(b) sous-groupe fini

(d) tableau orthogonal

III- Sobol' indices inference

The performance of previous estimators is linked to the decreasing speed of Fourier spectrum (regularity) of \mathcal{M}. The techniques FAST and RBD are two particular cases of such approaches (after model regularisation).

FAST: (Cukier et al., 78) Fourier Amplitude Sensitivity Test

- we fix K_{u} an ensemble of a priori non negligible frequencies
- We chose D cyclic group 'desigh ('O") in order to contro' the
quadrature error.

Remarks:

o if * regular, we can obtain a speed of convergence

The performance of previous estimators is linked to the decreasing speed of Fourier spectrum (regularity) of \mathcal{M}. The techniques FAST and RBD are two particular cases of such approaches (after model regularisation).
FAST: (Cukier et al., 78) Fourier Amplitude Sensitivity Test

- we fix K_{u} an ensemble of a priori non negligible frequencies;
- we chose D cyclic group (design (b)) in order to control the quadrature error.

Remarks:

The performance of previous estimators is linked to the decreasing speed of Fourier spectrum (regularity) of \mathcal{M}. The techniques FAST and RBD are two particular cases of such approaches (after model regularisation).
FAST: (Cukier et al., 78) Fourier Amplitude Sensitivity Test

- we fix K_{u} an ensemble of a priori non negligible frequencies;
- we chose D cyclic group (design (b)) in order to control the quadrature error.

Remarks:

- if \mathcal{M} regular, we can obtain a speed of convergence $\gg \sqrt{n}$;
- for the total indices fast99() (no confidence intervals in the function) Saltelli et al., 99.

RBD: (Tarantola et al., 06) Random Balance Designs

- we choose D a orthogonal array of strength 1 (design (d)), randomized by a random permutation $(D(\pi))$);
- K_{u} choice of a priori non negligible frequencies.

Remarks

- these estimators are known to be biased
a wn can corront a part of this hiais (Tissot at al. 2012)
- if the function is not regular enough, the bias remains important

RBD: (Tarantola et al., 06) Random Balance Designs

- we choose D a orthogonal array of strength 1 (design (d)), randomized by a random permutation $(D(\pi))$);
- K_{u} choice of a priori non negligible frequencies.

Remarks:

- these estimators are known to be biased;
- we can correct a part of this biais (Tissot et al., 2012);
- if the function is not regular enough, the bias remains important.

RBD: (Tarantola et al., 06) Random Balance Designs

- we choose D a orthogonal array of strength 1 (design (d)), randomized by a random permutation $(D(\pi))$);
- K_{u} choice of a priori non negligible frequencies.

Remarks:

- these estimators are known to be biased;
- we can correct a part of this biais (Tissot et al., 2012);
- if the function is not regular enough, the bias remains important.

Conclusions about the inference :
The spectral approach is interesting in terms of cost, but it requires more hypotheses in terms of regularity.

The Monte Carlo approach with replicated latin hypercubes is not as costly as the naive Monte Carlo approach.

Conclusions about the inference :
The spectral approach is interesting in terms of cost, but it requires more hypotheses in terms of regularity.

The Monte Carlo approach with replicated latin hypercubes is not as costly as the naive Monte Carlo approach.

III- Sobol' index inference

Conclusions about the inference :
The spectral approach is interesting in terms of cost, but it requires more hypotheses in terms of regularity.

The Monte Carlo approach with replicated latin hypercubes is not as costly as the naive Monte Carlo approach.
see $\stackrel{\text { imerem }}{5}$ Jupyter notebooks of Part I.

IV- Indices based on probability distribution

$\delta_{i}=\frac{1}{2} \mathbb{E}_{X_{i}}\left(S_{i}\left(X_{i}\right)\right)$ with $S_{i}\left(X_{i}\right)=\int\left|f_{Y}(y)-f_{Y \mid X_{i}}(y)\right| d y$, see
Borgonovo et al. (2007)
Remark: extension to $\mathbf{u} \subset\{1, \ldots, d\}$. Recent results on

V- Further topics

we can build metamodels when the initial model is too costly; functional inputs: MC approaches can be applied;

V- Further topics
we can build metamodels when the initial model is too costly; functional inputs: MC approaches can be applied;
aggregated indices (see Lamboni et al, 2011)

V- Further topics
we can build metamodels when the initial model is too costly; functional inputs: MC approaches can be applied;
vectorial output: approaches component by component, or aggregated indices (see Lamboni et al, 2011) ;
functional output: we summarize the output by a vector (projection on an appropriate basis) or we make a movie (temporal output) or a man (snatial nutnut) of indices

V- Further topics

we can build metamodels when the initial model is too costly;
functional inputs: MC approaches can be applied;
vectorial output: approaches component by component, or aggregated indices (see Lamboni et al, 2011) ;

* functional output : we summarize the output by a vector (projection on an appropriate basis) or we make a movie (temporal output) or a map (spatial output) of indices;

V- Further topics

* we can build metamodels when the initial model is too costly;
functional inputs: MC approaches can be applied;
vectorial output: approaches component by component, or aggregated indices (see Lamboni et al, 2011) ;
functional output : we summarize the output by a vector (projection on an appropriate basis) or we make a movie (temporal output) or a map (spatial output) of indices;
very interesting results providing kernel based ANOVA decomposition (see Da Veiga, 2021) ;

V- Further topics

* we can build metamodels when the initial model is too costly;
functional inputs: MC approaches can be applied;
vectorial output: approaches component by component, or aggregated indices (see Lamboni et al, 2011) ;
functional output : we summarize the output by a vector (projection on an appropriate basis) or we make a movie (temporal output) or a map (spatial output) of indices;
very interesting results providing kernel based ANOVA decomposition (see Da Veiga, 2021) ;
* correlated inputs: the decomposition is not unique, it is hard to decouple interactions and correlation effects \Rightarrow we turn to Shapley effects (see Owen, 2014)

To appear in September, Basics and trends in sensitivity analysis Theory and practice in R, S. Da Veiga, F. Gamboa, B. Iooss and C. Prieur, SIAM.

A short bibliography I

[Ant84] A. Antoniadis. Analysis of variance on function spaces. Math. Oper. Forsch. und Statist., series Statistics, 15(1):59-71, 1984.
[Bor07] E. Borgonovo. A new uncertainty importance measure. Reliability Engineering and System Safety, 92(6):771-784, 2007.
[CFS ${ }^{+}$73] R. I. Cukier, C. M. Fortuin, K. E. Shuler, A. G. Petschek, and J. H. Schaibly. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients: Theory. Journal of Chemical Physics, 59:3873-3878, 1973.
[CLS78] R. I. Cukier, H. B. Levine, and K. E. Shuler. Nonlinear sensitivity analysis of multiparameter model systems. Journal of Computational Physics, 26:1-42, 1978.
[CSS75] R. I. Cukier, J. H. Schaibly, and K. E. Shuler. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients: Analysis of the approximations. Journal of Chemical Physics, 63:1140-1149, 1975.
[DV21] Sébastien Da Veiga. Kernel-based anova decomposition and shapley effects-application to global sensitivity analysis. arXiv preprint arXiv:2101.05487, 2021.
[GJK ${ }^{+}$16] Fabrice Gamboa, Alexandre Janon, Thierry Klein, A Lagnoux, and Clémentine Prieur. Statistical inference for sobol pick-freeze monte carlo method. Statistics, 50(4):881-902, 2016.
[Hoe48] W. F. Hoeffding. A class of statistics with asymptotically normal distributions. Annals of Mathematical Statistics, 19:293-325, 1948.
[loo11] Bertrand looss. Revue sur l'analyse de sensibilité globale de modèles numériques. Journal de la Société Française de Statistique, 152(1):3-25, 2011.

A short bibliography II

[LIPG13] M. Lamboni, B. looss, A.-L. Popelin, and F. Gamboa. Derivative-based global sensitivity measures: general links with Sobol' indices and numerical tests. Mathematics and Computers in Simulation, 87:45-54, 2013.
[LMM11] M. Lamboni, H. Monod, and D. Makowski. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliability Engineering and System Safety, 96(4):450-459, 2011.
[Mau02] W. Mauntz. Global sensitivity analysis of general nonlinear systems. Master's Thesis, Imperial College. Supervisors: C. Pantelides and S. Kucherenko, 2002.
[Mor91] Max D Morris. Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2):161-174, 1991.
[Owe14] Art B Owen. Sobol'indices and shapley value. SIAM/ASA Journal on Uncertainty Quantification, 2(1):245-251, 2014.
[Sal02] A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications, 145:280-297, 2002.
[SCS00] A. Saltelli, K. Chan, and E. M. Scott. Sensitivity Analysis. John Wiley \& Sons, 2000.
[SG95] I. M. Sobol' and A Gresham. On an alternative global sensitivity estimators. Proceedings of SAMO, Belgirate, pages 40-42, 1995.
[SK09] I. M. Sobol' and S. Kucherenko. Derivative based global sensitivity measures and the link with global sensitivity indices. Mathematics and Computers in Simulation, 79:3009-3017, 2009.
[Sob93] I. M. Sobol'. Sensitivity analysis for nonlinear mathematical models. Mathematical Modeling and Computational Experiment, 1:407-414, 1993.

A short bibliography III

[TGM06] S. Tarantola, D. Gatelli, and T. A. Mara. Random balance designs for the estimation of first-order global sensitivity indices. Reliability Engineering and System Safety, 91:717-727, 2006.
[TP12a] J. Y. Tissot and C. Prieur. Bias correction for the estimation of sensitivity indices based on random balance designs. Reliability Engineering and System Safety, 107:205-213, 2012.
[TP12b] J. Y. Tissot and C. Prieur. Variance-based sensitivity analysis using harmonic analysis. http://hal.archives-ouvertes.fr/docs/00/68/07/25/PDF, 2012+.
[TP15] J. Y. Tissot and C. Prieur. A randomized orthogonal array-based procedure for the estimation of first- and second-order sobol' indices. Journal of Statistical Computation and Simulation, 85:1358-1381, 2015.

