Simulation numérique de l'équation de Richards : une stratégie de Galerkine discontinue adaptative pour des applications exigeantes

Jean-Baptiste Clément PostDoc à Géosciences Montpellier

Mehmet Ersoy, Frédéric Golay, Damien Sous, Frédéric Bouchette

Exposé – Huitième école EGRIN, GdR « Ecoulements Gravitaires et RIsques Naturels » 25 mai 2021

jean-baptiste.clement@umontpellier.fr

Groundwater dynamics in sedimentary beaches controls various processes:

- Exchanges of fresh/salt water between ocean and coastal aquifers
- Diffusion of dissolved materials (nutrients, pollutants)
- Biogeochemical cycles
- Sediment transport

Relevant questions in the context of global warming (sea level rise) and coastal urbanization:

- Sandy beaches represent around 33% of coastline
- Erosion affects around 25% of sandy beaches
- Important benefits (tourism and ecosystem services)

Luijendijk et al. 2018, Vousdoukas et al. 2020

Waikiki beach, Hawaii

Daytona beach, Florida

Introduction	\rangle	Modelling	Numerical methods	\geq	Adaptation	\geq	Numerical results	\geq	Conclusion	>
Motivatio	ns									

Modelling starting point:

- Recent but good experimental understanding Steenhauer *et al.* 2016, Turner *et al.* 2016, Heiss et al. 2015
- Experimental limitations and few models Li *et al.* 2002, Malott *et al.* 2016

Motivations

Modelling starting point:

- Recent but good experimental understanding • Steenhauer et al. 2016, Turner et al. 2016, Heiss et al. 2015
- Experimental limitations and few models Li et al. 2002, Malott et al. 2016

Numerical starting point:

- 3D hyperbolic solver for wave • propagation and wave breaking
- Saint-Venant + bifluid Euler + Serre-٠ Green-Naghdi + FSI
- Coupling, interface sharpening, etc
- Unstructured finite volume (MUSL, • Riemann solver, Godunov scheme) 🔋
- 2nd order RK, Adams-Bashforth, local • time stepping
- Block-based adaptive mesh refinement •
- Domain decomposition, parallel computing

Ersoy et al. 2013, Golay et al. 2015

Velocity magnitudes are between 10⁻⁴ and 10⁻⁶ m/s

Li and Raichlen experiment

Yasuda test-case

I. Modelling

- Richards' equation
- Derivation
- Hydraulic properties
- Seepage
- Challenges and solving strategy

III. Adaptation

- Adaptive mesh refinement (AMR)
- A posteriori error estimates
- Weighted discontinuous Galerkin (WDG) methods

II. Numerical methods

- Discontinuous Galerkin (DG) methods
- Backward differentiation formula (BDF) methods
- Linearization

IV. Numerical results

- Polmann's test-case
- Tracy's benchmark
- Simulation of La Verne dam wetting
- Simulations for BARDEX II

Conclusion

- Summary
- Perspectives

Modelling

- Richards' equation
- Derivation
- Hydraulic properties
- Seepage
- Challenges and solving strategy

Richards' equation is a classic nonlinear parabolic equation to describe flow in variably-saturated porous media Richardson 1922, Richards 1931

$$\partial_t(\theta(\psi)) - \nabla \cdot (\mathbb{K}(\psi)\nabla(\psi+z)) = 0$$

Mixed form of Richards' equation:

- Pressure head ψ (m)
- Water content θ

Elevation z (m) Hydraulic conductivity tensor \mathbb{K} (m/s) Hydraulic head $h = \psi + z$ (m) Darcy flux $q = -\mathbb{K}(\psi)\nabla h$ (m/s)

Farthing and Ogden 2017, Zha et al. 2019

Mass conservation principle applied on a two-phase flow in porous medium:

- Flux modelled by empiric observations Darcy 1851, Buckingham 1907
- Theoretical derivations of flux are possible but problem-dependant (homogenization, volume averaging)

$$\alpha \in \{ air; water \},\$$

$$egin{split} & \langle \partial_t(
ho_lpha \Phi S_lpha) +
abla \cdot (
ho_lpha oldsymbol{q}_oldsymbol{lpha}) = 0 \ & \langle oldsymbol{q}_oldsymbol{lpha} = -rac{\Bbbk(S_lpha)}{\mu_lpha}
abla (p_lpha +
ho_lpha gz) \end{split}$$

$ \rho_{\alpha} \text{ density } [\mathbf{M} \cdot \mathbf{L}^{-3}] $	Φ porosity
S_{α} saturation	p_{α} pressure $[\mathbf{M} \cdot \mathbf{L}^{-1} \cdot \mathbf{T}^{-2}]$
μ_{α} dynamic viscosity $[\mathbf{M} \cdot \mathbf{L}^{-1} \cdot \mathbf{T}^{-1}]$	\mathbb{k}_{α} tensor of permeability [L ²]
$\boldsymbol{q_{\alpha}}$ Darcy velocity $[\mathbf{M}\cdot\mathbf{T}^{-1}]$	g gravitational acceleration $[{\rm L} \cdot {\rm T}^{-2}]$
$t \text{ time } [\mathbf{T}]$	z the elevation [L]

Mass conservation principle applied on a two-phase flow in porous medium:

- Flux modelled by empiric observations Darcy 1851, Buckingham 1907
- Theoretical derivations of flux are possible but problem-dependant (homogenization, volume averaging)

$$\alpha \in \{air; water\},\$$

$$\begin{cases} \partial_t (\rho_\alpha \Phi S_\alpha) + \nabla \cdot (\rho_\alpha \boldsymbol{q_\alpha}) = 0\\ \boldsymbol{q_\alpha} = -\frac{\Bbbk(S_\alpha)}{\mu_\alpha} \nabla(p_\alpha + \rho_\alpha gz) \end{cases}$$

 $\begin{aligned} \rho_{\alpha} &\text{density } [\mathbf{M} \cdot \mathbf{L}^{-3}] \\ S_{\alpha} &\text{saturation} \\ \mu_{\alpha} &\text{dynamic viscosity } [\mathbf{M} \cdot \mathbf{L}^{-1} \cdot \mathbf{T}^{-1}] \\ \boldsymbol{q}_{\alpha} &\text{Darcy velocity } [\mathbf{M} \cdot \mathbf{T}^{-1}] \\ t &\text{time } [\mathbf{T}] \end{aligned}$

$$\begin{split} &\Phi \text{ porosity} \\ &p_{\alpha} \text{ pressure } [\mathbf{M} \cdot \mathbf{L}^{-1} \cdot \mathbf{T}^{-2}] \\ &\Bbbk_{\alpha} \text{ tensor of permeability } [\mathbf{L}^{2}] \\ &g \text{ gravitational acceleration } [\mathbf{L} \cdot \mathbf{T}^{-2}] \\ &z \text{ the elevation } [\mathbf{L}] \end{split}$$

Mass conservation principle applied on a two-phase flow in porous medium:

- Flux modelled by empiric observations Darcy 1851, Buckingham 1907 •
- Theoretical derivations of flux are possible but problem-dependant (homogenization, volume • averaging)

\rightarrow 2 equations for 4 unknows

> Two closure conditions: $\begin{cases} S_{\text{air}} + S_{\text{water}} = 1, & \text{by definition} \\ p_{\text{air}} - p_{\text{water}} = P_{\text{c}}(S_{\text{water}}) \end{cases}$ Capillary pressure: empiric invertible function

Main hypothesis

 Air viscosity smaller than water viscosity so air pressure balances faster = hydrostatic

$$\nabla(p_{\rm air} + \rho_{\rm air}gz) = 0$$

 $\iff p_{\rm air} = p_0 - \rho_{\rm air} g z$

Szymkiewicz 2013, Baron PhD 2015

Water content and hydraulic conductivity are dynamic and hysteretic functions of pressure head:

Water content and hydraulic conductivity are dynamic and hysteretic functions of pressure head:

Water content and hydraulic conductivity are dynamic and hysteretic functions of pressure head:

- Seepage boundary condition Scudeler et al. 2017
 - = mix of Neumann and Dirichlet boundary conditions

- Seepage boundary condition Scudeler *et al.* 2017
 - = mix of Neumann and Dirichlet boundary conditions

here
$$\mathbb{1}_{\mathrm{S}} \colon \Gamma_{\mathrm{S}} \to \{0, 1\}$$

 $h \mapsto \begin{cases} 1 & \text{if } h \ge z \text{ and } -\mathbb{K}(h-z)\nabla h \cdot \boldsymbol{n} > 0 \\ 0 & \text{otherwise.} \end{cases}$

$$\partial_t(\theta(\psi)) - \nabla \cdot (\mathbb{K}(\psi)\nabla(\psi+z)) = 0$$

Degeneracy possibilities:

- Complete saturation $\rightarrow \theta$ and \mathbb{K} are constant \rightarrow elliptic equation \rightarrow fast diffusion
- Almost complete unsaturation $\rightarrow \mathbb{K}$ and θ go to 0 rapidly \rightarrow stopped diffusion
- For $\psi
 ightarrow 0^-
 ightarrow \mathbb{K}$ and heta can exhibit very steep gradients

$$\partial_t(\theta(\psi)) - \nabla \cdot (\mathbb{K}(\psi)\nabla(\psi+z)) = 0$$

Degeneracy possibilities:

- Complete saturation $\rightarrow \theta$ and \mathbb{K} are constant \rightarrow elliptic equation \rightarrow fast diffusion
- Almost complete unsaturation $\rightarrow \mathbb{K}$ and θ go to 0 rapidly \rightarrow stopped diffusion
- For $\psi
 ightarrow 0^-
 ightarrow \mathbb{K}$ and heta can exhibit very steep gradients

Other strong nonlinearities could happen due to:

- Steep or dynamic boundary conditions
- Steep initial condition
- Heterogeneous porous medium
- Seepage boundary condition (≈ nonlinear Robin boundary condition)

$$\partial_t(\theta(\psi)) - \nabla \cdot (\mathbb{K}(\psi)\nabla(\psi+z)) = 0$$

Degeneracy possibilities:

- Complete saturation $\rightarrow \theta$ and \mathbb{K} are constant \rightarrow elliptic equation \rightarrow fast diffusion
- Almost complete unsaturation $\rightarrow \mathbb{K}$ and θ go to 0 rapidly \rightarrow stopped diffusion
- For $\psi
 ightarrow 0^-
 ightarrow \mathbb{K}$ and heta can exhibit very steep gradients

Other strong nonlinearities could happen due to:

- Steep or dynamic boundary conditions
- Steep initial condition
- Heterogeneous porous medium
- Seepage boundary condition (≈ nonlinear Robin boundary condition)

Groundwater flow features:

- Wetting front moving dynamically and possibly very sharp ↔ nonlinear varying diffusivity
- Internal layer is static and linked to a discontinuity ↔ heterogeneous and anisotropic diffusivity
- Spurious oscillations = non-physical effect (undershoot/overshoot)

$$\partial_t(\theta(\psi)) - \nabla \cdot (\mathbb{K}(\psi)\nabla(\psi+z)) = 0$$

Richards' equation:

- Extremely sharp fronts (spatial smoothness)
- Stiff partial differential equation (time discretization)
- Nonlinear solver can fail to converge (linearization)

How to get an accurate (physical), efficient (cost-effective) and robust (convergent) simulation?

$$\partial_t(\theta(\psi)) - \nabla \cdot (\mathbb{K}(\psi)\nabla(\psi+z)) = 0$$

Richards' equation:

- Extremely sharp fronts (spatial smoothness)
- Stiff partial differential equation (time discretization)
- Nonlinear solver can fail to converge (linearization)

How to get an accurate (physical), efficient (cost-effective) and robust (convergent) simulation?

Chosen strategy :

- High-order adaptive mesh refinement
- Implicit time scheme
- Iterative nonlinear process with adaptive time stepping + stopping criteria
- Flexible discrete approximation

Numerical methods

- Discontinuous Galerkin (DG) methods
- Backward differentiation formula (BDF) methods
- Linearization

DG methods: Reed & Hill 1971, Di Pietro, Cockburn/Arnold, Dolejší/Feistauer, Rivière

- Based on variational formulation as in Finite Element Methods (FEM)
- Designed in an element-wise fashion as in Finite Volume Methods (FVM)

DG methods: Reed & Hill 1971, Di Pietro, Cockburn/Arnold, Dolejší/Feistauer, Rivière

- Based on variational formulation as in Finite Element Methods (FEM)
- Designed in an element-wise fashion as in Finite Volume Methods (FVM)

Advantages:

- Compact stencil → high-order approximation
- Element-wise formulation
 - Possible discontinuity
 - Unstructured, non-conforming and hybrid mesh → mesh adaptation
- Weak formulation → boundary condition, analysis
- Local mass balance
- Algebraic system of decoupled equations
 - Sparse structure by blocks (solving)
 - Parallelization

DG methods: Reed & Hill 1971, Di Pietro, Cockburn/Arnold, Dolejší/Feistauer, Rivière

- Based on variational formulation as in Finite Element Methods (FEM)
- Designed in an element-wise fashion as in Finite Volume Methods (FVM)

Advantages:

- Compact stencil → high-order approximation
- Element-wise formulation
 - Possible discontinuity
 - Unstructured, non-conforming and hybrid mesh → mesh adaptation
- Weak formulation → boundary condition, analysis
- Local mass balance
- Algebraic system of decoupled equations
 - Sparse structure by blocks (solving)
 - Parallelization

Drawbacks:

- Oscillations (lack of robustness)
 - Stability by penalty parameters
 - Dispersion at discontinuity
- Computational cost → more DoF
- Implementation may be difficult
 - Quadrature formula
 - Visualization
 - Less available codes
 - DoF with no physical meaning
- Still gaps in theoretical analysis

Find $h(\boldsymbol{x},t): \Omega \times (0,T) \longrightarrow \mathbb{R}$ such that

$$\begin{aligned} \partial_t \theta(h-z) - \nabla \cdot (\mathbb{K}(h-z)\nabla h) &= 0, & \text{in } \Omega \times (0,T) \\ h &= h_0, & \text{in } \Omega \times \{0\} \\ h &= h_D, & \text{on } \Gamma_D \times (0,T) \\ -\mathbb{K}(h-z)\nabla h \cdot \boldsymbol{n} &= q_N, & \text{on } \Gamma_N \times (0,T) \\ \mathbb{1}_{\mathrm{S}}(h)(h-z) - (1 - \mathbb{1}_{\mathrm{S}}(h))\mathbb{K}(h-z)\nabla h \cdot \boldsymbol{n} &= 0, & \text{on } \Gamma_{\mathrm{S}} \times (0,T) \end{aligned}$$

Weak formulation:

- Multiply the problem by a test function
- Integrate on each element
- Use Green's theorem
- Sum over all elements

Rivière 2008 Dolejší and Feistauer 2015

 $a_{\mathfrak{h},n}(h,v) = \sum_{E \in \mathcal{E}_{\mathfrak{h}}} \int_{E} \mathbb{K}(h-z) \nabla h \cdot \nabla v \, \mathrm{d}E$

$$\sum_{E \in \mathcal{E}_{\mathfrak{h}}} \int_{F} \mathbb{K}(h-z) \nabla h \cdot \boldsymbol{n_{F}} v \, \mathrm{d}F - \sum_{F \in \mathcal{F}_{\mathfrak{h}}^{S}} \int_{F} \mathbb{1}_{S}(h) \mathbb{K}(h-z) \nabla h \cdot \boldsymbol{n_{F}} v \, \mathrm{d}F$$

$$l_{\mathfrak{h},n}(v) = -\sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathbf{N}}} \int_{F} q_{\mathbf{N}} v \,\mathrm{d}F$$

$$l_{\mathfrak{h},n}(v) = -\sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathbf{N}}} \int_{F} q_{\mathbf{N}} v \,\mathrm{d}F$$

$$arrho_F^{\mathrm{I}}\coloneqq rac{\sigma_F^{\mathrm{I}}\gamma_F}{\mu_F} \ \mu_F\coloneqq rac{\mathfrak{h}_F^{\ eta}}{p_F^{\ 2}}$$

Find $h \in S_p(\mathcal{E}^n_{\mathfrak{h}})$ such that $\forall v \in S_p(\mathcal{E}^n_{\mathfrak{h}})$, $m_{\mathfrak{h},n}(\partial_t \theta(h-z), v) + a_{\mathfrak{h},n}(h, v) = l_{\mathfrak{h},n}(v)$

$$\begin{split} m_{\mathfrak{h},n}(\partial_{t}\theta(h-z),v) &= \sum_{E\in\mathcal{E}_{\mathfrak{h}}} \int_{E} \partial_{t}\theta(h-z)v \, \mathrm{d}E \\ a_{\mathfrak{h},n}(h,v) &= \sum_{E\in\mathcal{E}_{\mathfrak{h}}} \int_{E} \mathbb{K}(h-z)\nabla h \cdot \nabla v \, \mathrm{d}E - \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathrm{L}}} \int_{F} \{ \mathbb{K}(h-z)\nabla h \cdot n_{F} \} [\![v]\!] \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathrm{L}}} \int_{F} \varrho_{F}^{\mathrm{L}} [\![h]\!] [\![v]\!] \, \mathrm{d}F \\ &- \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathrm{D}}} \int_{F} \mathbb{K}(h-z)\nabla h \cdot n_{F}v \, \mathrm{d}F + \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathrm{D}}} \int_{F} \varrho_{F}^{\mathrm{D}} hv \, \mathrm{d}F \\ &- \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{S}} \int_{F} \mathbb{1}_{S}(h) \mathbb{K}(h-z)\nabla h \cdot n_{F}v \, \mathrm{d}F + \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{S}} \int_{F} \varrho_{F}^{\mathrm{D}} \mathbb{1}_{S}(h) hv \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{S}} \int_{F} \varrho_{F}^{\mathrm{D}} h_{\mathrm{D}}v \, \mathrm{d}F - \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathrm{N}}} \int_{F} q_{\mathrm{N}}v \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{S}} \int_{F} \varrho_{F}^{\mathrm{D}} \mathbb{1}_{S}(h) zv \, \mathrm{d}F \end{split}$$

\geq	Introduction	>	Modelling	Numerical methods	Adaptation	Numerical results	\rangle	Conclusion	\supset	Non
Syr	nmetriz	atio	on							

Find $h \in S_p(\mathcal{E}^n_{\mathfrak{h}})$ such that $\forall v \in S_p(\mathcal{E}^n_{\mathfrak{h}})$, $m_{\mathfrak{h},n}(\partial_t \theta(h-z), v) + a_{\mathfrak{h},n}(h, v) = l_{\mathfrak{h},n}(v)$

$$\begin{split} m_{\mathfrak{h},n}(\partial_{t}\theta(h-z),v) &= \sum_{E\in\mathcal{E}_{\mathfrak{h}}} \int_{E} \partial_{t}\theta(h-z)v \, \mathrm{d}E \\ a_{\mathfrak{h},n}(h,v) &= \sum_{E\in\mathcal{E}_{\mathfrak{h}}} \int_{E} \mathbb{K}(h-z)\nabla h \cdot \nabla v \, \mathrm{d}E - \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{1}} \int_{F} \left[\mathbb{K}(h-z)\nabla h \cdot n_{F} \right] \left[v \right] \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{1}} \int_{F} \rho_{F}^{1} \left[h \right] \left[v \right] \, \mathrm{d}F \\ &- \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{1}} \int_{F} \rho_{F}^{1} \mathbb{K}(h-z)\nabla h \cdot n_{F}v \, \mathrm{d}F + \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{1}} \int_{F} \rho_{F}^{1} hv \, \mathrm{d}F \\ &- \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{1}} \int_{F} \mathbf{1}_{\mathbf{S}}(h) \mathbb{K}(h-z)\nabla h \cdot n_{F}v \, \mathrm{d}F + \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{1}} \int_{F} \rho_{F}^{1} \mathbf{1}_{\mathbf{S}}(h)hv \, \mathrm{d}F \\ &- \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{1}} \int_{F} \rho_{F} h_{D}v \, \mathrm{d}F - \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{1}} \int_{F} \rho_{F}v \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{2}} \int_{F} \rho_{F}^{1} h_{D}v \, \mathrm{d}F - \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{1}} \int_{F} q_{N}v \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{2}} \int_{F} \rho_{F}^{1} \mathbf{1}_{\mathbf{S}}(h)zv \, \mathrm{d}F \\ &= \frac{\mathsf{Penalization}}{\frac{\forall F\in\mathcal{F}_{\mathfrak{h}}, \sigma_{F}^{1} \neq \sigma_{F}^{1} = \sigma_{F}^{1} = 0}{\forall F \in \mathcal{F}_{\mathfrak{h}}, \sigma_{F}^{1} \neq 0, \sigma_{F}^{1} \neq 0}} \frac{\mathsf{Symmetrization}}{\mathsf{oBB} \operatorname{method} - \mathsf{global\ ele\ IPG:\ Incomplete\ Interior\ Penalty\ Galerkin\ IPG:\ Symmetric\ Interior\ Penalty\ Galerkin\ OBB\ method:\ Oden-Baumann-Babuskap} \\ \end{bmatrix}$$

ior Penalty Galerkin OBB method: Oden-Baumann-Babuška method

 $\Theta = 1$

global element method

SIPG

Find $h \in S_p(\mathcal{E}^n_{\mathfrak{h}})$ such that $\forall v \in S_p(\mathcal{E}^n_{\mathfrak{h}})$, $m_{\mathfrak{h},n}(\partial_t \theta(h-z), v) + a_{\mathfrak{h},n}(h, v) = l_{\mathfrak{h},n}(v)$

Chosen method: (primal) IIPG

$$\begin{split} m_{\mathfrak{h},n}(\partial_{t}\theta(h-z),v) &= \sum_{E\in\mathcal{E}_{\mathfrak{h}}} \int_{E} \partial_{t}\theta(h-z)v \, \mathrm{d}E \\ a_{\mathfrak{h},n}(h,v) &= \sum_{E\in\mathcal{E}_{\mathfrak{h}}} \int_{E} \mathbb{K}(h-z)\nabla h \cdot \nabla v \, \mathrm{d}E - \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathfrak{I}}} \int_{F} [\mathbb{K}(h-z)\nabla h \cdot n_{F}] [\![v]\!] \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathfrak{I}}} \int_{F} \rho_{F}^{\mathfrak{I}} [\![h]\!] [\![v]\!] \, \mathrm{d}F \\ &- \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathfrak{I}}} \int_{F} \mathcal{N} [\![h]\!] [\![v]\!] \, \mathrm{d}F \\ &- \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathfrak{I}}} \int_{F} \mathbb{K}(h-z)\nabla h \cdot n_{F}v \, \mathrm{d}F + \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathfrak{I}}} \int_{F} \rho_{F}^{\mathfrak{I}} hv \, \mathrm{d}F \\ &- \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathfrak{I}}} \int_{F} \mathbb{1}_{\mathfrak{S}}(h) \mathbb{K}(h-z)\nabla h \cdot n_{F}v \, \mathrm{d}F + \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathfrak{I}}} \int_{F} \rho_{F}^{\mathfrak{I}} \mathbb{1}_{\mathfrak{S}}(h) hv \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathfrak{I}}} \int_{F} \rho_{F}^{\mathfrak{I}} h_{\mathfrak{D}}v \, \mathrm{d}F - \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathfrak{I}}} \int_{F} q_{\mathfrak{N}}v \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{\mathfrak{I}}} \int_{F} \rho_{F}^{\mathfrak{I}} \mathbb{1}_{\mathfrak{S}}(h) zv \, \mathrm{d}F \\ &= \frac{\mathsf{Penalization}}{\frac{\forall F\in\mathcal{F}_{\mathfrak{h}}, \sigma_{F}^{1}=\sigma_{F}^{\mathfrak{I}}=0}{\frac{\forall F\in\mathcal{F}_{\mathfrak{I}}, \sigma_{F}^{1}\neq 0, \sigma_{F}^{1}\neq 0}{\frac{\forall F\in\mathcal{F}_{\mathfrak{I}}, \sigma_{F}^{1}\neq 0}{\frac{\forall F\in\mathcal{F}_{\mathfrak{I}}, \sigma_{F}^{1}\neq 0}{\frac{\forall F\in\mathcal{F}_{\mathfrak{I}}, \sigma_{F}^{1}\neq 0}}} \\ \end{array}$$

 $\Theta = 1$

SIPG

l element method

Find
$$h \in S_p(\mathcal{E}^n_{\mathfrak{h}})$$
 such that $\forall v \in S_p(\mathcal{E}^n_{\mathfrak{h}})$,
 $m_{\mathfrak{h},n}(\partial_t \theta(h-z), v) + a_{\mathfrak{h},n}(h, v) = l_{\mathfrak{h},n}(v)$

Chosen method: (primal) IIPG

$$\begin{split} m_{\mathfrak{h},n}(\partial_{t}\theta(h-z),v) &= \sum_{E\in\mathcal{E}_{\mathfrak{h}}} \int_{E} \partial_{t}\theta(h-z)v \, \mathrm{d}E \\ a_{\mathfrak{h},n}(h,v) &= \sum_{E\in\mathcal{E}_{\mathfrak{h}}} \int_{E} \mathbb{K}(h-z)\nabla h \cdot \nabla v \, \mathrm{d}E - \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{1}} \int_{F} \left[\mathbb{K}(h-z)\nabla h \cdot n_{F} \right] \left[v \right] \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{1}} \int_{F} \rho_{F}^{1} \left[h \right] \left[v \right] \, \mathrm{d}F \\ &- \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{p}} \int_{F} p_{F}^{1} \left[h \right] \left[v \right] \, \mathrm{d}F \\ &- \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{p}} \int_{F} \mathbb{K}(h-z)\nabla h \cdot n_{F}v \, \mathrm{d}F + \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{p}} \int_{F} \rho_{F}^{p} hv \, \mathrm{d}F \\ &- \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{p}} \int_{F} \mathbb{1}_{S}(h) \mathbb{K}(h-z)\nabla h \cdot n_{F}v \, \mathrm{d}F + \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{p}} \int_{F} \rho_{F}^{p} \mathbb{1}_{S}(h) hv \, \mathrm{d}F \\ &- \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{p}} \int_{F} \mathbb{1}_{S}(h) \mathbb{K}(h-z)\nabla h \cdot n_{F}v \, \mathrm{d}F + \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{p}} \int_{F} \rho_{F}^{p} \mathbb{1}_{S}(h) hv \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{p}} \int_{F} \rho_{F}^{p} h_{D}v \, \mathrm{d}F - \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{p}} \int_{F} q_{N}v \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{p}} \int_{F} \rho_{F}^{p} \mathbb{1}_{S}(h) zv \, \mathrm{d}F \\ &+ \sum_{F\in\mathcal{F}_{\mathfrak{h}}^{p}} \int_{F} \rho_{F}^{p} \mathbb{1}_{S}(h) zv \, \mathrm{d}F \\ &= \frac{\mathsf{Penalization}}{\mathbb{V}F\in\mathcal{F}_{\mathfrak{h}}, \sigma_{F}^{1} = \sigma_{F}^{p} = 0 \quad OBB method} \quad \frac{|\Phi|=1}{|\Phi|=0|} \quad SIPG \\ &= Sipchteyn \text{ and Rivière 2006} \\ & \text{NIPG: Non-symmetric Interior Penalty Galerkin} \\ & \text{Dolejší 2008} \end{array}$$

ds' equation: Li et al. 2007 ed SIPG Sochala 2009 G Dolejší *et al*. 2019

 $\Theta = 1$

SIPG

J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation

Choice of the polynomial basis:

•

- Orthogonal (numerical property)
- Hierarchical (adaptation)

Nodal basis:

- Difficulty to adapt for high-order
- DoF have physical meaning
- Examples : Lagrange, Hermite

Modal basis:

- Easy implementation
- DoF are just coefficients in the DG expansion
- Examples : monomial, Taylor, Legendre, Dubiner

Choice of the polynomial basis:

•

- Orthogonal (numerical property)
- Hierarchical (adaptation)

Nodal basis:

- Difficulty to adapt for high-order
- DoF have physical meaning
- Examples : Lagrange, Hermite

Modal basis:

- Easy implementation
- DoF are just coefficients in the DG expansion
- Examples : monomial, Taylor, Legendre, Dubiner

BDF methods: Dolejší et al. 2008, Hay et al. 2015

- Multistep implicit schemes
- High-order (up to 6)
- Good stability properties for stiff equations
- Divided differences for adaptive time stepping
- Implicit Euler scheme = 1-order BDF method

Find a sequence of $(h^n)_{n \in \mathbb{N}_+} \in S_p(\mathcal{E}^n_{\mathfrak{h}})$ such that

$$\begin{cases} h^{0} = h_{0} \\ \forall v \in S_{p}(\mathcal{E}_{\mathfrak{h}}^{n}), \quad m_{\mathfrak{h},n} \left(\sum_{k=0}^{q} \frac{\alpha_{q,k}}{\tau^{n}} \theta(h^{n+1-k} - z), v \right) + a_{\mathfrak{h},n}(h^{n+1}, v) = l_{\mathfrak{h},n}(v, t^{n+1}) \end{cases}$$
Convergence for Tracy's benchmark
$$\|e\|_{L^{2}} \approx c_{\mathfrak{h}}\mathfrak{h}^{p} + c_{\tau}\tau^{q}$$

Number of degrees of freedom

Linearization: Newton-Raphson method and adaptive time step

Newton-Raphson method \rightarrow Fixed-point iteration

$$r_{\mathfrak{h},n}(h^{n+1},v) \coloneqq m_{\mathfrak{h},n}\left(\sum_{k=0}^{q} \frac{\alpha_{s,k}}{\tau^{n}} \theta(h^{n+1-k}-z), v\right) + a_{\mathfrak{h},n}(h^{n+1},v) - l_{\mathfrak{h},n}(v;t^{n+1})$$

$$\begin{cases} \frac{\mathrm{d}r_{\mathfrak{h},n}(h^{n+1,m},v)}{\mathrm{d}h^{n+1,m}}\delta_h^{n+1,m} = -r_{\mathfrak{h},n}(h^{n+1,m},v)\\ h^{n+1,m+1} = h^{n+1,m} + \delta_h^{n+1,m} \end{cases}$$

Paniconi & Putti 1994 Lehmann & Ackerer 1998 List & Radu 2016

Relaxation and stopping criteria:

- Damped Newton-Raphson method possibly in combination with fixed-point iteration ٠
- Two convergence criteria: residual and incremental •

$$\frac{\left\|r_{\mathfrak{h},n}\left(h^{n+1,m},v\right)\right\|_{L^{2}(\Omega)}}{\left\|a_{\mathfrak{h},n}\left(h^{n+1,m},v\right)\right\|_{L^{2}(\Omega)}} < \varepsilon_{1} \quad \text{and} \quad \frac{\left\|\delta_{h}^{n+1,m}\right\|_{L^{2}(\Omega)}}{\left\|h^{n+1,m}\right\|_{L^{2}(\Omega)}} < \varepsilon_{2}$$

н.

Linearization: Newton-Raphson method and adaptive time step

Newton-Raphson method \rightarrow Fixed-point iteration

$$r_{\mathfrak{h},n}(h^{n+1},v) \coloneqq m_{\mathfrak{h},n}\left(\sum_{k=0}^{q} \frac{\alpha_{s,k}}{\tau^{n}} \theta(h^{n+1-k}-z), v\right) + a_{\mathfrak{h},n}(h^{n+1},v) - l_{\mathfrak{h},n}(v;t^{n+1})$$

$$\begin{cases} \frac{\mathrm{d}r_{\mathfrak{h},n}(h^{n+1,m},v)}{\mathrm{d}h^{n+1,m}}\delta_{h}^{n+1,m} = -r_{\mathfrak{h},n}(h^{n+1,m},v)\\ h^{n+1,m+1} = h^{n+1,m} + \delta_{h}^{n+1,m} \end{cases}$$

Paniconi & Putti 1994 Lehmann & Ackerer 1998 List & Radu 2016

Relaxation and stopping criteria:

- Damped Newton-Raphson method possibly in combination with fixed-point iteration
- Two convergence criteria: residual and incremental

$$\frac{\left|r_{\mathfrak{h},n}\left(h^{n+1,m},v\right)\right\|_{L^{2}(\Omega)}}{\left\|a_{\mathfrak{h},n}\left(h^{n+1,m},v\right)\right\|_{L^{2}(\Omega)}} < \varepsilon_{1} \quad \text{and} \quad \frac{\left\|\delta_{h}^{n+1,m}\right\|_{L^{2}(\Omega)}}{\left\|h^{n+1,m}\right\|_{L^{2}(\Omega)}} < \varepsilon_{2}$$

ш.

Adaptive time stepping \rightarrow nonlinear iterations (heuristic methods)

$$\begin{cases} \tau^{n+1} = \begin{cases} \lambda_{\rm amp} \tau^n & \text{if } N_{\rm it} \leq m_{\rm it} \\ \tau^n & \text{if } m_{\rm it} < N_{\rm it} \leq M_{\rm it} \\ \lambda_{\rm red} \tau^n & \text{if } M_{\rm it} < N_{\rm it} \leq W_{\rm it} \end{cases} \\ \tau^n = \lambda_{\rm red} \tau^n & \text{if } W_{\rm it} < N_{\rm it} \text{ or if the solver has failed (time step is started again)} \end{cases}$$

Convergence is strengthened but not guaranteed. What about performance?

Adaptation

- Adaptive mesh refinement (AMR)
- A posteriori error estimates
- Weighted discontinuous Galerkin (WDG) methods

(b) Refinement level

- (c) Mesh generation using quadtree
- (d) Morton numbering

(a)

BB AMR Altazin *et al.* 2016, Pons & Ersoy 2019 *hp* Mitchell 2014 Richards' Li et al. 2006/2007, Miller et al. 2006, Šolín & Kuraz 2011, Dolejší 2019

Energy norm
$$|||u|||_{\mathcal{E}(E)}^2 \coloneqq ||u||_{\mathcal{R}(E)}^2 + \sum_{F \in \partial E} ||u||_{\mathcal{J}(F)}^2$$

Energy norm $|||u|||_{\mathcal{E}(E)}^2 \coloneqq ||u||_{\mathcal{R}(E)}^2 + \sum_{F \in \partial E} ||u||_{\mathcal{J}(F)}^2$ "Residual derivation" $(\eta_E^n)^2 = (\eta_{E,R}^n)^2 + (\eta_{E,F}^n)^2 + (\eta_{E,J}^n)^2$

Energy norm $|||u|||_{\mathcal{E}(E)}^2 \coloneqq ||u||_{\mathcal{R}(E)}^2 + \sum_{F \in \partial E} ||u||_{\mathcal{J}(F)}^2$ "Residual derivation" $(\eta_E^n)^2 = (\eta_{E,R}^n)^2 + (\eta_{E,F}^n)^2 + (\eta_{E,J}^n)^2$

$$\text{Volume residual } \left(\eta_{E,\mathrm{R}}^{n}\right)^{2} = \frac{\mathfrak{h}_{E}^{2}}{p_{E}^{2}\lambda_{\mathrm{m}}(\mathbb{K})} \left\| \frac{\theta\left(u_{\mathfrak{h}}^{n+1}\right) - \theta\left(u_{\mathfrak{h}}^{n}\right)}{\tau^{n}} - \nabla \cdot \left(\mathbb{K}\left(u_{\mathfrak{h}}^{n+1}\right)\nabla u_{\mathfrak{h}}^{n+1}\right) \right\|_{L^{2}(E)}^{2}$$

Energy norm $|||u|||_{\mathcal{E}(E)}^2 \coloneqq ||u||_{\mathcal{R}(E)}^2 + \sum_{F \in \partial E} ||u||_{\mathcal{J}(F)}^2$ "Residual derivation" $(\eta_E^n)^2 = (\eta_{E,R}^n)^2 + (\eta_{E,F}^n)^2 + (\eta_{E,J}^n)^2$

$$\begin{aligned} \text{Volume residual } \left(\eta_{E,\mathrm{R}}^{n}\right)^{2} = & \frac{\mathfrak{h}_{E}^{2}}{p_{E}^{2}\lambda_{\mathrm{m}}(\mathbb{K})} \left\| \frac{\theta\left(u_{\mathfrak{h}}^{n+1}\right) - \theta\left(u_{\mathfrak{h}}^{n}\right)}{\tau^{n}} - \nabla \cdot \left(\mathbb{K}\left(u_{\mathfrak{h}}^{n+1}\right)\nabla u_{\mathfrak{h}}^{n+1}\right) \right\|_{L^{2}(E)}^{2} \\ \text{Face residual (flux jump)} \left(\eta_{E,\mathrm{F}}^{n}\right)^{2} = & \sum_{F \in \partial E \cap \mathcal{F}_{\mathfrak{h}}^{\mathrm{I}}} \frac{\mathfrak{h}_{F}}{2p_{F}\kappa_{\mathrm{m}}} \left\| \left[\mathbb{K}\left(u_{\mathfrak{h}}^{n+1}\right)\nabla u_{\mathfrak{h}}^{n+1} \cdot \boldsymbol{n} \right] \right\|_{L^{2}(F)}^{2} \\ & + & \sum_{F \in \partial E \cap \mathcal{F}_{\mathfrak{h}}^{\mathrm{N}}} \frac{\mathfrak{h}_{F}}{p_{F}\kappa_{\mathrm{I}}} \left\| q_{\mathrm{N}} - \mathbb{K}\left(u_{\mathfrak{h}}^{n+1}\right)\nabla u_{\mathfrak{h}}^{n+1} \cdot \boldsymbol{n} \right\|_{L^{2}(F)}^{2} \end{aligned}$$

Nonlinear parabolic FEM Verfürth 2013 *hp* elliptic FEM Melenk & Wohlmuth 2001 *hp* (steady) convection-diffusion DG Houston et al. 2007 Schötzhau & Zhu 2009/2010

Error indicator based on *a posteriori* estimation Energy norm $|||u|||_{\mathcal{E}(E)}^2 \coloneqq ||u||_{\mathrm{R}(E)}^2 + \sum_{F \in \partial E} ||u||_{\mathrm{J}(F)}^2$ "Residual derivation" $(\eta_E^n)^2 = (\eta_{E,\mathrm{R}}^n)^2 + (\eta_{E,\mathrm{F}}^n)^2 + (\eta_{E,\mathrm{J}}^n)^2$

$$\|u\|_{\mathbf{R}(E)}^{2} \coloneqq \left\| (\mathbb{K}(u))^{\frac{1}{2}} \nabla u \right\|_{L^{2}(E)}^{2}$$
$$\|u\|_{\mathbf{J}(F)}^{2} \coloneqq \varrho_{F} \| \llbracket u \rrbracket \|_{L^{2}(F)}^{2}$$
$$\kappa_{\mathbf{l}} \coloneqq \min(\kappa_{\mathbf{l}}, \kappa_{\mathbf{r}})$$

$$\begin{aligned} \text{Volume residual } (\eta_{E,R}^{n})^{2} &= \frac{\mathfrak{h}_{E}^{2}}{p_{E}^{2}\lambda_{m}(\mathbb{K})} \left\| \frac{\theta\left(u_{\mathfrak{h}}^{n+1}\right) - \theta\left(u_{\mathfrak{h}}^{n}\right)}{\tau^{n}} - \nabla \cdot \left(\mathbb{K}\left(u_{\mathfrak{h}}^{n+1}\right) \nabla u_{\mathfrak{h}}^{n+1}\right) \right\|_{L^{2}(E)}^{2} \\ \text{Face residual (flux jump) } (\eta_{E,F}^{n})^{2} &= \sum_{F \in \partial E \cap \mathcal{F}_{\mathfrak{h}}^{1}} \frac{\mathfrak{h}_{F}}{2p_{F}\kappa_{m}} \left\| \left[\mathbb{K}\left(u_{\mathfrak{h}}^{n+1}\right) \nabla u_{\mathfrak{h}}^{n+1} \cdot n\right] \right\|_{L^{2}(F)}^{2} \\ &+ \sum_{F \in \partial E \cap \mathcal{F}_{\mathfrak{h}}^{N}} \frac{\mathfrak{h}_{F}}{p_{F}\kappa_{1}} \left\| q_{N} - \mathbb{K}\left(u_{\mathfrak{h}}^{n+1}\right) \nabla u_{\mathfrak{h}}^{n+1} \cdot n \right\|_{L^{2}(F)}^{2} \\ \text{Solution jump } (\eta_{E,J}^{n})^{2} &= \sum_{F \in \partial E \cap \mathcal{F}_{\mathfrak{h}}^{1}} \frac{1}{2} \left(\varrho_{F}^{1} + \frac{\mathfrak{h}_{F}}{p_{F}\kappa_{m}} \right) \left\| \left[u_{\mathfrak{h}}^{n+1} \right] \right\|_{L^{2}(F)}^{2} \\ &+ \sum_{F \in \partial E \cap \mathcal{F}_{\mathfrak{h}}^{1}} \left(\varrho_{F}^{D} + \frac{\mathfrak{h}_{F}}{p_{F}\kappa_{1}} \right) \right\| u_{D} - u_{\mathfrak{h}}^{n+1} \right\|_{L^{2}(F)}^{2} \\ \text{Nonlinear parabolic FEM Verfürth 2013} \\ hp elliptic FEM Melenk & Wohlmuth 2001 \\ hp (steady) convection-diffusion DG \\ \text{Hurston et al 2007} \end{aligned}$$

25 May 2021

Houston et al. 2007 Schötzhau & Zhu 2009/2010

- developed for convection-diffusion equation
- heterogeneous diffusivity matching the mesh

It is not expected to work for nonlinear diffusivity...

Ern & Proft 2006 Proft & Rivière 2006/2009 Ern/Di Pietro 2008

- developed for convection-diffusion equation
- heterogeneous diffusivity matching the mesh

It is not expected to work for nonlinear diffusivity...

Two key ingredients:

Weighted averages to decide the amount of diffusive flux $\{\!\{u\}\!\}_\omega\coloneqq\omega_{
m l}u_{
m l}+\omega_{
m r}u_{
m r}$

$$\omega_{l} + \omega_{r} \coloneqq 1 \qquad \begin{cases} \omega_{l} = \frac{\kappa_{r}}{\kappa_{l} + \kappa_{r}}, & \omega_{r} = \frac{\kappa_{l}}{\kappa_{l} + \kappa_{r}} & \text{if } \kappa_{l} + \kappa_{r} \neq 0, \\ \omega_{l} = \omega_{r} = \frac{1}{2} & \text{otherwise.} \end{cases}$$

Ern & Proft 2006 Proft & Rivière 2006/2009 Ern/Di Pietro 2008

- developed for convection-diffusion equation
- heterogeneous diffusivity matching the mesh

It is not expected to work for nonlinear diffusivity...

Two key ingredients:

Weighted averages to decide the amount of diffusive flux $\{\!\{u\}\!\}_\omega\coloneqq\omega_{
m l}u_{
m l}+\omega_{
m r}u_{
m r}$

$$\omega_{l} + \omega_{r} \coloneqq 1 \qquad \begin{cases} \omega_{l} = \frac{\kappa_{r}}{\kappa_{l} + \kappa_{r}}, & \omega_{r} = \frac{\kappa_{l}}{\kappa_{l} + \kappa_{r}} & \text{if } \kappa_{l} + \kappa_{r} \neq 0, \\ \omega_{l} = \omega_{r} = \frac{1}{2} & \text{otherwise.} \end{cases}$$

• Relaxation of penalty to enforce continuity: a discontinuity should approximate better sharp fronts.

$$\gamma_F = \{\![\kappa]\!]_{\omega} = \frac{2\kappa_{\mathrm{l}}\kappa_{\mathrm{r}}}{\kappa_{\mathrm{l}} + \kappa_{\mathrm{r}}} \quad \varrho_F^{\mathrm{I}} \coloneqq \frac{\sigma_F^{\mathrm{I}}\gamma_F}{\mu_F}$$
$$\mu_F \coloneqq \frac{\mathfrak{h}_F^{\beta}}{p_F^2}$$

Ern & Proft 2006

Ern/Di Pietro 2008

Proft & Rivière 2006/2009

- developed for convection-diffusion equation
- heterogeneous diffusivity matching the mesh

It is not expected to work for nonlinear diffusivity...

Two key ingredients:

Weighted averages to decide the amount of diffusive flux $\{\!\{u\}\!\}_\omega\coloneqq\omega_{
m l}u_{
m l}+\omega_{
m r}u_{
m r}$

$$\omega_{l} + \omega_{r} \coloneqq 1 \qquad \begin{cases} \omega_{l} = \frac{\kappa_{r}}{\kappa_{l} + \kappa_{r}}, & \omega_{r} = \frac{\kappa_{l}}{\kappa_{l} + \kappa_{r}} & \text{if } \kappa_{l} + \kappa_{r} \neq 0, \\ \omega_{l} = \omega_{r} = \frac{1}{2} & \text{otherwise.} \end{cases}$$

• Relaxation of penalty to enforce continuity: a discontinuity should approximate better sharp fronts.

$$\gamma_F = \{\![\kappa]\!]_{\omega} = \frac{2\kappa_{\mathrm{l}}\kappa_{\mathrm{r}}}{\kappa_{\mathrm{l}} + \kappa_{\mathrm{r}}} \quad \varrho_F^{\mathrm{I}} \coloneqq \frac{\sigma_F^{\mathrm{I}}\gamma_F}{\mu_F}$$
$$\mu_F \coloneqq \frac{\mathfrak{h}_F^{\beta}}{p_F^2}$$

AMR and WDG are (ideally) working in synergy through the estimation-based error indicator:

- AMR is used as a capturing technique
- WDG adjusts the local numerical smoothness (oscillations are reduced)

Ern & Proft 2006 Proft & Rivière 2006/2009 Ern/Di Pietro 2008

Numerical results

- Polmann's test-case
- Tracy's benchmark
- Simulation of La Verne dam wetting
- Simulation of an idealized beach
- Simulation of one case from BARDEX II

1D vertical infiltration into a soil column (Van Genuchten-Mualem relations)

Wetting front at t = 24h

- 40 days of reservoir impoundment (dynamic forcing)
- **Experimental data** available •

Challenging simulation:

- 1-order BDF and quadratic approximation
- AMR and WDG •

•

J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation

X-Axis (m)

-50

25 May 2021

100

50

50

-100

An augmented simulation:

- No WDG
- Finer discretization in permeable materials
- Refinement for both gradient- and estimation-based error indicators
- Refinement around water table
- 4-order BDF

No spurious oscillations! But 13.5 times longer than the previous simulation... (Intel Xeon CPU 2.4 GHz)

Scope of the study:

- Sedimentary beaches (sand, loamy sand) with gentle slope
- Long infragravity waves + large fluctuations
- Low groundwater velocity, mainly pressure waves, wide range of saturation

Scope of the study:

- Sedimentary beaches (sand, loamy sand) with gentle slope
- Long infragravity waves + large fluctuations
- Low groundwater velocity, mainly pressure waves, wide range of saturation

Issues on beach response to swash event:

- Global/local space scale + Time-averaged/resolved scale
- Infiltration/exfiltration (coupling), seepage
- Sediment transport (accretion/erosion)
- Morphodynamics (hydroporomechanics) ... and more!

Scope of the study:

- Sedimentary beaches (sand, loamy sand) with gentle slope
- Long infragravity waves + large fluctuations
- Low groundwater velocity, mainly pressure waves, wide range of saturation

Issues on beach response to swash event:

- Global/local space scale + Time-averaged/resolved scale
- Infiltration/exfiltration (coupling), seepage
- Sediment transport (accretion/erosion)
- Morphodynamics (hydroporomechanics) ... and more!

Slea Head beach, Ireland

J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation 25 May 2021

Slea Head beach, Ireland

25 May 2021

Swash

 $tanB \approx 0.01$

Bores

الكرائية والمتراجع والمتحج والمحافظ والمراجع والمراجع المراجع المراجع المراجع والمحافظ والمحافظ والمحافظ والمح

- **BARDEX** = BARrier Dynamics EXperiment II at Delta Flume, Netherlands, 2012:
 - Sand barrier of 95 m (flume \approx 140 m) whose crest reaches 4.5 m
 - Van Genuchten-Mualem relations taken for medium-sized sand
 - T = 750 s

Video from Hachem Kassem (2015, YouTube ©)

J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation

J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation

Conclusion

- Summary
- Perspectives

Summary

Richards' equation:

- Model for groundwater flows in variablysaturated porous media
- Capillary and gravity effects but no air-phase

Seepage

Numerical solution can be troublesome because of nonlinearities, degeneracies, multiple spacetime scales leading to convergence problems and spurious oscillations

Water table recharge (Vauclin et al. 1979)

Summary

Richards' equation:

- Model for groundwater flows in variablysaturated porous media
- Capillary and gravity effects but no air-phase

Seepage

Numerical solution can be troublesome because of nonlinearities, degeneracies, multiple spacetime scales leading to convergence problems and spurious oscillations

High-order adaptive DG strategy: my thesis (HAL) + Clément et al., Advances in Water Resources, 2021

- High-order method (*hp*-adaptation + BDF)
- Nonlinear robustness with adaptive time stepping
- Unstructured non-conforming hybrid mesh
- Local mass balance
- Flexibility by weak penalization to enforce continuity, stability, boundary conditions, projection
- Block-based AMR (capturing techniques) and WDG (smoothness adjustment) work in synergy through error indicator to resolve sharp fronts/layers
- Heuristic parameters of adaptation should be investigated. Improvement is supported by the augmented simulation.

Water table recharge (Vauclin et al. 1979)

Perspectives

Simulations:

Confrontation with beach groundwater experiments (BARDEX II, Rousty beach)

Mathematical modelling and numerical methods:

Coupling of surface/groundwater flow (iterative coupling and/or enhanced interface boundary condition)

Improvements

- Nonlinear convergence: robustness and speed by relaxations/accelerations (scheme) or regularizations (Richards' equation)
- Adaptivity algorithm (threshold values, refinement level, frequency, blocks, solution process)
- And more with DG? Penalty values, flux schemes, interpolation basis
- *hp*-Adaptation, error estimation

Programming for *Rivage* code:

- Optimization, parallelization, domain decomposition
- ≽ 3D
- DG hyperbolic solver for Saint-Venant's equation + two-fluid equation

