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Daytona beach, FloridaWaikiki beach, Hawaii

Groundwater dynamics in sedimentary beaches controls various processes: 
• Exchanges of fresh/salt water between ocean and coastal aquifers
• Diffusion of dissolved materials (nutrients, pollutants)
• Biogeochemical cycles
• Sediment transport

Relevant questions in the context of global warming (sea level rise) and coastal urbanization:
• Sandy beaches represent around 33% of coastline
• Erosion affects around 25% of sandy beaches
• Important benefits (tourism and ecosystem services)
Luijendijk et al. 2018, Vousdoukas et al. 2020
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Experiment in Rousty beach, France, Sous et al. 2016, 2017
Velocity magnitudes are between 10-4 and 10-6 m/s

Modelling starting point: 
• Recent but good experimental understanding 

Steenhauer et al. 2016, Turner et al. 2016, Heiss et al. 2015

• Experimental limitations and few models Li et al. 2002, 
Malott et al. 2016
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Yasuda test-case

Li and Raichlen experiment

Numerical starting point: 
• 3D hyperbolic solver for wave 

propagation and wave breaking
• Saint-Venant + bifluid Euler + Serre-

Green-Naghdi + FSI
• Coupling, interface sharpening, etc
• Unstructured finite volume (MUSL, 

Riemann solver, Godunov scheme)
• 2nd order RK, Adams-Bashforth, local 

time stepping
• Block-based adaptive mesh refinement
• Domain decomposition, parallel 

computing
Ersoy et al. 2013, Golay et al. 2015

Experiment in Rousty beach, France, Sous et al. 2016, 2017
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I. Modelling
• Richards’ equation
• Derivation
• Hydraulic properties
• Seepage
• Challenges and solving strategy

III. Adaptation
• Adaptive mesh refinement (AMR)
• A posteriori error estimates
• Weighted discontinuous Galerkin (WDG) 

methods

II. Numerical methods
• Discontinuous Galerkin (DG) methods
• Backward differentiation formula (BDF) 

methods
• Linearization

IV. Numerical results
• Polmann’s test-case
• Tracy’s benchmark
• Simulation of La Verne dam wetting
• Simulations for BARDEX II

Conclusion
• Summary
• Perspectives
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Richards’ equation

Richards’ equation is a classic nonlinear parabolic equation to describe flow in variably-saturated porous 
media Richardson 1922, Richards 1931

25 May 2021J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation6

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion

Mixed form of Richards’ equation:
• Pressure head       (m)
• Water content

Elevation     (m)
Hydraulic conductivity tensor      (m/s)
Hydraulic head                    (m)
Darcy flux                             (m/s)

Farthing and Ogden 2017, Zha et al. 2019
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Mass conservation principle applied on a two-phase flow in porous medium:

• Flux modelled by empiric observations Darcy 1851, Buckingham 1907

• Theoretical derivations of flux are possible but problem-dependant (homogenization, volume 
averaging)
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Capillary pressure: empiric invertible function

→ 2 equations for 4 unknows

➢ Two closure conditions:
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Main hypothesis
• Air viscosity smaller than water 

viscosity so air pressure balances 
faster = hydrostatic

Additional hypotheses
(H1) Homogeneous water
(H2) Incompressible water
(H3) Not deformable solid skeleton

Hydraulic conductivity [L]

Water content

Pressure head [L]

Air phase (pressure + saturation) is known and 
can be neglected

(H1) + (H2)

+ (H3)

Mixed-form
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Seepage boundary condition
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• Seepage boundary condition

= mix of Neumann and Dirichlet boundary conditions

= outflow boundary condition
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Degeneracy possibilities:
• Complete saturation → and      are constant → elliptic equation → fast diffusion
• Almost complete unsaturation→ and     go to 0 rapidly → stopped diffusion
• For                    → and    can exhibit very steep gradients

Other strong nonlinearities could happen due to:
• Steep or dynamic boundary conditions
• Steep initial condition
• Heterogeneous porous medium
• Seepage boundary condition (≈ nonlinear Robin boundary condition)

Groundwater flow features:
• Wetting front moving dynamically and possibly very sharp ↔ nonlinear varying diffusivity
• Internal layer is static and linked to a discontinuity ↔ heterogeneous and anisotropic diffusivity
• Spurious oscillations = non-physical effect (undershoot/overshoot)
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➢ Nonlinear solver can fail to converge (linearization)

How to get an accurate (physical), efficient (cost-effective) and robust (convergent) simulation?
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Richards’ equation:
➢ Extremely sharp fronts (spatial smoothness)
➢ Stiff partial differential equation (time discretization)
➢ Nonlinear solver can fail to converge (linearization)

How to get an accurate (physical), efficient (cost-effective) and robust (convergent) simulation?

Chosen strategy :
➢ High-order adaptive mesh refinement
➢ Implicit time scheme
➢ Iterative nonlinear process with adaptive time stepping + stopping criteria
➢ Flexible discrete approximation
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Numerical methods

• Discontinuous Galerkin (DG) methods
• Backward differentiation formula (BDF) methods
• Linearization
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DG methods: Reed & Hill 1971, Di Pietro, Cockburn/Arnold, Dolejší/Feistauer, Rivière

• Based on variational formulation as in Finite Element Methods (FEM)

• Designed in an element-wise fashion as in Finite Volume Methods (FVM)
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Advantages:

• Compact stencil → high-order approximation

• Element-wise formulation

• Possible discontinuity

• Unstructured, non-conforming and hybrid 
mesh →mesh adaptation

• Weak formulation → boundary condition, analysis

• Local mass balance

• Algebraic system of decoupled equations

• Sparse structure by blocks (solving)

• Parallelization
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Drawbacks:

• Oscillations (lack of robustness)

• Stability by penalty parameters

• Dispersion at discontinuity

• Computational cost→more DoF

• Implementation may be difficult

• Quadrature formula

• Visualization

• Less available codes

• DoF with no physical meaning

• Still gaps in theoretical analysis
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Space semidiscretization: DG methods
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Weak formulation:
➢ Multiply the problem by a test function
➢ Integrate on each element
➢ Use Green’s theorem
➢ Sum over all elements

Rivière 2008
Dolejší and Feistauer 2015
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Penalty for 
continuity constraint

Volume

Interior face

Boundary faces
Dirichlet face

Neumann face
Seepage face

Penalty for Dirichlet and 
seepage boundary conditions
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Chosen method: (primal) IIPG

DG for Richards’ equation:
1D LDG Li et al. 2007 

2D mixed SIPG Sochala 2009

2D STDG Dolejší et al. 2019

Epshteyn and Rivière 2006
Dolejší 2008



DG solution representation
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Choice of the polynomial basis:
• Orthogonal (numerical property)
• Hierarchical (adaptation)

Nodal basis:
• Difficulty to adapt for high-order
• DoF have physical meaning
• Examples : Lagrange, Hermite

Modal basis:
• Easy implementation
• DoF are just coefficients in the DG expansion
• Examples : monomial, Taylor, Legendre, Dubiner

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion
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• Easy implementation
• DoF are just coefficients in the DG expansion
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DG numerical approximation:
What is the relation with the number of DoF, basis order, 
element shape?
What is computational cost?

Monomial basis = each stage
Tensorized monomial basis = each coloured V-shaped mark



Time discretization: Backward Differentiation Formula
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BDF methods: Dolejší et al. 2008, Hay et al. 2015

• Multistep implicit schemes
• High-order (up to 6)
• Good stability properties for stiff equations
• Divided differences for adaptive time stepping
• Implicit Euler scheme = 1-order BDF method

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion

Convergence for Tracy’s benchmark



Linearization: Newton-Raphson method and adaptive time step
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Newton-Raphson method → Fixed-point iteration

Paniconi & Putti 1994
Lehmann & Ackerer 1998
List & Radu 2016

Relaxation and stopping criteria:
• Damped Newton-Raphson method possibly in combination with fixed-point iteration
• Two convergence criteria: residual and incremental



Adaptive time stepping → nonlinear iterations (heuristic methods)

Convergence is strengthened but not guaranteed. What about performance?

Linearization: Newton-Raphson method and adaptive time step
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Adaptation

• Adaptive mesh refinement (AMR)
• A posteriori error estimates
• Weighted discontinuous Galerkin (WDG) methods



Adaptive mesh refinement (AMR)
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Adaptivity:

• Block-based AMR

• Sequential process

• Threshold values for selection

• Projection by local DG problem

J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation22
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(a) Block mesh
(b) Refinement level
(c) Mesh generation using quadtree
(d) Morton numbering

BB AMR Altazin et al. 2016, Pons & Ersoy 2019
hp Mitchell 2014
Richards’ Li et al. 2006/2007, Miller et al. 2006, Šolín & Kuraz 2011,

Dolejší 2019  



A posteriori error estimate

25 May 2021J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation23

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion

Nonlinear parabolic FEM Verfürth 2013
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hp (steady) convection-diffusion DG

Houston et al. 2007
Schötzhau & Zhu 2009/2010



A posteriori error estimate

25 May 2021J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation23

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion

Nonlinear parabolic FEM Verfürth 2013
hp elliptic FEM Melenk & Wohlmuth 2001
hp (steady) convection-diffusion DG

Houston et al. 2007
Schötzhau & Zhu 2009/2010

Error indicator based on a posteriori estimation

Energy norm



A posteriori error estimate

25 May 2021J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation23

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion

Nonlinear parabolic FEM Verfürth 2013
hp elliptic FEM Melenk & Wohlmuth 2001
hp (steady) convection-diffusion DG

Houston et al. 2007
Schötzhau & Zhu 2009/2010

Error indicator based on a posteriori estimation

Energy norm

“Residual derivation”



A posteriori error estimate

25 May 2021J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation23

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion

Nonlinear parabolic FEM Verfürth 2013
hp elliptic FEM Melenk & Wohlmuth 2001
hp (steady) convection-diffusion DG

Houston et al. 2007
Schötzhau & Zhu 2009/2010

Volume residual

Error indicator based on a posteriori estimation

Energy norm

“Residual derivation”



A posteriori error estimate

25 May 2021J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation23

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion

Nonlinear parabolic FEM Verfürth 2013
hp elliptic FEM Melenk & Wohlmuth 2001
hp (steady) convection-diffusion DG

Houston et al. 2007
Schötzhau & Zhu 2009/2010

Volume residual

Error indicator based on a posteriori estimation

Energy norm

Face residual (flux jump)

“Residual derivation”



A posteriori error estimate

25 May 2021J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation23

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion

Nonlinear parabolic FEM Verfürth 2013
hp elliptic FEM Melenk & Wohlmuth 2001
hp (steady) convection-diffusion DG

Houston et al. 2007
Schötzhau & Zhu 2009/2010

Volume residual

Error indicator based on a posteriori estimation

Energy norm

Face residual (flux jump)

Solution jump

“Residual derivation”
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How to avoid spurious oscillations without use of demanding techniques (slope limiters)?  WDG!
• developed for convection-diffusion equation
• heterogeneous diffusivity matching the mesh

It is not expected to work for nonlinear diffusivity…

Two key ingredients:
• Weighted averages to decide the amount of diffusive flux

AMR and WDG are (ideally) working in synergy through the estimation-based error indicator:
➢ AMR is used as a capturing technique
➢ WDG adjusts the local numerical smoothness (oscillations are reduced)

Ern & Proft 2006
Proft & Rivière 2006/2009
Ern/Di Pietro 2008

• Relaxation of penalty to enforce continuity: a discontinuity should approximate better sharp fronts.
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Numerical results

• Polmann’s test-case
• Tracy’s benchmark
• Simulation of La Verne dam wetting
• Simulation of an idealized beach
• Simulation of one case from BARDEX II



Polmann’s test-case
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1D vertical infiltration into a soil column (Van Genuchten-Mualem relations)

Computations:
• M100 = mesh with 100 elements
• M1000 = mesh with 1000 elements
• AMR (211 elements)
• WDG (100 elements)

M100 computation: spurious oscillation at the wetting front

Polmann et al. 1988
Celia et al. 1990
Manzini & Ferraris 2004
Sochala 2008 

Pressure head (cm)



Polmann’s test-case comparison
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Wetting front at t = 24h



Tracy’s benchmark
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Analytical solution is known Tracy 2006: 
• Steep top boundary condition
• Inconsistency between boundary condition and initial condition

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion

Šolín & Kuraz 2011 
Dolejší et al. 2019

Pressure head (m)

Hydraulic head (m)



Error indicator effectivity
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True error in energy norm Estimation-based error indicator



Wetting of La Verne dam
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La Verne dam is an earth-filled dam:
• 40 days of reservoir impoundment

(dynamic forcing)
• Experimental data available
• Multi-materials configuration (Vachaud’s

and Van Genuchten-Mualem relations)
• Seepage

Bonelli and Golay 1993
Fleureau and Fry 1991

Challenging simulation:
• 1-order BDF and quadratic approximation
• AMR and WDG

Reservoir height



Results of La Verne dam simulation
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Hydraulic head (m)

Water content

Error indicator (estimation)
Mesh

Block refinement level

T = 40 days



Discussion
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Elevated-view at t = 30 days
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Some background analysis

• Developed saturation-based Richards equation:



Investigation
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An augmented simulation:
• No WDG
• Finer discretization in permeable materials
• Refinement for both gradient- and estimation-based error indicators
• Refinement around water table
• 4-order BDF

No spurious oscillations! But 13.5 times longer than the previous simulation… (Intel Xeon CPU 2.4 GHz)
→ 42h37min VS 3h11min

Hydraulic head (m)
Mesh



Wave-forced beach groundwater dynamics
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Scope of the study:

• Sedimentary beaches (sand, loamy sand) with 
gentle slope

• Long infragravity waves + large fluctuations

• Low groundwater velocity, mainly pressure 
waves, wide range of saturation

Issues on beach response to swash event:

• Global/local space scale + Time-averaged/resolved scale

• Infiltration/exfiltration (coupling), seepage

• Sediment transport (accretion/erosion)

• Morphodynamics (hydroporomechanics) … and more!

Swash: “uprush” Swash: “backwash”

Slea Head beach, Ireland

Shallow water equations! (SWASH code, Zijlema et al. 2011)

Darcy’s law/Dupuit-Forchheimer? → Richards’ equation
Coupling? → Forcing

Seven Mile beach, Australia



Large-scale experiment: BARDEX II

25 May 2021J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation36

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion

BARDEX = BARrier Dynamics EXperiment II at Delta Flume, Netherlands, 2012:
• Sand barrier of 95 m (flume ≈ 140 m) whose crest reaches 4.5 m
• Van Genuchten-Mualem relations taken for medium-sized sand
• T = 750 s

Turner et al. 2016

Video from Hachem Kassem (2015, YouTube ©)
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BARDEX = BARrier Dynamics EXperiment II at Delta Flume, Netherlands, 2012:
• Sand barrier of 95 m (flume ≈ 140 m) whose crest reaches 4.5 m
• Van Genuchten-Mualem relations taken for medium-sized sand
• T = 750 s For each case, two conditions:

• No wave
• Irregular wavesStudy of hydro- and morphodynamic effects for a sand barrier:

• Case A2: Sea < lagoon
• Case A4: Sea > lagoon
• Case A6: Sea = lagoon

Turner et al. 2016

Video from Hachem Kassem (2015, YouTube ©)



Simulation of case A2 from BARDEX II
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Sea < lagoon, irregular waves

Hydraulic head
(m)

Flux (m/s)

Sea < lagoon, no wave

Mesh

Hydraulic head
(m)

Flux (m/s)



Simulation of case A4 from BARDEX II
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Sea > lagoon, irregular waves

Hydraulic head
(m)

Flux (m/s)

Sea > lagoon, no wave

Hydraulic head
(m)

Flux (m/s)



Simulation of case A6 from BARDEX II
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Sea = lagoon, irregular waves

Hydraulic head
(m)

Flux (m/s)

Sea = lagoon, no wave

Hydraulic head
(m)

Flux (m/s)
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Conclusion

• Summary
• Perspectives
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Richards’ equation:

➢ Model for groundwater flows in variably-
saturated porous media

➢ Capillary and gravity effects but no air-phase

➢ Seepage

➢ Numerical solution can be troublesome because 
of nonlinearities, degeneracies, multiple space-
time scales leading to convergence problems and
spurious oscillations
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Water table recharge (Vauclin et al. 1979)



Summary

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion

25 May 2021

Richards’ equation:

➢ Model for groundwater flows in variably-
saturated porous media

➢ Capillary and gravity effects but no air-phase

➢ Seepage

➢ Numerical solution can be troublesome because 
of nonlinearities, degeneracies, multiple space-
time scales leading to convergence problems and
spurious oscillations

J.-B. Clément - Richards' equation, Discontinuous Galerkin, Numerical simulation41

High-order adaptive DG strategy: my thesis (HAL) + 
Clément et al., Advances in Water Resources, 2021

➢ High-order method (hp-adaptation + BDF)

➢ Nonlinear robustness with adaptive time 
stepping

➢ Unstructured non-conforming hybrid mesh

➢ Local mass balance

➢ Flexibility by weak penalization to enforce 
continuity, stability, boundary conditions, 
projection

➢ Block-based AMR (capturing techniques) and 
WDG (smoothness adjustment) work in synergy 
through error indicator to resolve sharp 
fronts/layers

➢ Heuristic parameters of adaptation should be 
investigated. Improvement is supported by the 
augmented simulation.

Water table recharge (Vauclin et al. 1979)



Perspectives
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Simulations:

➢ Confrontation with beach groundwater experiments (BARDEX 
II, Rousty beach)

Mathematical modelling and numerical methods:

➢ Coupling of surface/groundwater flow (iterative coupling 
and/or enhanced interface boundary condition)

➢ Improvements
➢ Nonlinear convergence: robustness and speed by 

relaxations/accelerations (scheme) or regularizations 
(Richards’ equation)

➢ Adaptivity algorithm (threshold values, refinement level, 
frequency, blocks, solution process)

➢ And more with DG? Penalty values, flux schemes, 
interpolation basis

➢ hp-Adaptation, error estimation

Programming for Rivage code:

➢ Optimization, parallelization, domain decomposition

➢ 3D

➢ DG hyperbolic solver for Saint-Venant’s equation + two-fluid 
equation

Introduction Modelling Numerical methods Adaptation Numerical results Conclusion

jean-baptiste.clement@umontpellier.fr


