

# Boundary conditions for the time-discrete Green–Naghdi equations

joint work with Sebastian Noelle (RWTH Aachen University) Martin Parisot (Cardamom team – Inria Bordeaux)





## Serre/Green-Naghdi equations

BIELEFELD Faculty of Mathematics

UNIVERSITÄT

 $\rightsquigarrow$  derived by vertical averaging from free surface incompressible Euler equations

$$\begin{array}{ll} \partial_t h + \nabla \cdot (h\overline{u}) &= 0 & h & \text{water depth} \\ \partial_t (h\overline{u}) + \nabla \cdot \left(h\overline{u} \otimes \overline{u} + \frac{g}{2}h^2 \mathbf{I}\right) &= -\nabla (h\overline{q}) - (gh + q_B)\nabla B & \sigma \\ \partial_t (h\overline{w}) + \nabla \cdot (h\overline{w} \ \overline{u}) &= q_B & \sigma \\ \partial_t (h\sigma) + \nabla \cdot (h\sigma \ \overline{u}) &= \sqrt{3}(2\overline{q} - q_B) & \overline{q} & \text{standard deviation} \\ \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2}\nabla \cdot \overline{u} & \text{and} & \sigma = -\frac{h}{2\sqrt{3}}\nabla \cdot \overline{u} & g \\ \end{array}$$

1/11

• cf. Aïssiouene '16, Gavrilyuk '17, Parisot '19, Popinet '20

- alternative formulation for  $(h, \overline{u})$ , cf. Peregrine'67, ...
- → due to its non-linear and dissipative nature handling non-standard boundary conditions is a challenge
  - cf. Audiard '12, Kazolea '14, Lannes '20, Kazakova '20, Aïssiouene '20

Tabea Tscherpel

Boundary conditions for the time-discrete Green-Naghdi equations

### Semi-discrete equations and splitting

BIELEFELD Faculty of Mathematics

UNIVERSITÄT

 $U \coloneqq (\overline{u}, \overline{w}, \sigma)^{\top}$  velocity •  $\delta_t^n > 0$  time step •  $h^{n+1} = h^{n*}$ 

(I) Shallow water / advection step

$$\begin{pmatrix} h^{n*} \\ h^{n*} U^{n*} \end{pmatrix} = \begin{pmatrix} h^n \\ h^n U^n \end{pmatrix} - \delta^n_t \nabla \cdot F^n + \delta^n_t S^n$$

(II) Correction step 
$$h^{n*}U^{n+1} = h^{n*}U^{n*} - \delta^n_t h^{n*} \pi^{n+1}(\overline{q}^{n+1}, q_B^{n+1})$$
$$\overline{w}^{n+1} = \overline{u}^{n+1} \cdot \nabla B - \frac{h^{n*}}{2} \nabla \cdot \overline{u}^{n+1} \quad \text{and} \quad \sigma^{n+1} = -\frac{h^{n*}}{2\sqrt{3}} \nabla \cdot \overline{u}^{n+1}$$

splitting schemes e.g. in Bonneton '11, Aïssiouene '16, Favrie '17, ...

- $L^2(\Omega; h)$  weighted Lebesgue space with inner product  $\langle f, g \rangle_h := \int_{\Omega} f g h \, dx$ , if  $0 < c \le h \le C < \infty$
- space of admissible functions

$$\mathbb{A}_h := \left\{ U \in L^2(\Omega; h) : \quad \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \quad \text{and} \quad \sigma = -\frac{h}{2\sqrt{3}} \nabla \cdot \overline{u} \right\}$$

Tabea Tscherpel

Boundary conditions for the time-discrete Green-Naghdi equations



BIELEFELD Faculty of Mathematics

UNIVERSITÄT

Assume that  $0 < c \leq h \leq C < \infty$  is fixed and  $B \in W^{1,\infty}(\Omega)$ .

Orthogonality

$$\left\langle U, \pi(\overline{q}, q_B) \right\rangle_h = -\int_{\Omega} \nabla \cdot (h\overline{q} \,\overline{u}) \, \mathrm{d}x = 0$$

Let  $\Pi_h \colon L^2(\Omega; h) \to \mathbb{A}_h$  be the  $\langle \cdot, \cdot \rangle_h$ -orthogonal projection onto

$$\mathbb{A}_h \coloneqq \left\{ U \in L^2(\Omega; h) \colon \overline{w} = \overline{u} \cdot \nabla B - \frac{h}{2} \nabla \cdot \overline{u} \quad \text{and} \quad \sigma = -\frac{h}{2\sqrt{3}} \nabla \cdot \overline{u} \right\}$$

Recall: We want to decompose  $U^* = U + (\delta_t)\pi$  with  $U \in \mathbb{A}_h$  and  $\pi \in \mathbb{A}_h^{\perp}$ .

Wellposedness of 'Projection solution'

 $U = \prod_h (U^*) \in \mathbb{A}_h$  and  $\delta_t \pi(\overline{q}, q_B) = U^* - \prod_h (U^*) \in \mathbb{A}_h^{\perp}$  form a (unique) solution of the correction step and then  $\overline{u} \in H(\operatorname{div}; \Omega)$  and  $h\overline{q} \in H^1(\Omega)$ .

 $\rightsquigarrow$  On  $\Omega$  bounded  $\overline{u}$  has normal trace in  $H^{-1/2}(\partial \Omega)$  and  $h\overline{q}$  has trace in  $H^{1/2}(\partial \Omega)$ .

Tabea Tscherpel

#### Projection structure for bounded $\boldsymbol{\Omega}$

BIELEFELD Faculty of Mathematics

UNIVERSITÄT

Assume  $0 < c \leq h \leq C < \infty$ ,  $B \in W^{1,\infty}(\Omega)$  and  $\partial \Omega =: \Gamma_{hq} \cup \Gamma_u$ .

Orthogonality

$$\langle U, \pi(h\overline{q}, q_B) \rangle_h = -\int_{\Omega} \nabla \cdot (h\overline{q}\,\overline{u}) \,\mathrm{d}x = -\int_{\partial\Omega} \stackrel{=0 \text{ on }\Gamma_{hq}}{\widehat{hq}} \stackrel{=0 \text{ on }\Gamma_u}{\overline{u} \cdot \nu} \,\mathrm{d}s(x) = 0$$



Let  $\Pi_{h,0} \colon L^2(\Omega;h) \to \mathbb{A}_{h,0}$  be the  $\langle \cdot, \cdot \rangle_h$ -orthogonal projection onto

$$\begin{split} \mathbb{A}_{h,0} &:= \{ U \in \mathbb{A}_h \colon \overline{u} \in \mathcal{H}_{\Gamma_u}(\operatorname{div};\Omega) \} \\ \text{with} \quad \mathcal{H}^1_{\Gamma_{hq}} = \{ f \in \mathcal{H}^1(\Omega) \colon f|_{\Gamma_{hq}} = 0 \}, \\ \mathcal{H}_{\Gamma_u}(\operatorname{div};\Omega), = \{ v \in \mathcal{H}(\operatorname{div};\Omega) \colon \langle v \cdot \nu, f \rangle_{\partial\Omega} = 0 \quad \forall f \in \mathcal{H}^1_{\Gamma_{hq}}(\Omega) \}. \end{split}$$

Wellposedness of 'Projection solution'

 $U = \prod_{h,0} (U^*) \in \mathbb{A}_{h,0}$  and  $\delta_t \pi(\overline{q}, q_B) = U^* - \prod_h (U^*) \in \mathbb{A}_{h,0}^{\perp}$  form a (unique) solution of the correction step and  $h\overline{q} \in H^1_{\Gamma_{hq}}(\Omega)$ .



#### **Boundary conditions**

Faculty of Mathematics

Inhomogeneous boundary conditions (formally)

 $h\overline{q} = \widetilde{hq}$  on  $\Gamma_{hq}$  and  $\overline{u} \cdot \nu = \widetilde{u}$  on  $\Gamma_{u}$ 

More rigorously: given  $\widetilde{hq} \in H^{1/2}(\Gamma_{hq})$  and  $\widetilde{u} \in H^{-1/2}(\partial\Omega)$ .

We use reference functions  $U^R, \pi^R = \pi(h\overline{q}^R, 0)$  for reduction to hom. problem.

Wellposedness of 'Projection solution'

$$U = \prod_h (U^* - U^R - \delta_t \pi^R) + U^R$$
 (and  $\delta_t \pi = U^* - U$ )

form a (unique) solution of the correction step, are independent of the reference functions and satisfy

$$\begin{split} \frac{1}{\delta_t} \left( \left\| U \right\|_h^2 - \left\| U^* \right\|_h^2 \right) &= -\delta_t \left\| \pi(\overline{q}, q_B) \right\|_h^2 - 2 \langle U, \pi(\overline{q}, q_B) \rangle_h \\ &= -\delta_t \left\| \pi(\overline{q}, q_B) \right\|_h^2 - 2 \langle \overline{u} \cdot \nu, h \overline{q} \rangle_{\partial \Omega}. \end{split}$$

Tabea Tscherpel

### Fully discrete correction step

Faculty of Mathematics

UNIVERSITÄT

Aim: Preserve (discrete) projection property / orthogonality at the discrete level

 $\mathbb{T}$  tesselation •  $a_{\star} = (a_k)_{k \in \mathbb{T}}$  discrete function • given  $h_{\star} > 0$ 

#### Design of a simple scheme

- **()** discrete scalar product  $\langle f_\star, g_\star \rangle_{h_\star}^{\delta} = \sum_{k \in \mathbb{T}} |k| f_k \cdot g_k h_k$
- **(2)**  $\mathbb{A}_{h_{\star}}^{\delta}$  (and projection  $\Pi_{h_{\star}}^{\delta}$ ) with central difference operator

$$abla_k^\delta \cdot arphi_\star = rac{1}{|k|} \sum_{f \in \mathbb{F}_k} rac{|f|}{2} (arphi_k + arphi_{k_f}) \cdot 
u_f^k$$



6/11

- $\bigcirc$  (reconstruction of hydrodynamic pressure  $\overline{q}_\star, (\overline{q}_B)_\star$  from  $\delta_t \pi_\star = U^*_\star U_\star)$
- $\rightsquigarrow$  solve e.g. as system of equations on  $\overline{u}_{\star}$

**Orthogonality** 
$$\langle U_{\star}, \pi_{\star} \rangle_{h_{\star}}^{\delta} = -\sum_{k \in \mathbb{T}} \sum_{f \in \mathbb{F}_{k}} |f| \frac{h_{k_{f}} \overline{q}_{k_{f}} \overline{u}_{k} + h_{k} \overline{q}_{k} \overline{u}_{k_{f}}}{2} \cdot \nu_{k}^{k_{f}} = 0$$

→ entropy-stable scheme [Parisot '19]

Tabea Tscherpel

Boundary conditions for the time-discrete Green-Naghdi equations

#### Boundary conditions for simple scheme

 $\Gamma_{hq}$ 

h = 0

W

BIELEFELD Faculty of Mathematics

UNIVERSITÄT

- If  $h_{\star} \geq 0$ : project only on the *wet area*  $\mathbb{W} \subset \mathbb{T}$  with  $h_k > 0$  for all  $k \in \mathbb{W}$
- decompose the boundary faces  $\partial \mathbb{W} = \Gamma_u \cup \Gamma_{hq} \cup \Gamma_h$
- $k_i/k_g$  interior/ghost cell for boundary face f,  $\nu_f$  outward normal

Projection condition (homogeneous)

$$\left(h_{k_g}\overline{q}_{k_g}\overline{u}_{k_i}+h_{k_i}\overline{q}_{k_i}\overline{u}_{k_g}
ight)\cdot 
u_f=0 \qquad ext{for any } f\in\partial\mathbb{W}$$

This is satisfied setting

Homogeneous boundary conditions

$$\overline{u}_{k_g} \cdot \nu_f = \begin{cases} -\overline{u}_{k_i} \cdot \nu_f & \\ \overline{u}_{k_i} \cdot \nu_f & \\ 0 & \end{cases} \quad h_{k_g} \overline{q}_{k_g} = \begin{cases} h_{k_i} \overline{q}_{k_i} & f \in \Gamma_u \\ -h_{k_i} \overline{q}_{k_i} & f \in \Gamma_{hq} \\ 0 & f \in \Gamma_h \end{cases}$$

 $\rightsquigarrow$  well-posedness and entropy stability of fully discrete correction step

#### Boundary conditions for simple scheme

 $\Gamma_{hq}$ 

W

BIELEFELD Faculty of Mathematics

UNIVERSITÄT

- If  $h_{\star} \geq 0$ : project only on the *wet area*  $\mathbb{W} \subset \mathbb{T}$  with  $h_k > 0$  for all  $k \in \mathbb{W}$
- decompose the boundary faces  $\partial \mathbb{W} = \Gamma_u \cup \Gamma_{hq} \cup \Gamma_h$
- $k_i/k_g$  interior/ghost cell for boundary face f,  $\nu_f$  outward normal

Projection condition (homogeneous)

$$\left(h_{k_g}\overline{q}_{k_g}\overline{u}_{k_i}+h_{k_i}\overline{q}_{k_i}\overline{u}_{k_g}
ight)\cdot 
u_f=0 \qquad ext{for any } f\in\partial\mathbb{W}$$

Given boundary data:  $\widetilde{u}_f$  for  $f \in \Gamma_u$  and  $\widetilde{hq}_f$  for  $f \in \Gamma_{hq}$ 

Inhomogeneous boundary conditions

$$\overline{u}_{k_g} \cdot \nu_f = \begin{cases} 2\widetilde{u}_f - \overline{u}_{k_i} \cdot \nu_f & \\ \overline{u}_{k_i} \cdot \nu_f & \\ 0 & \\ \end{cases} \quad h_{k_g} \overline{q}_{k_g} = \begin{cases} h_{k_i} \overline{q}_{k_i} & f \in \Gamma_u \\ 2\widetilde{h} \overline{q}_f - h_{k_i} \overline{q}_{k_i} & f \in \Gamma_{hq} \\ 0 & f \in \Gamma_h \end{cases}$$

 $\rightsquigarrow$  well-posedness and entropy stability of fully discrete correction step

### Boundary conditions of full system

BIELEFELD Faculty of Mathematics

UNIVERSITÄT

Given at time step  $t_n$ :  $h_{\star}^n, \overline{u}_{\star}^n, (\overline{w}_{\star}^n, \sigma_{\star}^n)$  on  $\mathbb{T}$ 

| Step                    | solving for                                                                                                                                                                        | Required                                                                                                                         |                                                     |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| (Ia) Shallow water step | $\begin{pmatrix} h_{\star}^{*} \\ h_{\star}^{*} \overline{u}_{\star}^{*} \end{pmatrix}$                                                                                            | $egin{array}{c} h_{k_g}^n, \ \overline{u}_{k_g}^n \cdot  u_f \ [\overline{u}_{k_g}^n \cdot 	au_f \ 	ext{if inflow}] \end{array}$ | ${\leadsto}$ fixes $\delta^n_t > 0$ and $\mathbb W$ |
| (Ib) Advection step     | $\begin{pmatrix} \overline{w}_{\star}^{*} \\ \sigma_{\star}^{*} \end{pmatrix}$                                                                                                     | $[\overline{w}_{k_g}^n$ if inflow]                                                                                               |                                                     |
| (II) Correction step    | $\begin{pmatrix} \overline{u}_{\star}^{n+1} \\ \overline{w}_{\star}^{n+1} \\ \sigma_{\star}^{n+1} \end{pmatrix} / \begin{pmatrix} \overline{q}^{n+1} \\ q_{B}^{n+1} \end{pmatrix}$ | $ \overline{u}_{k_g}^{n+1} \cdot \nu_f  \text{on } \Gamma_u \\ h_{k_g}^{n+1} \overline{q}_{k_g}^{n+1}  \text{on } \Gamma_{hq} $  |                                                     |

→ periodic, wall bc, dry front [Parisot '19]



#### Wave generation inlet

 $\rightarrow$  prescribing the water depth and velocity ( $\partial \mathbb{T} = \Gamma_u$ ) as wave profile

```
(I) \widetilde{h}_{f}^{n}, \widetilde{u}_{f}^{n}, \widetilde{v}_{f}^{n}, \widetilde{w}_{f}^{n}
(II) \widetilde{u}_{f}^{n+1}
```

 $\begin{array}{l} \text{Travelling}\\ \text{Soliton}\\ \Omega=(0,1) \end{array}$ 



BIELEFELD Faculty of Mathematics

UNIVERSITÄT

Treat boundary as  $\Gamma_{hq}$ 

$$h_{k_g}^n \overline{u}_{k_g}^n \cdot \nu_{k_i}^{k_g} = 2\widetilde{hu}_f^n - h_{k_i}^n \overline{u}_{k_i}^n \cdot \nu_{k_i}^{k_g} \qquad \text{and} \qquad h_{k_g}^n \overline{q}_{k_g}^n = 2\widetilde{hq}_f^n - h_{k_i}^n \overline{q}_{k_i}^n,$$

 $\rightsquigarrow$  recover  $\overline{u}_{k_g}^n \cdot \nu_f$  and  $h_{k_g}^n$  if  $\overline{u}_{k_i}^n \cdot \nu_f \neq 0$ 



#### → similarities to stationary cnoidal waves

Tabea Tscherpel

Boundary conditions for the time-discrete Green–Naghdi equations



#### Summary and outlook

#### Summary

- 'projection solution' for correction step of the semi-discrete GN equations
- well-posedness of the correction step for a class of boundary conditions
- design of scheme with discrete projection property
- → entropy stability by construction
- simulation for bc of practical interest: wave generation and imposed discharge

#### Next steps

- adaptive strategy
- justify semi-discretization
- ...

### Thank you – Merci

Tabea Tscherpel

Boundary conditions for the time-discrete Green–Naghdi equations