
StarPU

EXA2PRO - EoCoE joint workshop

StarPU Tutorial, February, 24th 2021

Bඉඋඓ ග඗ ගඐඍ ඕඉඑඖ ඘ඉඏඍ

This tutorial is part of the EXA2PRO - EoCoE joint workshop taking place
online on February, 24th 2021

The general presentation slides are available as PDF.

The tutorial slides are available as PDF.

D඗උඓඍක ඌඍ඘ඔ඗ඡඕඍඖග

The tutorial will be performed within a docker container. See the Getting started guide instructions
(section 2) to deploy and run the container.

Sඍඛඛඑ඗ඖ Pඉකග 1: Tඉඛඓ-ඊඉඛඍඌ Pක඗ඏකඉඕඕඑඖඏ
M඗ඌඍඔ

A඘඘ඔඑඋඉගඑ඗ඖ Eචඉඕ඘ඔඍ: Vඍඋග඗ක Sඋඉඔඑඖඏ

A vector scaling example is available at the root of the archive file

Bඉඛඍ ඞඍකඛඑ඗ඖ

The original non-StarPU version (vector_scal0.c) is available in the material tarball and
shows the basic example that we will be using to illustrate how to use StarPU. It simply
allocates a vector, and calls a scaling function over it.

void vector_scal_cpu(float *val, unsigned n, float factor)
{

unsigned i;

for (i = 0; i < n; i++)
val[i] *= factor;

}

int main(int argc, char **argv)
{

float *vector;
unsigned i;

vector = malloc(sizeof(vector[0]) * NX);
for (i = 0; i < NX; i++)

vector[i] = 1.0f;

float factor = 3.14;
vector_scal_cpu(vector, NX, factor);

free(vector);
return 0;

}

SගඉකPU ඞඍකඛඑ඗ඖ

The StarPU version of the scaling example is available in the material tarball:

The main application (vector_scal_task_insert.c)
The CPU implementation of the codelet (vector_scal_cpu.c)
The CUDA implementation of the codelet (vector_scal_cuda.cu)
The OpenCL host implementation of the codelet (vector_scal_opencl.c)
The OpenCL device implementation of the codelet (vector_scal_opencl_kernel.cl)

C඗ඕ඘ඝගඉගඑ඗ඖ Kඍකඖඍඔඛ

Examine the source code, starting from vector_scal_cpu.c : this is the same vector_scal_cpu
computation code, which was wrapped into a vector_scal_cpu function which takes a series of
DSM interfaces and a non-DSM parameter

void vector_scal_cpu(void *buffers[], void *cl_arg) {

The code first gets the vector data, and extracts the pointer and size of the vector data:

struct starpu_vector_interface *vector = buffers[0];
float *val = (float *)STARPU_VECTOR_GET_PTR(vector);
unsigned n = STARPU_VECTOR_GET_NX(vector);

It then gets the factor value from the non-DSM parameter:

float factor;
starpu_codelet_unpack_args(cl_arg, &factor);

and it eventually performs the vector scaling:

for (i = 0; i < n; i++)
val[i] *= factor;

The GPU implementation, in vector_scal_cuda.cu, is basically the same, with the host part
(vector_scal_cuda) which extracts the actual CUDA pointer from the DSM interface, and
passes it to the device part (vector_mult_cuda) which performs the actual computation.

The OpenCL implementation in vector_scal_opencl.c and vector_scal_opencl_kernel.cl is
more hairy due to the low-level aspect of the OpenCL standard, but the principle remains the
same.

Mඉඑඖ C඗ඌඍ

Now examine vector_scal_task_insert.c

The cl (codelet) structure simply gathers pointers on the functions mentioned above, and notes
that the functions takes only one DSM parameter. It also notes that a performance model should
be used.

static struct starpu_codelet cl = {
.cpu_funcs = {vector_scal_cpu},
.cuda_funcs = {vector_scal_cuda},
.opencl_funcs = {vector_scal_opencl},

.nbuffers = 1,

.modes = {STARPU_RW},

.model = &perfmodel,
};

The main function starts with initializing StarPU with the default parameters:

starpu_init(NULL);

It then allocates the vector and fills it like the original code:

vector = malloc(sizeof(vector[0]) * NX);
for (i = 0; i < NX; i++)

vector[i] = 1.0f;

It then registers the data to StarPU, and gets back a DSM handle. From now on, the application is
not supposed to access vector directly, since its content may be copied and modified by a task on
a GPU, the main-memory copy then being outdated.

starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));

It then submits a (asynchronous) task to StarPU.

starpu_insert_task(&cl,
STARPU_VALUE, &factor, sizeof(factor),
STARPU_RW, vector_handle,
0);

It waits for task completion:

starpu_task_wait_for_all();

It unregisters the vector from StarPU, which brings back the modified version to main memory, so
the result can be read.

starpu_data_unregister(vector_handle);

Eventually, it shuts down StarPU:

starpu_shutdown();

Mඉඓඑඖඏ එග ඉඖඌ කඝඖඖඑඖඏ ගඐඍ SගඉකPU ඞඍකඛඑ඗ඖ

Building

Let us look at how this should be built. A typical Makefile for applications using StarPU is the
following:

STARPU_VERSION=1.3
CPPFLAGS += $(shell pkg-config --cflags starpu-$(STARPU_VERSION))
LDLIBS += $(shell pkg-config --libs starpu-$(STARPU_VERSION))
%.o: %.cu

nvcc $(CPPFLAGS) $< -c -o $@

vector_scal_task_insert: vector_scal_task_insert.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o

Additionally, to avoid having to set LD_LIBRARY_PATH one can add an rpath:

LDLIBS += -Wl,-rpath -Wl,$(shell pkg-config --variable=libdir starpu-$(STARPU_VERSION))

The provided Makefile additionally detects whether CUDA or OpenCL are available in StarPU,
and adds the corresponding files and link flags.

Simulation

If your system does not have a CUDA or OpenCL GPU, you can use the simulation version of
StarPU by setting some environment variables by running in your shell:

. ./simu.sh

If you ever want to get back to the non-simulated version of StarPU, you can run in your shell:

. ./native.sh

Note that after switching between the simulated and the non-simulated versions of StarPU, you have to
rebuild completely:

make clean
make

Running

Run make vector_scal_task_insert, and run the resulting vector_scal_task_insert executable

It should be working: it simply scales a given vector by a given factor.

make vector_scal_task_insert

./vector_scal_task_insert

Note that if you are using the simulation version of StarPU, the computation will not be
performed, and thus the final value will be equal to the initial value, but the timing provided by
starpu_timing_now() will correspond to the correct execution time.

You can set the environment variable STARPU_WORKER_STATS to 1 when running your
application to see the number of tasks executed by each device. You can see the whole list of
environment variables here.

STARPU_WORKER_STATS=1 ./vector_scal_task_insert

to force the implementation on a GPU device, by default, it will enable CUDA
STARPU_WORKER_STATS=1 STARPU_NCPU=0 ./vector_scal_task_insert

to force the implementation on a OpenCL device
STARPU_WORKER_STATS=1 STARPU_NCPU=0 STARPU_NCUDA=0 ./vector_scal_task_insert

Dඉගඉ Pඉකගඑගඑ඗ඖඑඖඏ

In the previous section, we submitted only one task. We here discuss how to partition data so
as to submit multiple tasks which can be executed in parallel by the various CPUs and GPUs.

Let's examine mult.c.

The computation kernel, cpu_mult is a trivial matrix multiplication kernel, which operates on 3 given
DSM interfaces. These will actually not be whole matrices, but only small parts of matrices.
init_problem_data initializes the whole A, B and C matrices.
partition_mult_data does the actual registration and partitioning. Matrices are first registered
completely, then two partitioning filters are declared. The first one, vert, is used to split B and C
vertically. The second one, horiz, is used to split A and C horizontally. We thus end up with a grid
of pieces of C to be computed from stripes of A and B.
launch_tasks submits the actual tasks: for each piece of C, take the appropriate piece of A and B
to produce the piece of C.
The access mode is interesting: A and B just need to be read from, and C will only be written to.
This means that StarPU will make copies of the pieces of A and B along the machines, where they
are needed for tasks, and will give to the tasks some uninitialized buffers for the pieces of C, since
they will not be read from.
The main code initializes StarPU and data, launches tasks, unpartitions data, and unregisters it.
Unpartitioning is an interesting step: until then the pieces of C are residing on the various GPUs
where they have been computed. Unpartitioning will collect all the pieces of C into the main
memory to form the whole C result matrix.

Run the application, enabling some statistics:

make mult

STARPU_WORKER_STATS=1 ./mult

Figures show how the computation were distributed on the various processing units.

Oගඐඍක ඍචඉඕ඘ඔඍ

gemm/xgemm.c is a very similar matrix-matrix product example, but which makes use of BLAS
kernels for much better performance. The mult_kernel_common functions shows how we call
DGEMM (CPUs) or cublasDgemm (GPUs) on the DSM interface. Also note the presence of the
starpu_cublas_init() call in the main function so as to more efficiently connect cublas with
StarPU.

Let's execute it.

make gemm/sgemm
STARPU_WORKER_STATS=1 ./gemm/sgemm

Eචඍකඋඑඛඍ

Take the vector example again, and add partitioning support to it, using the matrix-matrix
multiplication as an example. Here we will use the starpu_vector_filter_block() filter
function. You can see the list of predefined filters provided by StarPU here.

We provide a solution for the exercice here.

Sඍඛඛඑ඗ඖ Pඉකග 2: O඘ගඑඕඑජඉගඑ඗ඖඛ

This is based on StarPU's documentation optimization chapter.

Dඉගඉ Mඉඖඉඏඍඕඍඖග

We have explained how StarPU can overlap computation and data transfers thanks to DMAs.
This is however only possible when CUDA has control over the application buffers. The
application should thus use starpu_malloc() when allocating its buffer, to permit asynchronous
DMAs from and to it.

Take the vector example again, and fix the allocation, to make it use starpu_malloc().

Tඉඛඓ Sඝඊඕඑඛඛඑ඗ඖ

To let StarPU reorder tasks, submit data transfers in advance, etc., task submission should be
asynchronous whenever possible. Ideally, the application should behave like that: submit the
whole graph of tasks, and wait for termination.

The CUDA and OpenCL kernel execution themselves should be submitted asynchronously, so
as to let kernel computation and data transfer proceed independently:

In vector_scal_cuda.cu, one should actually remove the
cudaStreamSynchronize(starpu_cuda_get_local_stream()); call, and add this flag to the codelet
structure, so as to just submit the CUDA kernel, and let StarPU test for its termination:

.cuda_flags = {STARPU_CUDA_ASYNC},

Similarly, in vector_scal_opencl.c, one should actually remove the clFinish(queue); call, and add
this flag to the codelet structure:

.opencl_flags = {STARPU_OPENCL_ASYNC},

Pඍකඎ඗කඕඉඖඋඍ M඗ඌඍඔ Cඉඔඑඊකඉගඑ඗ඖ

Iඖඛ඘ඍඋගඑ඗ඖ

Performance prediction is essential for proper scheduling decisions, the performance models
thus have to be calibrated. This is done automatically by StarPU when a codelet is executed for
the first time. Once this is done, the result is saved to a file in $STARPU_PERF_MODEL_DIR for later
re-use. The starpu_perfmodel_display tool can be used to check the resulting performance
model.

STARPU_PERF_MODEL_DIR specifies the main directory in which StarPU stores its performance
model files. The default is $STARPU_HOME/.starpu/sampling.
STARPU_HOME specifies the main directory in which StarPU stores its configuration files. The
default is $HOME on Unix environments, and $USERPROFILE on Windows environments.
In this tutorial we provide some pre-calibrated performance models with the Simgrid version of
StarPU. You can run

. ./simu.sh

to enable using them, (it sets STARPU_PERF_MODEL_DIR to a specific directory perfmodels available in the
archive). Then you can use starpu_perfmodel_display to get the performance model details:

$ starpu_perfmodel_display -l # Show the list of codelets that have a performance model
file: <vector_scal.conan>
file: <mult_perf_model.conan>
file: <starpu_dgemm_gemm.conan>
file: <starpu_sgemm_gemm.conan>

$ starpu_perfmodel_display -s vector_scal # Show the details for one codelet
performance model for cuda0_impl0 (Comb0)
performance model for cuda0_impl0 (Comb0)

Regression : #sample = 132
Linear: y = alpha size ^ beta

alpha = 7.040874e-01
beta = 3.326125e-01

Non-Linear: y = a size ^b + c
a = 6.207150e-05
b = 9.503886e-01
c = 1.887639e+01

hash size flops mean (us) stddev (us) n
a3d3725e 4096 0.000000e+00 1.902150e+01 1.639952e+00 10
870a30aa 8192 0.000000e+00 1.971540e+01 1.115123e+00 10
48e988e9 16384 0.000000e+00 1.934910e+01 8.406537e-01 10
...
09be3ca9 1048576 0.000000e+00 5.483990e+01 7.629412e-01 10
...
performance model for cuda1_impl0 (Comb1)
...
09be3ca9 1048576 0.000000e+00 5.389290e+01 8.083156e-01 10
...
performance model for cuda2_impl0 (Comb2)
...
09be3ca9 1048576 0.000000e+00 5.431150e+01 4.599005e-01 10
...
performance model for cpu0_impl0 (Comb3)
...
a3d3725e 4096 0.000000e+00 5.149621e+00 7.096558e-02 66
...
09be3ca9 1048576 0.000000e+00 1.218595e+03 4.823102e+00 66
...

This shows that for the vector_scal kernel with a 4KB size, the average execution time on
CPUs was about 5.1µs, with a 0.07µs standard deviation, over 66 samples, while it took about
19µs on GPU CUDA0, with a 1.6µs standard deviation. With a 1MB size, execution time on
CPUs is 1.2ms, while it is only 54µs on GPU CUDA0.

The performance model can also be drawn by using starpu_perfmodel_plot, which will emit a
gnuplot file in the current directory:

$ starpu_perfmodel_plot -s vector_scal
...
[starpu][main] Gnuplot file <starpu_vector_scal.gp> generated
$ gnuplot starpu_vector_scal.gp
$ gv starpu_vector_scal.eps

Unfortunately, gv will most probably not work through docker, but you can transfer the file from outside
the docker image with:

docker cp exa2pro-test:/home/exa2pro/starpu_files/starpu_vector_scal.eps .

and open it from outside the docker image.

The measurements were made on CPUs, but also GPUs that support both OpenCL and
CUDA. The graph shows that GPUs become more efficient for vector size beyond 20000 bytes.

We have also measured the performance of the mult kernel example, which can be drawn with

starpu_perfmodel_plot -s mult_perf_model
gnuplot starpu_mult_perf_model.gp
gv starpu_mult_perf_model.eps

We can see a slight bump after 2MB.

The task submission included the number of flops per task, this allows to draw GFlop/s instead
of just time:

starpu_perfmodel_plot -f -s mult_perf_model
gnuplot starpu_gflops_mult_perf_model.gp
gv starpu_gflops_mult_perf_model.eps

We indeed notice a performance drop after 2MB, which corresponds to the cache size.

(New it StarPU 1.4 to be released) We can also draw the energy used by tasks:

starpu_perfmodel_plot -e -s mult_energy_model
gnuplot starpu_mult_energy_model.gp
gv starpu_mult_energy_model.eps

We can again notice the bump after 2MB.

Again, instead of the energy, one can observe the computation efficiency thanks to the flops
information:

starpu_perfmodel_plot -f -e -s mult_energy_model
gnuplot starpu_gflops_mult_energy_model.gp
gv starpu_gflops_mult_energy_model.eps

This is much more interesting! We do indeed notice the efficiency drop after 2MB, but we can also notice
an efficiency maximum around 100KB.

Mඍඉඛඝකඍඕඍඖග

In order to measure the performance on your actual system, switch back to the non-simgrid
version of StarPU:

. ./native.sh

And run the application with

make clean
make mult
STARPU_CALIBRATE=1 ./mult

The performance model can then be seen with

starpu_perfmodel_display -s mult_perf_model
starpu_perfmodel_plot -s mult_perf_model
gnuplot starpu_mult_perf_model.gp
gv starpu_mult_perf_model.eps

It is a good idea to check the variation before doing actual performance measurements. If the
kernel has varying performance, it may be a good idea to force StarPU to continue calibrating
the performance model, by using export STARPU_CALIBRATE=1

If the code of a computation kernel is modified, the performance changes, the performance
model thus has to be recalibrated from start. To do so, use export STARPU_CALIBRATE=2

Eඖඍකඏඡ ඕඍඉඛඝකඍඕඍඖග (ඖඍඟ එඖ SගඉකPU 1.4 ග඗ ඉ඘඘ඍඉක)

CPUs can report their energy usage through performance counters, and NVIDIA devices can
report it through the CUDA interface. StarPU provides an interface to abstract the
measurement for the application. The available measurement precision is however quite
coarse. The principle is thus that the application should submit a series of tasks of the same
kind, and put measurement calls before and after the series, so StarPU can compute an
average over the whole set.

mult_bench.c achieves this: it prepares matrices so as to generate a fair number of tasks
according to the number of cpus so the measurement is long enough.

Unfortunately, with docker the performance counters cannot be read due to administrative

permissions. Running the benchmark on the raw system (possibly requering root access)
would allow to perform the measurement.

Tඉඛඓ Sඋඐඍඌඝඔඑඖඏ P඗ඔඑඋඡ

By default, StarPU uses the lws simple greedy scheduler. This is because it provides correct
load balance even if the application codelets do not have performance models: it uses a single
central queue, from which workers draw tasks to work on. This however does not permit to
prefetch data, since the scheduling decision is taken late.

If the application codelets have performance models, the scheduler should be changed to take
benefit from that. StarPU will then really take scheduling decision in advance according to
performance models, and issue data prefetch requests, to overlap data transfers and
computations.

To observe the scheduling between CPUs and GPUs, let us switch back to simulation:

. ./simu.sh
make clean
make

For instance, compare the lws (default) and dmda scheduling policies:

STARPU_BUS_STATS=1 STARPU_WORKER_STATS=1 STARPU_SCHED=lws gemm/sgemm -xy $((256*4)) -nblocks 4

with:

STARPU_BUS_STATS=1 STARPU_WORKER_STATS=1 STARPU_SCHED=dmda gemm/sgemm -xy $((256*4)) -nblocks 4

You can see most (all?) the computation have been done on GPUs, leading to better
performances.

Try other schedulers, use STARPU_SCHED=help to get the list.

Also try with various sizes (keeping a 256 tile size, i.e. increase both occurrences of 4 above)
and draw curves.

You can also try the double version, dgemm, and notice that GPUs get less great performance.

Sඍඛඛඑ඗ඖඛ Pඉකග 3: MPI Sඝ඘඘඗කග

StarPU provides support for MPI communications. It does so in two ways. Either the application
specifies MPI transfers by hand, or it lets StarPU infer them from data dependencies.

We will here have to use the non-simulated version of StarPU, so you have to run

. ./native.sh
make clean
make

Mඉඖඝඉඔ MPI ගකඉඖඛඎඍකඛ

Basically, StarPU provides equivalents of MPI_* functions, but which operate on DSM handles
instead of void* buffers. The difference is that the source data may be residing on a GPU
where it just got computed. StarPU will automatically handle copying it back to main memory
before submitting it to MPI.

In the mpi/ subdirectory, ring_async_implicit.c shows an example of mixing MPI
communications and task submission. It is a classical ring MPI ping-pong, but the token which
is being passed on from neighbour to neighbour is incremented by a starpu task at each step.

This is written very naturally by simply submitting all MPI communication requests and task
submission asynchronously in a sequential-looking loop, and eventually waiting for all the tasks
to complete.

cd mpi
make ring_async_implicit
mpirun --allow-run-as-root -np 2 $PWD/ring_async_implicit

ඛගඉක඘ඝ_ඕ඘එ_එඖඛඍකග_ගඉඛඓ

A stencil application shows a basic MPI task model application. The data distribution over
MPI nodes is decided by the my_distrib function, and can thus be changed trivially. It also
shows how data can be migrated to a new distribution.

make stencil5
mpirun --allow-run-as-root -np 2 $PWD/stencil5 -display

M඗කඍ Pඍකඎ඗කඕඉඖඋඍ O඘ගඑඕඑජඉගඑ඗ඖඛ

The StarPU performance feedback chapter provides more optimization tips for further reading
after this tutorial.

FචT Tකඉඋඑඖඏ Sඝ඘඘඗කග

In addition to online profiling, StarPU provides offline profiling tools, based on recording a trace
of events during execution, and analyzing it afterwards.

The trace file is stored in /tmp by default. To tell StarPU to store output traces in the home
directory, one can set:

export STARPU_FXT_PREFIX=$HOME/

The application should be run again, for instance:

make clean
make mult
./mult

This time a prof_file_XX_YY trace file will be generated in your home directory. This can be
converted to several formats by using:

starpu_fxt_tool -i ~/prof_file_*

This will create

a paje.trace file, which can be opened by using the ViTE tool. This shows a Gant diagram of the
tasks which executed, and thus the activity and idleness of tasks, as well as dependencies, data
transfers, etc. You may have to zoom in to actually focus on the computation part, and not the
lengthy CUDA initialization.
a dag.dot file, which contains the graph of all the tasks submitted by the application. It can be
opened by using Graphviz.
an activity.data file, which records the activity of all processing units over time.

C඗ඖගඉඋග

For any questions regarding StarPU, please contact the StarPU developers mailing list : starpu-
devel@inria.fr

Last updated on 2019/04/28.

