Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising

Input Similarity from the Neural Network Perspective

Guillaume Charpiat

TAU team, LRI, Paris-Sud / INRIA Saclay

Journée Statistique et Informatique pour la Science des Données à Paris-Saclay February 4th, 2021

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
Plan				

Overview of this talk

- I Remote sensing image segmentation and registration
- II Dataset self-denoising
- III Notion of similarity from the neural network viewpoint
- IV Back to dataset self-denoising

Work in collaboration with Nicolas Girard, Loris Felardos & Yuliya Tarabalka → TAU team, at INRIA Saclay & Titane team, at INRIA Sophia-Antipolis

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising	
	0000000				
Image Segmentation and Registration					

Part I

Remote sensing image segmentation and registration

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
	0000000			
Image Segmentation				

Task 1: Remote sensing image segmentation

- Goal: semantic segmentation of satellite images i.e.: each pixel → class ∈ {building, road, ...}
- Tool: neural networks with varied architectures
- Obstacles: no reliable dataset

 Introduction
 Image Segmentation and Registration
 Dataset self-denoising
 Input similarity
 Back to dataset self-denoising

 0
 0000000
 00000000
 000000000
 000000000
 000000000

Image Segmentation

Goal: semantic segmentation

Aerial

Satellite

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
	0000000			
Image Registration				

Issue: misalignment

Deformations inherent to aerial or satellite photography

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
	0000000			
Image Registration				

Issue: misalignment

Registration: cadaster map (cyan) vs. photo RGB

G. Charpiat

TAU team, INRIA Saclay / LRI - Paris-Sud

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
	0000000			
Image Registration				

Automatic realignment?

Multimodal pair of images: aerial RGB image / binary vector-format cadastral image (buildings in white)

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
	000000			
Image Registration				

Task 2: Multimodal Registration

Example of deformation. Image *I* ; a deformation ϕ , i.e. a \mathbb{R}^2 vector field ; associated deformed image $I \circ \phi$.

G. Charpiat

Input Similarity from the Neural Network Perspective

Introduction O	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
Solution				

Approach

Optimization criterion: Euclidean norm of the prediction error

$$C(\mathsf{w}) = \mathop{\mathbb{E}}_{(l_1, l_2, \phi_{\mathsf{GT}}) \in \mathcal{D}} \left[\sum_{\mathsf{x} \in \Omega(l_2)} \left\| \widehat{\phi}_{(\mathsf{w})(l_1, l_2)}(\mathsf{x}) - \phi_{\mathsf{GT}}(\mathsf{x}) \right\|_2^2 \right]$$

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
Solution				

Approach

Optimization criterion: Euclidean norm of the prediction error

$$C(\mathsf{w}) = \mathop{\mathbb{E}}_{(l_1, l_2, \phi_{\mathsf{GT}}) \in \mathcal{D}} \left[\sum_{\mathsf{x} \in \Omega(l_2)} \left\| \widehat{\phi}_{(\mathsf{w})(l_1, l_2)}(\mathsf{x}) - \phi_{\mathsf{GT}}(\mathsf{x}) \right\|_2^2 \right]$$

- Issue: the network doesn't learn
- for prediction: each pixel \mapsto deformation ± 25 px is too hard
- Idea: deformation ± 1 px is easy

Introduction O	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
Solution				

Approach

Optimization criterion: Euclidean norm of the prediction error

$$C(\mathsf{w}) = \mathop{\mathbb{E}}_{(I_1, I_2, \phi_{\mathsf{GT}}) \in \mathcal{D}} \left[\sum_{\mathsf{x} \in \Omega(I_2)} \left\| \widehat{\phi}_{(\mathsf{w})(I_1, I_2)}(\mathsf{x}) - \phi_{\mathsf{GT}}(\mathsf{x}) \right\|_2^2 \right]$$

<u>**Task at scale s:**</u> Solve the alignment problem for the image pair (I_1, I_2) , with a precision required of $\pm 2^s$ pixels, under the assumption that the amplitude of the registration to be found is not larger than 2^{s+1} pixels.

<u>Solution for task at scale s:</u> Downsample the images by a factor 2^s ; solve the alignment task at scale 0 for these reduced images, and upsample the result with the same factor.

Full alignment algorithm: Given an image pair (l_1, l_2) of width w, iteratively solve the alignment task at scale s, from $s = \log_2 w$ until s = 0.

TAU team, INRIA Saclay / LRI - Paris-Sud

Input Similarity from the Neural Network Perspective

G. Charpiat

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
	00000000			
Network				

Network to process a specific scale

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
	00000000			

Chain of networks

Global network: chain of scale-specific networks \simeq compositional ResNet

TAU team, INRIA Saclay / LRI - Paris-Sud

G. Charpiat

Introduction O	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
Results				

Results

Example of image alignment. Original image and OpenStreetMap (OSM) map / Alignment result.

G. Charpiat

TAU team, INRIA Saclay / LRI - Paris-Sud

Introduction O	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
Dataset self-d	lenoising			

Part II

Dataset self-denoising

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction O	Image Segmentation and Registration	Dataset self-denoising ○●○○○○○	Input similarity	Back to dataset self-denoising
Dataset self-d	lenoising			

Training set for the alignment task

pick locations where RGB image I and cadaster map M look not too badly aligned (or align manually)

 \implies training sample $((I, M), \mathrm{Id})$

▶ generate random smooth deformations ϕ , and add $((I, M \circ \phi), \phi)$ to the training set

 \implies sensitivity of the training w.r.t. alignment quality between original I and M?

Introduction O	Image Segmentation and Registration	Dataset self-denoising ○●○○○○○	Input similarity	Back to dataset self-denoising
Dataset self-d	lenoising			

Training set for the alignment task

pick locations where RGB image I and cadaster map M look not too badly aligned (or align manually)
training sample ((I, M), Id)

- \implies training sample $((I, M), \mathrm{Id})$
- ▶ generate random smooth deformations ϕ , and add $((I, M \circ \phi), \phi)$ to the training set

 \implies sensitivity of the training w.r.t. alignment quality between original I and M?

Dealing with noisy training data

- Dataset of examples $(x, y + \varepsilon)$ with noisy labels
- Is it possible to train and get accuracy higher than the noise variance?

TAU team, INRIA Saclay / LRI - Paris-Sud

Input Similarity from the Neural Network Perspective

G. Charpiat

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising	
		000000		00000000 0	
Dataset self-denoising					

Red: given ground truth Green: the real but unavailable one

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction O	Image Segmentation and Registration	Dataset self-denoising ○○○●○○○	Input similarity	Back to dataset self-denoising	
Dataset self-denoising					

- **b** given: dataset \mathcal{D}_0 with noisy labels
- train on \mathcal{D}_0

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction O	Image Segmentation and Registration	Dataset self-denoising ○○○●○○○	Input similarity	Back to dataset self-denoising	
Dataset self-denoising					

- **b** given: dataset \mathcal{D}_0 with noisy labels
- train on \mathcal{D}_0
- test on \mathcal{D}_0 : imprecise predictions

Introduction O	Image Segmentation and Registration	Dataset self-denoising 000●000	Input similarity	Back to dataset self-denoising	
Dataset self-denoising					

- **b** given: dataset \mathcal{D}_0 with noisy labels
- \blacktriangleright train on \mathcal{D}_0
- test on \mathcal{D}_0 : imprecise predictions
- \blacktriangleright replace the target labels by the ones predicted \implies new dataset \mathcal{D}_1

Introduction O	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising	
Dataset self-denoising					

- \blacktriangleright given: dataset \mathcal{D}_0 with noisy labels
- \blacktriangleright train on \mathcal{D}_0
- test on \mathcal{D}_0 : imprecise predictions
- replace the target labels by the ones predicted

 \implies new dataset \mathcal{D}_1

 \blacktriangleright train on \mathcal{D}_1

Introduction O	Image Segmentation and Registration	Dataset self-denoising 000●000	Input similarity	Back to dataset self-denoising		
Dataset self-denoising						

- \blacktriangleright given: dataset \mathcal{D}_0 with noisy labels
- \blacktriangleright train on \mathcal{D}_0
- test on \mathcal{D}_0 : imprecise predictions
- replace the target labels by the ones predicted

 \implies new dataset \mathcal{D}_1

- train on \mathcal{D}_1
- test on $\mathcal{D}_0 \implies$ form new dataset \mathcal{D}_2

Introduction O	Image Segmentation and Registration	Dataset self-denoising 000●000	Input similarity	Back to dataset self-denoising
Dataset self-d	lenoising			

- \blacktriangleright given: dataset \mathcal{D}_0 with noisy labels
- \blacktriangleright train on \mathcal{D}_0
- test on \mathcal{D}_0 : imprecise predictions
- replace the target labels by the ones predicted

 \implies new dataset \mathcal{D}_1

- train on \mathcal{D}_1
- test on $\mathcal{D}_0 \implies$ form new dataset \mathcal{D}_2
- train on \mathcal{D}_2

Introduction O	Image Segmentation and Registration	Dataset self-denoising ○○○●○○○	Input similarity	Back to dataset self-denoising	5
Dataset self-d	enoising				
NII	oloo'o idoo, undoto th	a datasat itaw	otheoly		
INIC	olas s ldea: update the	e dataset iter	atively		
	given: dataset \mathcal{D}_0 with nois	sy labels			
►	train on \mathcal{D}_0				
	test on \mathcal{D}_0 : imprecise pred	ictions			
	replace the target labels by	the ones predicte	$ed \implies$	new dataset \mathcal{D}_1	
	train on \mathcal{D}_1				
	test on $\mathcal{D}_{\alpha} \longrightarrow \text{form new}$	dataset \mathcal{D}_{a}			

- \blacktriangleright train on \mathcal{D}_2
- test on $\mathcal{D}_0 \implies$ form new dataset \mathcal{D}_3

G. Charpiat

ipiat

Introduction Image Segmentation and Registration Dataset self-denoising

0000000

Input similarity Back to dataset self-denoising

Dataset self-denoising

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction O	Image Segmentation and Registration	Dataset self-denoising 00000●0	Input similarity	Back to dataset self-denoising
Dataset self-denoising				

Quantitative results:

Dashed lines: control experiment with added noise on ground truth

G. Charpiat

TAU team, INRIA Saclay / LRI - Paris-Sud

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
		000000		00000000 0
Dataset self-denoising				

Dealing with noisy data

- **b** Dataset of examples $(x, y + \varepsilon)$ with noisy labels
- Is it possible to train and get accuracy higher than the noise variance?

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
		000000		00000000 0
Dataset self-denoising				

Dealing with noisy data

- **b** Dataset of examples $(x, y + \varepsilon)$ with noisy labels
- Is it possible to train and get accuracy higher than the noise variance?
- Yes!

 Introduction
 Image Segmentation and Registration
 Dataset self-denoising
 Input similarity
 Back to dataset self-denoising

 0
 0000000
 00000000
 00000000
 00000000
 00000000

Dataset self-denoising

Dealing with noisy data

- **b** Dataset of examples $(x, y + \varepsilon)$ with noisy labels
- Is it possible to train and get accuracy higher than the noise variance?
- Yes!
 - one point x, with true label y
 - Presented *n* times with noisy labels $y_i = y + \varepsilon_i$
 - > assumption: i.i.d. noise ε , centered.
 - \blacktriangleright L^2 loss:

$$\inf_{\hat{y}} \sum_{i} \|\hat{y} - y_i\|^2$$

Introduction Image Segmentation and Registration October Octob

Dataset self-denoising

Dealing with noisy data

- **b** Dataset of examples $(x, y + \varepsilon)$ with noisy labels
- Is it possible to train and get accuracy higher than the noise variance?
- Yes!

one point x, with true label y

Presented *n* times with noisy labels $y_i = y + \varepsilon_i$

- > assumption: i.i.d. noise ε , centered.
- \blacktriangleright L^2 loss:

$$\inf_{\hat{y}} \sum_i \|\hat{y} - y_i\|^2$$

• best fit: the average: $\hat{y} = \frac{1}{n} \sum_{i} y_{i}$

Input Similarity from the Neural Network Perspective

G. Charpiat

Dealing with noisy data

- Dataset of examples $(x, y + \varepsilon)$ with noisy labels
- Is it possible to train and get accuracy higher than the noise variance?
- Yes!

one point x, with true label y

Presented *n* times with noisy labels $y_i = y + \varepsilon_i$

- > assumption: i.i.d. noise ε , centered.
- \blacktriangleright L^2 loss:

$$\inf_{\hat{y}} \sum_{i} \|\hat{y} - y_i\|$$

• best fit: the average: $\hat{y} = \frac{1}{n} \sum_{i} y_{i}$

 $\hat{y} \simeq y \pm -$

TAU team, INRIA Saclay / LRI - Paris-Sud

Input Similarity from the Neural Network Perspective

G. Charpiat

 Introduction
 Image Segmentation and Registration
 Dataset self-denoising
 Input similarity
 Back to dataset self-denoising

 0
 0000000
 00000000
 00000000
 000000000
 000000000

Dataset self-denoising

Dealing with noisy data

- **b** Dataset of examples $(x, y + \varepsilon)$ with noisy labels
- Is it possible to train and get accuracy higher than the noise variance?
- Yes!
 - one point x, with true label y
 - **b** presented *n* times with noisy labels $y_i = y + \varepsilon_i$
 - > assumption: i.i.d. noise ε , centered.
 - \blacktriangleright L^2 loss:

$$\inf_{\hat{y}} \sum_{i} \|\hat{y} - y_i\|^2$$

• best fit: the average: $\hat{y} = \frac{1}{n} \sum_{i} y_i$

$$\hat{y} \simeq y \pm \frac{1}{\sqrt{n}}$$

[Noise2Noise: Learning Image Restoration without Clean Data; Lehtinen et al., 2018]

- Number of similar examples?
- Quantify: input similarity?

G. Charpiat

Input Similarity from the Neural Network Perspective

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
			•0000000000	

Part III

Input similarity from the network's point of view

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
			0000000000	

Notions of similarity

Predefined metric (e.g., pixelwise L^2)

issue: small translations => large distances

G. Charpiat Input Similarity from the Neural Network Perspective

Notions of similarity

Predefined metric (e.g., pixelwise L^2)

 \blacktriangleright issue: small translations \implies large distances

Perceptual loss

[Johnson, Alahi and Li Fei-Fei: <u>Perceptual losses for real-time style transfer and</u> super-resolution, ECCV 2016]

to evaluate auto-encoder reconstruction error

compare VGG activities => more semantic

in practice: arbitrary choices (pick one layer)

Input Similarity from the Neural Network Perspective

G. Charpiat

Notions of similarity

Predefined metric (e.g., pixelwise L^2)

 \blacktriangleright issue: small translations \implies large distances

Perceptual loss

[Johnson, Alahi and Li Fei-Fei: <u>Perceptual losses for real-time style transfer and</u> super-resolution, ECCV 2016]

to evaluate auto-encoder reconstruction error

- compare VGG activities => more semantic
- in practice: arbitrary choices (pick one layer)

Principled way?

G. Charpiat

Defining similarity by undissociability

- Siven a trained neural network $f_{ heta}$
- and two input points x and x'
- how similar are x and x' for the network?

Output space:

Quantify the influence of a data point x over another one x' by how much the tuning of parameters θ to obtain a desired output change v for $f_{\theta}(x)$ will affect $f_{\theta}(x')$ as well.

 $f_{\theta}(x) = f_{\theta}(x^{2})$

TAU team, INRIA Saclay / LRI - Paris-Sud

 Introduction
 Image Segmentation and Registration
 Dataset self-denoising
 Input similarity
 Back to dataset self-denoising

 0
 00000000
 00000000
 00000000
 00000000
 00000000

Output space:

Influence of x over x' = how much the tuning of parameters θ to obtain a desired output change v for $f_{\theta}(x)$ will affect $f_{\theta}(x')$ as well.

Derivation in 1-dim output case

- To change $f_{\theta}(x)$ by a small quantity ε , update θ by $\delta \theta = \varepsilon \frac{\nabla_{\theta} f_{\theta}(x)}{\|\nabla_{\theta} f_{\theta}(x)\|^2}$.
- Indeed, after parameter update, new value at x:

$$f_{\theta+\delta\theta}(\mathsf{x}) = f_{\theta}(\mathsf{x}) + \nabla_{\theta}f_{\theta}(\mathsf{x}) \cdot \delta\theta + O(\|\delta\theta\|^2) = f_{\theta}(\mathsf{x}) + \varepsilon + O(\varepsilon^2).$$

This parameter change induces a value change at any other point x' :

$$f_{\theta+\delta\theta}(\mathsf{x}') = f_{\theta}(\mathsf{x}') + \nabla_{\theta} f_{\theta}(\mathsf{x}') \cdot \delta\theta + O(\|\delta\theta\|^2) = f_{\theta}(\mathsf{x}') + \varepsilon \frac{\nabla_{\theta} f_{\theta}(\mathsf{x}') \cdot \nabla_{\theta} f_{\theta}(\mathsf{x})}{\|\nabla_{\theta} f_{\theta}(\mathsf{x})\|^2} + O(\varepsilon^2)$$

TAU team, INRIA Saclay / LRI - Paris-Sud

G. Charpiat

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
			00000000000	

Symmetric similarity

$$k_{\theta}(\mathsf{x},\mathsf{x}') = \frac{\nabla_{\theta}f_{\theta}(\mathsf{x})}{\|\nabla_{\theta}f_{\theta}(\mathsf{x})\|} \cdot \frac{\nabla_{\theta}f_{\theta}(\mathsf{x}')}{\|\nabla_{\theta}f_{\theta}(\mathsf{x}')\|}$$

$$\blacktriangleright$$
 kernel, valued in $[-1, 1]$

Neural Tangent Kernel!

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
			00000000000	

Symmetric similarity

$$k_{\theta}(\mathsf{x},\mathsf{x}') = \frac{\nabla_{\theta}f_{\theta}(\mathsf{x})}{\|\nabla_{\theta}f_{\theta}(\mathsf{x})\|} \cdot \frac{\nabla_{\theta}f_{\theta}(\mathsf{x}')}{\|\nabla_{\theta}f_{\theta}(\mathsf{x}')\|}$$

kernel, valued in
$$[-1, 1]$$

Neural Tangent Kernel!

Properties for vanilla neural networks:

Theorem 1

For any real-valued neural network f_{θ} whose last layer is a linear layer (without any parameter sharing) or a standard activation function thereof (sigmoid, tanh, ReLU...), and for any inputs x and x',

$$k_{ heta}(\mathsf{x},\mathsf{x}') = 1 \implies
abla_{ heta} f_{ heta}(\mathsf{x}) =
abla_{ heta} f_{ heta}(\mathsf{x}') \implies f_{ heta}(\mathsf{x}) = f_{ heta}(\mathsf{x}')$$

TAU team, INRIA Saclay / LRI - Paris-Sud

Input Similarity from the Neural Network Perspective

G. Charpiat

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
			00000000000	

Symmetric similarity

$$k_{\theta}(\mathsf{x},\mathsf{x}') = \frac{\nabla_{\theta}f_{\theta}(\mathsf{x})}{\|\nabla_{\theta}f_{\theta}(\mathsf{x})\|} \cdot \frac{\nabla_{\theta}f_{\theta}(\mathsf{x}')}{\|\nabla_{\theta}f_{\theta}(\mathsf{x}')\|}$$

- kernel, valued in [-1, 1]
- Neural Tangent Kernel!

Properties for vanilla neural networks:

Theorem 2

For any real-valued neural network f_{θ} without parameter sharing, if $k_{\theta}(\mathbf{x}, \mathbf{x}') = 1$ for two inputs \mathbf{x}, \mathbf{x}' , then all useful activities computed when processing \mathbf{x} are equal to the ones obtained when processing \mathbf{x}' .

G. Charpiat

TAU team, INRIA Saclay / LRI - Paris-Sud

Link with the perceptual loss

Perceptual loss:

$$\sum_{\text{activities } i \neq 0} \lambda_{\text{layer}(i)} a_i(x) a_i(x')$$

Our similarity measure for vanilla networks:

$$k_{ heta}(\mathrm{x},\mathrm{x}') = \sum_{\mathrm{activities }i} \lambda_i(\mathrm{x},\mathrm{x}') \; a_i(\mathrm{x}) \; a_i(\mathrm{x}')$$

where $\lambda_i(\mathbf{x},\mathbf{x}') = \sum_{\text{neuron } j \text{ using } \mathbf{a}_i} \frac{df_{\theta}(\mathbf{x})}{db_j} \frac{df_{\theta}(\mathbf{x}')}{db_j}$

For parameter-sharing networks:

$$k_{\theta}(\mathbf{x},\mathbf{x}') = \sum_{\text{params } i} \left(\sum_{(j,k) \in S_i} a_k(\mathbf{x}) \frac{df_{\theta}(\mathbf{x})}{db_j} \right) \left(\sum_{(j,k) \in S_i} a_k(\mathbf{x}') \frac{df_{\theta}(\mathbf{x}')}{db_j} \right)$$

 \implies reflects network invariances (e.g., translation-inv for convnets)

G. Charpiat

TAU team, INRIA Saclay / LRI - Paris-Sud

Counting neighbors

- Similarity measure $k_{\theta} \implies$ notion of neighborhood
- Number of neighbors of point x ?
- ▶ Hard-thresholding, for a given threshold $\tau \in [0, 1]$:

$$N_{\tau}(\mathsf{x}) = \sum_{\mathsf{x}'} \mathbf{1}_{k_{\theta}(\mathsf{x},\mathsf{x}') \geqslant \tau}$$

Soft estimate:

$$N_{S}(\mathbf{x}) = \sum_{\mathbf{x}'} k_{\theta}(\mathbf{x}, \mathbf{x}')$$

The two are linked:

$$\int_{\tau=0}^{1} N_{\tau}(x) d\tau = \sum_{x'} \int_{\tau=0}^{1} 1_{k_{\theta}(x,x') \ge \tau} d\tau = \sum_{x'} k_{\theta}(x,x') 1_{k_{\theta}(x,x') \ge 0} \simeq N_{S}(x)$$

Low complexity of the soft estimate:

$$\mathsf{V}_{\mathsf{S}}(\mathsf{x}) = \sum_{\mathsf{x}'} \mathsf{k}_{\theta}(\mathsf{x},\mathsf{x}') = \sum_{\mathsf{x}'} \frac{\nabla_{\theta} f_{\theta}(\mathsf{x})}{\|\nabla_{\theta} f_{\theta}(\mathsf{x})\|} \cdot \frac{\nabla_{\theta} f_{\theta}(\mathsf{x}')}{\|\nabla_{\theta} f_{\theta}(\mathsf{x}')\|} = \frac{\nabla_{\theta} f_{\theta}(\mathsf{x})}{\|\nabla_{\theta} f_{\theta}(\mathsf{x})\|} \cdot \mathsf{g} \quad \text{with } \mathsf{g} = \sum_{\mathsf{x}'} \frac{\nabla_{\theta} f_{\theta}(\mathsf{x}')}{\|\nabla_{\theta} f_{\theta}(\mathsf{x}')\|}$$

Very fast to compute! Estimate density at every point in 2 passes over the dataset

G. Charpiat

TAU team, INRIA Saclay / LRI - Paris-Sud

Testing these density estimators

 Experiment design: train networks to imitate sinusoids of various frequencies

Figure: Toy problem with the frequency f = 2.

G. Charpiat

TAU team, INRIA Saclay / LRI - Paris-Sud

G. Charpiat

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
			00000000000	

Density estimation using the various approaches (log scale). All approaches behave similarly and show good results, except the ones with extreme thresholds.

G. Charpiat

Input Similarity from the Neural Network Perspective

Density, so what?

- \blacktriangleright as no neighbor \implies independent of training set
- quantify prediction uncertainty
- Very high density? Might underfit.
 - useful to know during training

Density, so what?

- \blacktriangleright as no neighbor \Longrightarrow independent of training set
- quantify prediction uncertainty
- Very high density? Might underfit.
 - useful to know during training

By the way...

G. Charpiat

- Differentiable similarity estimate possible to enforce while training that some examples should be perceived as similar (or different) by the network
- Enforcing similarity on a classification task: small boosting effect (on MNIST...)

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising	
	0000000	0000000	000000000000	•0000000 0	
Back to remote sensing image registration					

Part IV

Back to remote sensing image registration

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
				00000000

Back to remote sensing image registration

What do neighbors look like?

Figure: Example of nearest neighbors for a patch. Each line corresponds to a round. Each patch has its similarity written under it.

G. Charpiat

Input Similarity from the Neural Network Perspective

Figure: Histograms of similarities for one patch across rounds.

G. Charpiat

TAU team, INRIA Saclay / LRI - Paris-Sud

Introduction	n Image Se	gmentation	and Registra	ation Dat	aset self-deno	oising In ○	put similarity	Back to data	aset self-denoising O
Back to rer	note sensing	image regis	tration						
tua	8 89 3	8 82 1				× 100			
cep	$\{1/j\}$		* 2		5- 3	S.,	00		-
Per	N. 13	N. 11	to the second	-		C L	20	- 80	à 1/4
y	9, 70 1	V: 70 1		1. 1. 1.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 8 1	- M - M		No. Stand
arit	1111	11/1	• • · · · · · ·	94		annan -	· •		and the
mil	N4	N.	, 6°, 4°,	10 60		"L	2		
Si	Source	Closest	neighbor	natches	I STORES				In State added (Fills of
	Source	C103C3L 1	liciginuoi	patenes)				

Figure: Closest neighbors to the leftmost patch, using the <u>perceptual</u> loss (first row) and our similarity definition (second row).

TAU team, INRIA Saclay / LRI - Paris-Sud

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
				00000000

Back to dataset self-denoising

Part IV - bis

Back to dataset self-denoising

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising			
				00000000			
Pools to deterrise and development							

From similarity statistics to self-denoising effect estimation input : x_i

true (unknown) label : y_i (unknown) noise : ε_i (iid, centered) noisy (available) label : $\widetilde{y}_i = y_i + \varepsilon_i$ predicted label : $\hat{y}_i = f_{\theta}(x_i)$ training loss : $L(\theta) = \sum_{i} ||\widehat{y}_{i} - \widetilde{y}_{i}||^{2}$

▶ at convergence $\nabla_{\theta} L = 0 \implies \mathbb{E}_k[\widehat{\gamma}] = \mathbb{E}_k[\widetilde{\gamma}]$

• $\mathbb{E}_k[a] := \sum_i a_j k_{\theta}(x_i, x_j)$: mean value around x_i $\widehat{y}_i - \mathbb{E}_k[y] = \mathbb{E}_k[\varepsilon] + (\widehat{y}_i - \mathbb{E}_k[\widehat{y}])$

• $\widehat{y_i} - \mathbb{E}_k[y]$: prediction error to smoothed true labels • $\mathbb{E}_k[\varepsilon] \propto \sigma_{\varepsilon} \|k_{\theta}(x_i, \cdot)\|_{L^2} \implies$ denoising factor: 0.02 (\simeq constant)

Shift: $(\hat{y}_i - \mathbb{E}_k[\hat{y}])$: 4.4 px (varying) /50

TAU team, INRIA Saclay / LRI - Paris-Sud

Input Similarity from the Neural Network Perspective

G. Charpiat

Introduction O	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
Conclusion				

Conclusion

G. Charpiat Input Similarity from the Neural Network Perspective

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
				000000000
Conclusion				

Conclusion

- Defined input similarity as perceived by the neural network
- Skipped the maths for the higher-dim case
- Fast similarity / density estimation
 ⇒ opens the door to underfit/overfit/uncertainty analyses and control
- Similarity enforced during training: dataset-dependent boosting effect (cf supp.mat.)
- Extended Noise2Noise to non-identical inputs: self-denoising effect as a function of inputs similarities
- Links with <u>Neural Tangent Kernel</u> [4]: same concept! used differently
- Code available on GitHub: http://github.com/Lydorn/netsimilarity

Recent news:

- Our first citation! [Hanawa et al.]
- Comparison of several criteria for similar image retrieval \implies ranked first!
- It seems they did not compute the right quantity....

G. Charpiat

TAU team, INRIA Saclay / LRI - Paris-Sud

Introduction O	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising 00000000●
Conclusion				
Pap	oers			
	Guillaume Charpiat, Nicolas G Input similarity from the neura In Thirty-third Conference on Vancouver, Canada, December	irard, Loris Felardo Il network perspect Neural Information r 2019.	s, and Yuliya ive. Processing S	Tarabalka. ystems (NeurIPS <u>)</u> ,
	Nicolas Girard, Guillaume Char Aligning and Updating Cadast Multi-Resolution Deep Learnin In Asian Conference on Compu- 2018.	rpiat, and Yuliya T er Maps with Aeria g. uter Vision (ACCV)	arabalka. I Images by N J. Perth, Aust	<mark>/ulti-Task,</mark> ralia, December

Recurrent neural networks to enhance satellite image classification maps. TGRS, abs/1608.03440, 2016.

Convolutional Neural Networks for Large-Scale Remote Sensing Image Classification.

IEEE Transactions on Geoscience and Remote Sensing, September 2016.

TAU team, INRIA Saclay / LRI - Paris-Sud

Introduction O	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising ○○○○○○○●
Conclusion				
	Emmanuel Maggiori, Yuliya Ta Fully Convolutional Neural Net In IEEE International Geoscien China, July 2016. IEEE GRSS.	arabalka, Guillaume tworks For Remote ce and Remote Ser	Charpiat, an Sensing Imag nsing Sympos	d Pierre Alliez. ge Classification. ium, Beijing,
	Emmanuel Maggiori, Yuliya Ta Can Semantic Labeling Metho Labeling Benchmark. In IEEE International Symposi Fort Worth, United States, Jul	arabalka, Guillaume ds Generalize to Au um on Geoscience y 2017.	Charpiat, anny City? The	d Pierre Alliez. Inria Aerial Image Sensing (IGARSS),
	Emmanuel Maggiori, Yuliya Ta High-resolution aerial image la IEEE Transactions on Geoscier 2017.	arabalka, Guillaume beling with convolu nce and Remote Se	Charpiat, an utional neural ensing, 55(12)	d Pierre Alliez. networks. :7092–7103, Dec
	Emmanuel Maggiori, Yuliya Ta High-resolution image classific In IEEE International Symposi Fort Worth, United States, Jul	arabalka, Guillaume ation with convolut um on Geoscience v 2017.	Charpiat, an tional network and Remote S	d Pierre Alliez. s. Sensing (IGARSS),

G. Charpiat

TAU team, INRIA Saclay / LRI - Paris-Sud

Introduction	Image Segmentation and Registration	Dataset self-denoising	Input similarity	Back to dataset self-denoising
				00000000
Conclusion				

Armand Zampieri, Guillaume Charpiat, Nicolas Girard, and Yuliya Tarabalka. Multimodal image alignment through a multiscale chain of neural networks with application to remote sensing.

In European Conference on Computer Vision (ECCV), Munich, Germany, September 2018.