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Plan

Overview of this talk
� I - Remote sensing image segmentation and registration

� II - Dataset self-denoising

� III - Notion of similarity from the neural network viewpoint

� IV - Back to dataset self-denoising

Work in collaboration with Nicolas Girard, Loris Felardos & Yuliya Tarabalka

�→ TAU team, at INRIA Saclay & Titane team, at INRIA Sophia-Antipolis
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Image Segmentation and Registration

Part I

Remote sensing image segmentation
and registration
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Image Segmentation

Task 1: Remote sensing image segmentation

� Goal: semantic segmentation of satellite images
i.e.: each pixel �→ class ∈ {building, road, ...}

� Tool: neural networks with varied architectures

� Obstacles: no reliable dataset
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Image Segmentation

Goal: semantic segmentation

Aerial

Input Goal

Satellite
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Image Registration

Issue: misalignment

Deformations inherent to aerial or satellite photography
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Image Registration

Issue: misalignment

� Registration: cadaster map (cyan) vs. photo RGB
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Image Registration

Automatic realignment?

Multimodal pair of images: aerial RGB image / binary vector-format cadastral
image (buildings in white)
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Image Registration

Task 2: Multimodal Registration

Example of deformation. Image I ; a deformation φ, i.e. a R2 vector field ;
associated deformed image I ◦ φ.

G. Charpiat TAU team, INRIA Saclay / LRI - Paris-Sud

Input Similarity from the Neural Network Perspective



Introduction Image Segmentation and Registration Dataset self-denoising Input similarity Back to dataset self-denoising

Solution

Approach

Optimization criterion: Euclidean norm of the prediction error

C (w) = E
(I1,I2,φGT)∈D


 �

x∈Ω(I2)

��� �φ(w)(I1,I2)(x)− φGT(x)
���
2

2



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Solution

Approach

Optimization criterion: Euclidean norm of the prediction error

C (w) = E
(I1,I2,φGT)∈D


 �

x∈Ω(I2)

��� �φ(w)(I1,I2)(x)− φGT(x)
���
2

2




� Issue: the network doesn’t learn

� for prediction: each pixel �→ deformation ±25 px is too hard

� Idea: deformation ±1 px is easy
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Solution

Approach

Optimization criterion: Euclidean norm of the prediction error

C (w) = E
(I1,I2,φGT)∈D


 �

x∈Ω(I2)

��� �φ(w)(I1,I2)(x)− φGT(x)
���
2

2




Task at scale s: Solve the alignment problem for the image pair (I1, I2), with
a precision required of ±2s pixels, under the assumption that the amplitude
of the registration to be found is not larger than 2s+1 pixels.

Solution for task at scale s: Downsample the images by a factor 2s ; solve
the alignment task at scale 0 for these reduced images, and upsample the
result with the same factor.

Full alignment algorithm: Given an image pair (I1, I2) of width w , iteratively
solve the alignment task at scale s, from s = log2 w until s = 0.
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Network

Network to process a specific scale
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Chain of networks

Global network: chain of scale-specific networks � compositional ResNet
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Results

Results

Example of image alignment. Original image and OpenStreetMap (OSM) map
/ Alignment result.

G. Charpiat TAU team, INRIA Saclay / LRI - Paris-Sud

Input Similarity from the Neural Network Perspective



Introduction Image Segmentation and Registration Dataset self-denoising Input similarity Back to dataset self-denoising

Dataset self-denoising

Part II

Dataset self-denoising

G. Charpiat TAU team, INRIA Saclay / LRI - Paris-Sud

Input Similarity from the Neural Network Perspective



Introduction Image Segmentation and Registration Dataset self-denoising Input similarity Back to dataset self-denoising

Dataset self-denoising

Training set for the alignment task
� pick locations where RGB image I and cadaster map M look not too

badly aligned (or align manually)
=⇒ training sample

�
(I ,M), Id

�

� generate random smooth deformations φ, and add
�
(I ,M ◦ φ),φ

�
to the

training set

=⇒ sensitivity of the training w.r.t. alignment quality between original I and

M?
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Dataset self-denoising

Training set for the alignment task
� pick locations where RGB image I and cadaster map M look not too

badly aligned (or align manually)
=⇒ training sample

�
(I ,M), Id

�

� generate random smooth deformations φ, and add
�
(I ,M ◦ φ),φ

�
to the

training set

=⇒ sensitivity of the training w.r.t. alignment quality between original I and

M?

Dealing with noisy training data
� Dataset of examples (x , y + ε) with noisy labels

� Is it possible to train and get accuracy higher than the noise variance?
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Dataset self-denoising

Red: given ground truth
Green: the real but unavailable one
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Dataset self-denoising

Nicolas’s idea: update the dataset iteratively
� given: dataset D0 with noisy labels

� train on D0
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Dataset self-denoising

Nicolas’s idea: update the dataset iteratively
� given: dataset D0 with noisy labels

� train on D0

� test on D0 : imprecise predictions
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Dataset self-denoising

Nicolas’s idea: update the dataset iteratively
� given: dataset D0 with noisy labels

� train on D0

� test on D0 : imprecise predictions

� replace the target labels by the ones predicted =⇒ new dataset D1
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Dataset self-denoising

Nicolas’s idea: update the dataset iteratively
� given: dataset D0 with noisy labels

� train on D0

� test on D0 : imprecise predictions

� replace the target labels by the ones predicted =⇒ new dataset D1

� train on D1
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Dataset self-denoising

Nicolas’s idea: update the dataset iteratively
� given: dataset D0 with noisy labels

� train on D0

� test on D0 : imprecise predictions

� replace the target labels by the ones predicted =⇒ new dataset D1

� train on D1

� test on D0 =⇒ form new dataset D2

G. Charpiat TAU team, INRIA Saclay / LRI - Paris-Sud

Input Similarity from the Neural Network Perspective



Introduction Image Segmentation and Registration Dataset self-denoising Input similarity Back to dataset self-denoising

Dataset self-denoising

Nicolas’s idea: update the dataset iteratively
� given: dataset D0 with noisy labels

� train on D0

� test on D0 : imprecise predictions

� replace the target labels by the ones predicted =⇒ new dataset D1

� train on D1

� test on D0 =⇒ form new dataset D2

� train on D2
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Dataset self-denoising

Nicolas’s idea: update the dataset iteratively
� given: dataset D0 with noisy labels

� train on D0

� test on D0 : imprecise predictions

� replace the target labels by the ones predicted =⇒ new dataset D1

� train on D1

� test on D0 =⇒ form new dataset D2

� train on D2

� test on D0 =⇒ form new dataset D3

� ...
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Dataset self-denoising
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Dataset self-denoising

Quantitative results:

Dashed lines: control experiment with added noise on ground truth
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Dataset self-denoising

Dealing with noisy data
� Dataset of examples (x , y + ε) with noisy labels

� Is it possible to train and get accuracy higher than the noise variance?
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Dataset self-denoising

Dealing with noisy data
� Dataset of examples (x , y + ε) with noisy labels

� Is it possible to train and get accuracy higher than the noise variance?

� Yes!

G. Charpiat TAU team, INRIA Saclay / LRI - Paris-Sud

Input Similarity from the Neural Network Perspective



Introduction Image Segmentation and Registration Dataset self-denoising Input similarity Back to dataset self-denoising

Dataset self-denoising

Dealing with noisy data
� Dataset of examples (x , y + ε) with noisy labels

� Is it possible to train and get accuracy higher than the noise variance?

� Yes!
� one point x , with true label y
� presented n times with noisy labels yi = y + εi
� assumption: i.i.d. noise ε, centered.
� L2 loss:

inf
ŷ

�

i

�ŷ − yi�2
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Dataset self-denoising

Dealing with noisy data
� Dataset of examples (x , y + ε) with noisy labels

� Is it possible to train and get accuracy higher than the noise variance?

� Yes!
� one point x , with true label y
� presented n times with noisy labels yi = y + εi
� assumption: i.i.d. noise ε, centered.
� L2 loss:

inf
ŷ

�

i

�ŷ − yi�2

� best fit: the average: ŷ = 1
n

�
i yi
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Dataset self-denoising

Dealing with noisy data
� Dataset of examples (x , y + ε) with noisy labels

� Is it possible to train and get accuracy higher than the noise variance?

� Yes!
� one point x , with true label y
� presented n times with noisy labels yi = y + εi
� assumption: i.i.d. noise ε, centered.
� L2 loss:

inf
ŷ

�

i

�ŷ − yi�2

� best fit: the average: ŷ = 1
n

�
i yi

�
ŷ � y ± 1√

n

[Noise2Noise: Learning Image Restoration without Clean Data; Lehtinen

et al., 2018]
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Dataset self-denoising

Dealing with noisy data
� Dataset of examples (x , y + ε) with noisy labels

� Is it possible to train and get accuracy higher than the noise variance?

� Yes!
� one point x , with true label y
� presented n times with noisy labels yi = y + εi
� assumption: i.i.d. noise ε, centered.
� L2 loss:

inf
ŷ

�

i

�ŷ − yi�2

� best fit: the average: ŷ = 1
n

�
i yi

�
ŷ � y ± 1√

n

[Noise2Noise: Learning Image Restoration without Clean Data; Lehtinen

et al., 2018]

� Number of similar examples?

� Quantify: input similarity?

G. Charpiat TAU team, INRIA Saclay / LRI - Paris-Sud
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Part III

Input similarity
from the network’s point of view
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Notions of similarity
� Predefined metric (e.g., pixelwise L2)

� issue: small translations =⇒ large distances
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Notions of similarity
� Predefined metric (e.g., pixelwise L2)

� issue: small translations =⇒ large distances

� Perceptual loss

[ Johnson, Alahi and Li Fei-Fei: Perceptual losses for real-time style transfer and

super-resolution, ECCV 2016 ]

� to evaluate auto-encoder reconstruction error
� compare VGG activities =⇒ more semantic
� in practice: arbitrary choices (pick one layer)
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Notions of similarity
� Predefined metric (e.g., pixelwise L2)

� issue: small translations =⇒ large distances

� Perceptual loss

[ Johnson, Alahi and Li Fei-Fei: Perceptual losses for real-time style transfer and

super-resolution, ECCV 2016 ]

� to evaluate auto-encoder reconstruction error
� compare VGG activities =⇒ more semantic
� in practice: arbitrary choices (pick one layer)

� Principled way?
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Defining similarity by undissociability
� Given a trained neural network fθ

� and two input points x and x�

� how similar are x and x� for the network?

Output space:

v

v’
f (x)
θ

θ
f (x’)

Quantify the influence of a data point x over another one x� by how much the
tuning of parameters θ to obtain a desired output change v for fθ(x) will affect
fθ(x

�) as well.

G. Charpiat TAU team, INRIA Saclay / LRI - Paris-Sud
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Output space:

v

v’
f (x)
θ

θ
f (x’)

Influence of x over x� = how much the tuning of parameters θ to obtain a
desired output change v for fθ(x) will affect fθ(x

�) as well.

Derivation in 1-dim output case

� To change fθ(x) by a small quantity ε, update θ by δθ = ε ∇θ fθ(x)

�∇θ fθ(x)�2
.

� Indeed, after parameter update, new value at x:

fθ+δθ(x) = fθ(x) +∇θfθ(x) · δθ + O(�δθ�2) = fθ(x) + ε+ O(ε2).

� This parameter change induces a value change at any other point x� :

fθ+δθ(x
�) = fθ(x

�)+∇θfθ(x
�)·δθ+O(�δθ�2) = fθ(x

�)+ε
∇θfθ(x

�) ·∇θfθ(x)

�∇θfθ(x)�2
+O(ε2).
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Symmetric similarity

kθ(x, x
�) =

∇θfθ(x)

�∇θfθ(x)�
· ∇θfθ(x

�)
�∇θfθ(x�)�

� kernel, valued in [−1, 1]

� Neural Tangent Kernel!
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Symmetric similarity

kθ(x, x
�) =

∇θfθ(x)

�∇θfθ(x)�
· ∇θfθ(x

�)
�∇θfθ(x�)�

� kernel, valued in [−1, 1]

� Neural Tangent Kernel!

Properties for vanilla neural networks:

Theorem 1

For any real-valued neural network fθ whose last layer is a linear layer
(without any parameter sharing) or a standard activation function thereof
(sigmoid, tanh, ReLU...), and for any inputs x and x�,

kθ(x, x
�) = 1 =⇒ ∇θfθ(x) = ∇θfθ(x

�) =⇒ fθ(x) = fθ(x
�)

G. Charpiat TAU team, INRIA Saclay / LRI - Paris-Sud
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Symmetric similarity

kθ(x, x
�) =

∇θfθ(x)

�∇θfθ(x)�
· ∇θfθ(x

�)
�∇θfθ(x�)�

� kernel, valued in [−1, 1]

� Neural Tangent Kernel!

Properties for vanilla neural networks:

Theorem 2

For any real-valued neural network fθ without parameter sharing,
if kθ(x, x

�) = 1 for two inputs x, x�,
then all useful activities computed when processing x are equal to the
ones obtained when processing x�.
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Link with the perceptual loss

� Perceptual loss: �

activities i �=0

λlayer(i) ai (x) ai (x
�)

� Our similarity measure for vanilla networks:

kθ(x, x
�) =

�

activities i

λi (x, x
�) ai (x) ai (x

�)

where λi (x, x
�) =

�

neuron j using ai

dfθ(x)

dbj

dfθ(x
�)

dbj

� For parameter-sharing networks:

kθ(x, x
�) =

�

params i


 �

(j,k)∈Si

ak(x)
dfθ(x)

dbj





 �

(j,k)∈Si

ak(x
�)
dfθ(x

�)

dbj




=⇒ reflects network invariances (e.g., translation-inv for convnets)
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Counting neighbors
� Similarity measure kθ =⇒ notion of neighborhood
� Number of neighbors of point x ?
� Hard-thresholding, for a given threshold τ ∈ [0, 1]:

Nτ (x) =
�

x�
1kθ(x,x�)�τ

� Soft estimate:
NS(x) =

�

x�
kθ(x, x

�)

� The two are linked:
� 1

τ=0

Nτ (x)dτ =
�

x�

� 1

τ=0

1kθ(x,x�)�τ dτ =
�

x�
kθ(x, x

�) 1kθ(x,x�)�0 � NS(x)

� Low complexity of the soft estimate:

NS(x) =
�

x�
kθ(x, x

�) =
�

x�

∇θfθ(x)

�∇θfθ(x)�
· ∇θfθ(x

�)

�∇θfθ(x�)�
=

∇θfθ(x)

�∇θfθ(x)�
·g with g =

�

x�

∇θfθ(x
�)

�∇θfθ(x�)�
� Very fast to compute! Estimate density at every point in 2 passes over

the dataset
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Testing these density estimators
� Experiment design: train networks to imitate sinusoids of various

frequencies

0.0 0.2 0.4 0.6 0.8 1.0

alpha

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

(a) Function to predict.
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�
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�
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�
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(b) Neighbors soft estimate.

Figure: Toy problem with the frequency f = 2.
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Better viewed in 3D:
with curvature
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Color: frequency
Depth: curvature
Height: density
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Density estimation using the various approaches (log scale). All approaches
behave similarly and show good results, except the ones with extreme

thresholds.
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Density, so what?
� Test at point x: very low density? =⇒ not reliable prediction!

� as no neighbor =⇒ independent of training set
� quantify prediction uncertainty

� Very high density? Might underfit.

� useful to know during training

� Differentiable quantities... =⇒ possible to optimize them while training!
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Density, so what?
� Test at point x: very low density? =⇒ not reliable prediction!

� as no neighbor =⇒ independent of training set
� quantify prediction uncertainty

� Very high density? Might underfit.

� useful to know during training

� Differentiable quantities... =⇒ possible to optimize them while training!

By the way...
� Differentiable similarity estimate =⇒ possible to enforce while training

that some examples should be perceived as similar (or different) by the
network

� Enforcing similarity on a classification task: small boosting effect (on
MNIST...)
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Back to remote sensing image registration

Part IV

Back to remote sensing image registration
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Back to remote sensing image registration

What do neighbors look like?

Figure: Example of nearest neighbors for a patch. Each line corresponds
to a round. Each patch has its similarity written under it.
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Back to remote sensing image registration

(a) Round 1
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(b) Round 2
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(c) Round 3
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Figure: Histograms of similarities for one patch across rounds.
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Back to remote sensing image registration
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Source | Closest neighbor patches

Figure: Closest neighbors to the leftmost patch, using the perceptual
loss (first row) and our similarity definition (second row).
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Back to dataset self-denoising

Part IV - bis

Back to dataset self-denoising
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Back to dataset self-denoising

From similarity statistics to self-denoising effect estimation
input : xi

true (unknown) label : yi
(unknown) noise : εi (iid, centered)

noisy (available) label : �yi = yi + εi
predicted label : �yi = fθ(xi )

training loss : L(θ) =
�

j ||�yj − �yj ||2

� at convergence ∇θL = 0 =⇒ Ek [�y ] = Ek [�y ]
� Ek [a] :=

�
j aj kθ(xi , xj) : mean value around xi

�yi − Ek [y ] = Ek [ε] + ( �yi − Ek [�y ] )

� �yi − Ek [y ]: prediction error to smoothed true labels

� Ek [ε] ∝ σε �kθ(xi , ·)�L2 =⇒ denoising factor: 0.02 (� constant)

� Shift: ( �yi − Ek [�y ] ) : 4.4 px (varying)
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Conclusion

Conclusion
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Conclusion

Conclusion
� Defined input similarity as perceived by the neural network

� Skipped the maths for the higher-dim case

� Fast similarity / density estimation
=⇒ opens the door to underfit/overfit/uncertainty analyses and control

� Similarity enforced during training: dataset-dependent boosting effect (cf
supp.mat.)

� Extended Noise2Noise to non-identical inputs: self-denoising effect as a
function of inputs similarities

� Links with Neural Tangent Kernel [4]: same concept! used differently

� Code available on GitHub:
http://github.com/Lydorn/netsimilarity

Recent news:
� Our first citation! [Hanawa et al.]

� Comparison of several criteria for similar image retrieval =⇒ ranked first!

� It seems they did not compute the right quantity...
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