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Motivation Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

Applicative Motivation
Inverse problem in imaging

y = D(Hx)
where y ∈ Rm observed data, D noise perturbation, H ∈ Rm×n linear observation model, x ∈ Rn original image

Variational methods
minimize

x∈C
f (Hx , y) + λR(x)

where f : Rm × Rm → R data-fitting term, R : Rn → R regularization function, λ > 0 regularization factor,
C ⊂ Rn

3 Incorporate prior knowledge about solution and enforce desirable constraints
3 Grounded on clear mathematical concepts
7 No closed-form solution → iterative algorithms
7 Objective function not always reflecting perceived quality
7 Estimation of λ and tuning of algorithm parameters → time-consuming

Deep-learning methods

3 Generic methods for nonlinear approximation [Cybenko, 1989]
3 Efficient for incorporating prior knowledge from big databases
7 Make it difficult to account for physical models
7 Black-box, empirical approaches

→ Combine benefits of both approaches : unfold optimization algorithms [Gregor and LeCun,
2010]
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Theoretical Motivation

Frank Rosenblatt Jean-Jacques Moreau
(1928–1971) (1923–2014)
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Projected Gradient Descent

Basic optimization problem

minimize
x∈C

1
2
‖Hx − y‖2

where C nonempty closed convex subset of Rn, y ∈ Rm, and H ∈ Rm×n.

Projected gradient algorithm

(∀k ∈ N) xk+1 = projC
(
xk − γkH>(Hxk − y)

)
where γk > 0 is the step-size
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Feedforward NNs

Neural network model

T = TK−1 ◦ · · · ◦ T0

where
(∀k ∈ {0, . . . ,K − 1}) Tk : Rnk → Rnk+1 : x 7→ Rk(Wkx + bk)

Wk ∈ Rnk+1×nk is a weight matrix
bk is a bias vector in Rnk+1

Rk : Rnk+1 → Rnk+1 is an activation operator.

Remark (Wk)0≤k≤K−1 can be convolutive operators

Chouzenoux et al. Unfolding Proximal Algorithms Saclay 2021 5 / 30



Motivation Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

Link

Proximity operator [Moreau, 1962]

Let Γ0(Rn) be the set of proper lsc convex functions from Rn to R ∪ {+∞}.
The proximity operator [http://proximity-operator.net/] of g ∈ Γ0(Rn) at x ∈ Rn is uniquely
defined as

proxg (x) = argmin
z∈Rn

(
g(z) +

1
2
‖z − x‖2

)
.

Special case
If f is the indicator function of C, then proxf = projC .
projected gradient algorithm  proximal-gradient algorithm  forward-backward
algorithm

Most of the activation operators are proximity operators

Chouzenoux et al. Unfolding Proximal Algorithms Saclay 2021 6 / 30



Motivation Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

Link

Proximity operator [Moreau, 1962]

Let Γ0(Rn) be the set of proper lsc convex functions from Rn to R ∪ {+∞}.
The proximity operator [http://proximity-operator.net/] of g ∈ Γ0(Rn) at x ∈ Rn is uniquely
defined as

proxg (x) = argmin
z∈Rn

(
g(z) +

1
2
‖z − x‖2

)
.

Special case
If f is the indicator function of C, then proxf = projC .
projected gradient algorithm  proximal-gradient algorithm  forward-backward
algorithm

Most of the activation operators are proximity operators

Chouzenoux et al. Unfolding Proximal Algorithms Saclay 2021 6 / 30



Motivation Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

Example of proximal activation operators

ReLU

% : R→ R : ξ 7→
{
ξ, if ξ > 0;
0, if ξ ≤ 0.

Then, % = proj[0,+∞[.

Parametric rectified linear unit activation function

% : R→ R : ξ 7→
{
ξ, if ξ > 0;
αξ, if ξ ≤ 0

, α ∈]0, 1].

Then % = proxφ where

φ : R→ R : ξ 7→
{
0, if ξ > 0;
(1/α− 1)ξ2/2, if ξ ≤ 0.
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Example of proximal activation operators

Unimodal sigmoid activation function

% : R→ R : ξ 7→
1

1 + e−ξ
−

1
2

Then % = proxφ where

φ : ξ 7→

(ξ + 1/2) ln(ξ + 1/2) + (1/2− ξ) ln(1/2− ξ)−
1
2

(ξ2 + 1/4) if |ξ| < 1/2;

−1/4, if |ξ| = 1/2;
+∞, if |ξ| > 1/2.

Elliot activation function

% : R→ R : ξ 7→
ξ

1 + |ξ|
.

We have % = proxφ, where

φ : R→]−∞,+∞] : ξ 7→
{
−|ξ| − ln(1− |ξ|)− ξ2

2 , if |ξ| < 1;
+∞, if |ξ| ≥ 1.
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Example of proximal activation operators

Softmax

R : Rn → Rn : (ξi )1≤i≤n 7→

(
exp(ξi )

/
N∑
j=1

exp(ξj )

)
1≤i≤n

− u,

where u = (1, . . . , 1)/n ∈ Rn.
Then R = proxϕ where ϕ = ψ(·+ u) + 〈· | u〉 and

ψ : Rn →]−∞,+∞]

(ξi )1≤i≤n 7→


n∑

i=1

(
ξi ln ξi −

ξ2i
2

)
, if (ξi )1≤i≤n ∈ [0, 1]n and

n∑
i=1

ξi = 1;

+∞, otherwise.
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Example of proximal activation operators

Squashing function used in capsnets

(∀x ∈ Rn) Rx =
µ‖x‖

1 + ‖x‖2
x = proxφ◦‖·‖x , µ =

8
3
√
3
,

where

φ : ξ 7→


µ arctan

√
|ξ|

µ− |ξ|
−
√
|ξ|(µ− |ξ|)−

ξ2

2
, if |ξ| < µ;

µ(π − µ)
2

, if |ξ| = µ;

+∞, otherwise.
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Problem

Assumptions

P0 : minimize
x∈C

f (Hx , y) + λR(x)

We assume that f (·, y) and R are twice-differentiable,
f (H·, y) + λR ∈ Γ0(Rn) is either coercive or C is bounded.
The feasible set is defined as

C = {x ∈ Rn | (∀i ∈ {1, . . . , p}) ci (x) ≥ 0}

where (∀i ∈ {1, . . . , p}) −ci ∈ Γ0(Rn). The interior of the feasible set is nonempty.

Existence of a solution to P0

Twice-differentiability : training using stochastic gradient descent

B : logarithmic barrier

(∀x ∈ Rn) B(x) =
{
−
∑p

i=1
ln(ci (x)) if x ∈ intC

+∞ otherwise.
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Logarithmic barrier method

Constrained Problem P0 : minimize
x∈C

f (Hx , y) + λR(x)

⇓
Unconstrained Subproblem Pµ : minimize

x∈Rn
f (Hx , y) + λR(x) + µB(x)

where µ > 0 is the barrier parameter.

P0 is replaced by a sequence of subproblems (Pµj )j∈N.
Subproblems solved approximately for a sequence µj → 0
Main advantages : feasible iterates, superlinear convergence for NLP

7 Inversion of an n × n matrix at each step
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Proximal interior point strategy

→ Combine interior point method with proximity operator

Exact version of the proximal IPM in [Kaplan and Tichatschke, 1998].

Let x0 ∈ intC, γ > 0, (∀k ∈ N) γ ≤ γk and µk → 0 ;
for k = 0, 1, . . . do
xk+1 = proxγk (f (H·,y)+λR+µkB) (xk)

end for

7 No closed-form expression for proxγk (f (H·,y)+λR+µkB)

Proposed forward–backward proximal IPM.
Let x0 ∈ intC, γ > 0, (∀k ∈ N) γ ≤ γk and µk → 0 ;
for k = 0, 1, . . . do
xk+1 = proxγkµkB

(
xk − γk

(
H>∇1f (Hxk , y) + λ∇R(xk)

))
end for

3 Only requires proxγkµkB
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Proximity operator of the barrier

Affine constraints C =
{
x ∈ Rn | a>x ≤ b

}
Proposition 1

Let ϕ : (x , α) 7→ proxαB(x). Then, for every (x , α) ∈ Rn × R∗+,

ϕ(x , α) = x +
b − a>x −

√
(b − a>x)2 + 4α‖a‖2

2‖a‖2
a.

In addition, the Jacobian matrix of ϕ wrt x and the gradient of ϕ wrt α are given by

J(x)
ϕ (x , α) = In −

1
2‖a‖2

(
1 +

a>x − b√
(b − a>x)2 + 4α‖a‖2

)
aa>

and
∇(α)
ϕ (x , α) =

−1√
(b − a>x)2 + 4α‖a‖2

a.
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Proximity operator of the barrier

Hyperslab constraints C =
{
x ∈ Rn | bm ≤ a>x ≤ bM

}
Proposition 2

Let ϕ : (x , α) 7→ proxαB(x). Then, for every (x , α) ∈ Rn × R∗+,

ϕ(x , α) = x +
κ(x , α)− a>x

‖a‖2
a,

where κ(x , α) is the unique solution in ]bm, bM [, of the following cubic equation,

0 = z3−(bm +bM +a>x)z2 +(bmbM +a>x(bm +bM)−2α‖a‖2)z−bmbMa>x +α(bm +bM)‖a‖2.

In addition, the Jacobian matrix of ϕ wrt x and the gradient of ϕ wrt α are given by

J(x)
ϕ (x , α) = In −

1
‖a‖2

(
(bM − κ(x , α))(bm − κ(x , α))

η(x , α)
− 1
)
aa>

and
∇(α)
ϕ (x , α) =

2κ(x , α)− bm − bM
η(x , α)

a,

where η(x, α) = (bM − κ(x, α))(bm − κ(x, α))− (bm + bM − 2κ(x, α))(κ(x, α)− a>x)− 2α‖a‖2.
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Proximity operator of the barrier

Bound constraints C = [0, 1]
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Proximity operator of the barrier

Bounded `2-norm C =
{
x ∈ Rn | ‖x − c‖2 ≤ ρ

}
Proposition 3

Let ϕ : (x , α) 7→ proxαB(x). Then, for every (x , α) ∈ Rn × R∗+,

ϕ(x , α) = c +
ρ− κ(x , α)2

ρ− κ(x , α)2 + 2α
(x − c),

where κ(x , α) is the unique solution in ]0,√ρ[, of the following cubic equation,

0 = z3 − ‖x − c‖z2 − (ρ + 2α)z + ρ‖x − c‖.

In addition, the Jacobian matrix of ϕ wrt x and the gradient of ϕ wrt α are given by

J(x)
ϕ (x , α) =

ρ− ‖ϕ(x , α)− c‖2

ρ− ‖ϕ(x , α)− c‖2 + 2α
M(x , α)

and
∇(α)
ϕ (x , α) =

−2
ρ− ‖ϕ(x , α)− c‖2 + 2α

M(x , α)(ϕ(x , α)− c),

where
M(x , α) = In −

2(x − ϕ(x , α))(ϕ(x , α)− c)>

ρ− 3‖ϕ(x , α)− c‖2 + 2α + 2(ϕ(x , α)− c)>(x − c)
.
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Proximity operator of the barrier

Bounded `2-norm C =
{
x ∈ R2 | ‖x‖2 ≤ 0.7

}
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Proposed strategy

Forward–backward proximal IPM.
Let x0 ∈ intC, γ > 0, (∀k ∈ N) γ ≤ γk and µk → 0 ;
for k = 0, 1, . . . do
xk+1 = proxγkµkB

(
xk − γk

(
H>∇1f (Hxk , y) + λ∇R(xk)

))
end for

3 Efficient algorithm for constrained optimization
7 Setting of the parameters (µk , γk)k∈N ?
7 How to finding the regularization parameter λ leading to the best visual quality of

the solution ?
→ Unfold proximal IP algorithm over K iterations, untie γ, µ and λ across network

A(xk , µk , γk , λk) = proxγkµkB
(
xk − γk

(
H>∇1f (Hxk , y) + λk∇R(xk)

))

Chouzenoux et al. Unfolding Proximal Algorithms Saclay 2021 16 / 30



Motivation Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

iRestNet architecture

−→ Unfold proximal IP algorithm over K iterations, untie γ, µ and λ across network
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iRestNet architecture

−→ Unfold proximal IP algorithm over K iterations, untie γ, µ and λ across network
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iRestNet architecture

−→ Unfold proximal IP algorithm over K iterations, untie γ, µ and λ across network
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iRestNet architecture

−→ Unfold proximal IP algorithm over K iterations, untie γ, µ and λ across network
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iRestNet architecture
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Lpp : post-processing layer → removes remaining artifacts

Training Stochastic gradient descent and backpropagation (∇A thanks to
Propositions 1-3)
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Network stability

What about the network stability ?
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Network stability

What about the network stability ?

Deep learning : lack of robustness, e.g. AlexNet [Szegedy et al., 2013]
Applications with high risk and legal responsibility (medical image processing,
driving, security, etc...) → need for theoretical guarantees

Asymptotic and robustness analyses addressed within the framework of averaged
operators [Combettes and Pesquet, 2020]
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Averaged operators

Definition – α-averaged operator

Let T : Rn → Rn and let α ∈ [0, 1]. Then, T is α-averaged if there exists a
nonexpansive operator R : Rn → Rn such that T = (1− α)In + αR.

If T is averaged, then it is nonexpansive.
Let α ∈]0, 1]. T is α-averaged if and only if for every x ∈ Rn and y ∈ Rn,

‖T (x)− T (y)‖2 ≤ ‖x − y‖2 −
1− α
α
‖(In − T )(x)− (In − T )(y)‖2.

=⇒ Bound on the output variation when input is perturbed.
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Relation to generic deep neural networks

Feedforward architecture RK−1 ◦ (WK−1 ·+bK−1) ◦ · · · ◦ R0 ◦ (W0 ·+b0)

→ iRestNet shares same structure

Quadratic problem minimize
x∈C

1
2‖Hx − y‖2 + λ

2 ‖Dx‖
2

xk+1 = proxγkµkB(xk − γk(H>(Hxk − y) + λkD>Dxk))

= proxγkµkB
(

[In − γk(H>H + λkD>D)]xk + γkH>y
)

= Rk(Wkxk + bk)

Wk = In − γk(H>H + λD>D) weight operator
bk = γkH>y bias parameter
Rk = proxγkµkB

→ Rk specific activation function

Chouzenoux et al. Unfolding Proximal Algorithms Saclay 2021 20 / 30



Motivation Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

Averageness result

Theorem 1 [Combettes and Pesquet, 2020]

Let α ∈ [1/2, 1]. Let K = 2. Let ρ = infx∈Rn, ‖x‖=1 〈W1W0x | x〉, and let

θ1 = ‖W1W0‖ + ‖W1‖‖W0‖

If one of the following conditions is satisfied :
(i) W0 = 0 or W1 = 0 ;
(ii) ‖W1W0 − 4(1− α)In‖ − ‖W1W0‖+ 2θ1 ≤ 4α ;
(iii) α 6= 1, W0 6= 0, W1 6= 0, and there exists η ∈ [0, α/((1− α)θ1)] such that{

θ1 ≤ 2α
αθ1 + (1− α)(‖In − ηW1W0‖ − η‖W1W0‖)(θ1 − ‖W1W0‖) ≤ 2α− 1 + (1− α)ρ,

then T = R1 ◦ (W1 ·+b1) ◦ R0 ◦ (W0 ·+b0) is α-averaged.
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Averageness result

Theorem 1 [Combettes and Pesquet, 2020]

Let α ∈ [1/2, 1]. Let K = 3. Let W = W2 ◦W1 ◦W0 Let ρ = infx∈Rn, ‖x‖=1 〈Wx | x〉,
and let

θ2 = ‖W‖ + ‖W2‖‖W1W0‖ + ‖W2W1‖‖W0‖ + ‖W2‖‖W1‖‖W0‖

If one of the following conditions is satisfied :
(i) W0 = 0 or W1 = 0 or W2 = 0 ;
(ii) ‖W − 8(1− α)In‖ − ‖W‖+ 2θ2 ≤ 8α ;
(iii) α 6= 1, W0 6= 0, W1 6= 0, W2 6= 0, and there exists η ∈ [0, α/((1− α)θ2)] such

that {
θ2 ≤ 4α
αθ2 + (1− α)(‖In − ηW‖ − η‖W‖)(θ2 − ‖W‖) ≤ 2(2α− 1) + (1− α)ρ,

then T = R2 ◦ (W2 ·+b2) ◦ R2 ◦ (W3 ·+b3) ◦ R0 ◦ (W0 ·+b0) is α-averaged.

Chouzenoux et al. Unfolding Proximal Algorithms Saclay 2021 21 / 30



Motivation Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

Averageness result

Theorem 1 [Combettes and Pesquet, 2020]

Let α ∈ [1/2, 1]. Let K ≥ 1 be an integer. Let W = WK−1 ◦ · · · ◦W0, let
ρ = infx∈Rn, ‖x‖=1 〈Wx | x〉, and let

θK−1 = ‖W‖

+
K−2∑
`=0

∑
0≤j0<···<j`≤K−2

‖WK−1 ◦ · · · ◦Wj`+1‖‖Wj` ◦ · · · ◦Wj`−1+1‖ · · · ‖Wj0 ◦ · · · ◦W0‖.

If one of the following conditions is satisfied :
(i) There exists k ∈ {0, . . . ,K − 1} such that Wk = 0 ;
(ii) ‖W − 2K (1− α)In‖ − ‖W‖+ 2θK−1 ≤ 2Kα ;
(iii) α 6= 1, for every k ∈ {0, . . . ,K − 1} Wk 6= 0, and there exists

η ∈ [0, α/((1− α)θK−1)] such that{
θK−1 ≤ 2K−1α

αθK−1 + (1− α)(‖In − ηW‖ − η‖W‖)(θK−1 − ‖W‖) ≤ 2K−2(2α− 1) + (1− α)ρ,

then T = RK−1 ◦ (WK−1 ·+bK−1) ◦ · · · ◦ R0 ◦ (W0 ·+b0) is α-averaged.

Take-home message : the stability a neural network depends on its weight operators
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Network stability result

Assumption

Consider the quadratic problem, assume that H>H and D>D are diagonalizable in the same
basis P.

Notation

For every p ∈ {1, . . . , n} let β(p)
H and β(p)

D denote the pth eigenvalue of H>H and D>D in P,
resp. Let β− and β+ be defined by

β− = min
1≤p≤n

K−1∏
k=0

(
1− γk

(
β

(p)
H + λkβ

(p)
D

))
and β+ = max

1≤p≤n

K−1∏
k=0

(
1− γk

(
β

(p)
H + λkβ

(p)
D

))
.

Let θ−1 = 1 and, for every k ∈ {0, . . . ,K − 1},

θk =
k∑

l=0

θl−1 max
1≤ql≤n

∣∣(1− γk (β(ql )
H + λkβ

(ql )
D

))
. . .
(
1− γl

(
β

(ql )
H + λlβ

(ql )
D

))∣∣.
Theorem 2

Let α ∈ [1/2, 1]. If one of the following conditions is satisfied :
(i) β+ + β− ≤ 0 and θK−1 ≤ 2K−1(2α− 1) ;
(ii) 0 ≤ β+ + β− ≤ 2K+1(1− α) and 2θK−1 ≤ β+ + β− + 2K (2α− 1) ;
(iii) 2K+1(1− α) ≤ β+ + β− and θK−1 ≤ 2K−1,
then the operator RK−1 ◦ (WK−1 ·+bK−1) ◦ · · · ◦ R0 ◦ (W0 ·+b0) is α-averaged.
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Numerical experiments

Image deblurring y = Hx + ω

H ∈ Rn×n : circular convolution with known blur
ω ∈ Rn : additive white Gaussian noise with standard deviation σ
y ∈ Rn, x ∈ Rn : RGB images

Variational formulation

minimize
x∈[0,xmax ]n

1
2
‖Hx − y‖2 + λ

n∑
i=1

√
(Dhx)2i + (Dvx)2i

δ2
+ 1

δ : smoothing parameter, δ = 0.01 for iRestNet
Dh ∈ Rn×n, Dv ∈ Rn×n : horizontal and vertical spatial gradient operators
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Network characteristics

Number of layers : K = 40

Estimation of regularization parameter

λk = L(λ)
k (xk ) =

σ̂(y)× Softplus(bk)
η(xk ) + Softplus(ck)

where η(xk ) is the standard deviation of [(Dhxk )>(Dvxk )>]> and σ̂(y) is an estimation of
noise level [Ramadhan et al.,2017],

σ̂(y) = median(|WHy|)/0.6745,
where |WHy | is the vector gathering the absolute value of the diagonal coefficients of the
first level Haar wavelet decomposition of the blurred image.
→ iRestNet does not require knowledge of noise level

Post-processing Lpp [Zhang et al.,2017]
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Numerical experiments
Dataset

Training set : 200 RGB images from BSD500 + 1000 images from COCO
Validation set : 100 validation images from BSD500
Test set : 200 test images from BSD500

Test configurations

GaussA : Gaussian kernel with std=1.6, σ = 0.008
GaussB : Gaussian kernel with std=1.6, σ ∈ [0.01, 0.05]
GaussC : Gaussian kernel with std=3, σ = 0.04
Motion : motion kernel from [Levin et al.,2009] σ = 0.01
Square : 7× 7 uniform kernel, σ = 0.01

Training

Loss : Structural SImilarity Measure (SSIM) [Wang et al., 2004], ADAM optimizer
L0, . . ., L29 trained individually, Lpp ◦ L39 ◦ · · · ◦ L30 trained end-to-end → low memory
Implemented with Pytorch using a GPU, ∼3-4 days per training (one iRestNet for each
degradation model)

Competitors

VAR : solution to P0 with projected gradient algorithm, (λ, δ) leading to best SSIM
Deep learning methods : EPLL [Zoran and Weiss, 2011], MLP [Schuler et al.,2013], IRCNN
[Zhang et al.,2017] (require noise level)
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Results

3 Higher average SSIM than competitors
3 Higher SSIM on almost all images

GaussA GaussB GaussC Motion Square

Blurred 0.675 0.522 0.326 0.548 0.543
VAR 0.804 0.724 0.585 0.829 0.756
EPLL 0.799 0.709 0.564 0.838 0.754
MLP 0.821 0.734 0.608 - -
IRCNN 0.841 0.768 0.618 0.907 0.833
iRestNet 0.850 0.786 0.638 0.911 0.839

Figure – SSIM results on the test set.

Figure – From left to right : GaussianA, GaussianC, Square.
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Visual results

3 Better contrast and more details

Ground-truth VAR : 0.622 EPLL : 0.552 IRCNN : 0.685 iRestNet : 0.708

Figure – Visual results and SSIM obtained on one test image degraded with Square.

Ground-truth VAR : 0.838 EPLL : 0.842 MLP : 0.862 IRCNN : 0.842 iRestNet : 0.887

Figure – Visual results and SSIM obtained on one test image degraded with GaussB.
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Conclusion

Neural network architecture built in an explainable manner

Practically efficient methods developed by mixing ideas from iterative
optimization algorithms and NN techniques

Expressions of the proximity operator of some barrier functions and their gradients

Requirement of better nonconvex optimization methods

Optimization concepts are not only useful to train NNs, but also to analyze them
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