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Applicative Motivation

Inverse problem in imaging
y = D(Hx)

where y € R™ observed data, D noise perturbation, H € R™X" linear observation model, X € R" original image
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Applicative Motivation

Inverse problem in imaging
y = D(Hx)

where y € R™ observed data, D noise perturbation, H € R™X" linear observation model, X € R" original image

Variational methods

minimize  f(Hx, y) + AR(x)
xeC

where f : R™ x R™ — R data-fitting term, R : R” — R regularization function, A > 0 regularization factor,
CCR"

v/ Incorporate prior knowledge about solution and enforce desirable constraints
v/ Grounded on clear mathematical concepts

X No closed-form solution — iterative algorithms

X Objective function not always reflecting perceived quality

X Estimation of A and tuning of algorithm parameters — time-consuming
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Applicative Motivation

Inverse problem in imaging
y = D(Hx)

where y € R™ observed data, D noise perturbation, H € R™X" linear observation model, X € R" original image

Variational methods

minimize  f(Hx, y) + AR(x)
xeC

where f : R™ x R™ — R data-fitting term, R : R” — R regularization function, A > 0 regularization factor,
CCR"

v/ Incorporate prior knowledge about solution and enforce desirable constraints
v/ Grounded on clear mathematical concepts

X No closed-form solution — iterative algorithms

X Objective function not always reflecting perceived quality

X Estimation of A and tuning of algorithm parameters — time-consuming

Deep-learning methods

/' Generic methods for nonlinear approximation [Cybenko, 1989]
v/ Efficient for incorporating prior knowledge from big databases
X Make it difficult to account for physical models

X Black-box, empirical approaches
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Applicative Motivation

Inverse problem in imaging
y = D(Hx)

where y € R™ observed data, D noise perturbation, H € R™X" linear observation model, X € R" original image

Variational methods

minimize  f(Hx, y) + AR(x)
xeC

where f : R™ x R™ — R data-fitting term, R : R” — R regularization function, A > 0 regularization factor,
CCR"

v/ Incorporate prior knowledge about solution and enforce desirable constraints
v/ Grounded on clear mathematical concepts

X No closed-form solution — iterative algorithms

X Objective function not always reflecting perceived quality

X Estimation of A and tuning of algorithm parameters — time-consuming

Deep-learning methods

/' Generic methods for nonlinear approximation [Cybenko, 1989]
v/ Efficient for incorporating prior knowledge from big databases
X Make it difficult to account for physical models

X Black-box, empirical approaches

— Combine benefits of both approaches : unfold optimization algorithms [Gregor and LeCun,
2010]
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Projected Gradient Descent

Basic optimization problem
o1 2
minimize =||Hx — y||
x€eC 2
where C nonempty closed convex subset of R”, y € R™, and H € R™*",

Projected gradient algorithm

(Vk €N) 1 = proje (xx — wH ' (Hx — y))

where v, > 0 is the step-size

ST
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Projected Gradient Descent

Basic optimization problem
o1 2
minimize =||Hx — y||
x€eC 2
where C nonempty closed convex subset of R”, y € R™, and H € R™*".

Projected gradient algorithm

(Vk €N) 1 = proje (xx — wH " (Hx — y))
= proje(Wixk +H ' y)

where v, > 0 is the step-size and Wy = I, — v H T H.
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[e]e]e]e]e)

Projected Gradient Descent

Basic optimization problem

where C nonempty closed convex subset of R”, y € R™, and H € R™*".

Projected gradient algorithm

(Vk €N) 1 = proje (xx — wH " (Hxi — y))

where v, > 0 is the step-size and Wy = I, — v H T H.

YoHy

(e]e)

1
minimize = |Hx — y|?
xeC 2

= projo (Wi +1H ' y)

Ty —> Wy —>®—>

projc

—>

Chouzenoux et al.

Yk-1H Ty

— Wk

9@—)

projc

> Tk
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Motivation Prox

T = TK,10'~~OT0

where
(Vk € {0,...,K —1}) Ty: R —)Rnk+1:Xl—>Rk(WkX+bk)

Wy € Rk+1X" s a weight matrix
by is a bias vector in R7k+1
Ry : R"+1 — R"+1 is an activation operator.

Remark (W )o<k<k—1 can be convolutive operators

SIS 5



int method

Let Mo(R") be the set of proper Isc convex functions from R” to R U {+oco}.
The proximity operator [sttp://proxinity-operator.net/] of g € [o(R") at x € R" is uniquely
defined as

1
prox,(x) = argmin <g(z) 4 §||z = x||2) .
z€R"

Special case

If f is the indicator function of C, then prox; = proje.
projected gradient algorithm ~ proximal-gradient algorithm ~ forward-backward
algorithm
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Motivation int method

Let Mo(R") be the set of proper Isc convex functions from R” to R U {+oco}.
The proximity operator [sttp://proxinity-operator.net/] of g € [o(R") at x € R" is uniquely
defined as

1
prox,(x) = argmin <g(z) 4 §||z = x||2) .
z€R"

Special case

If f is the indicator function of C, then prox; = proje.
projected gradient algorithm ~ proximal-gradient algorithm ~ forward-backward
algorithm

Most of the activation operators are proximity operators

ST G
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Example of proximal activation operators

RelLU

& if £€>0;

TR—>R: &—
¢ ¢ {o, if €<0.

Then, ¢ = projig | o[-

Parametric rectified linear unit activation function

& ifE€>0;
R —R: 0, 1].
0 R— 5%{% fe<0’ o €]0,1]
Then ¢ = proxy where
0, if £€>0;
R —>R:
$:R— 5H{(1/a—1)§2/2, if £€<0.
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Example of proximal activation operators

Unimodal sigmoid activation function

1

T Ro>R:&— ———
¢ ¢ 1+e ¢

1
2
Then ¢ = proxy where
(€+1/2) (6 +1/2) +(1/2 = )In(1/2— &) — 3(€ +1/4) if l¢l <1/2

& 4 —1/4, if &) =1/2;
+o0, if €] >1/2.

Elliot activation function

3

0:R—=R: & .
1+ ¢

We have o = Proxg, where

—lel—In(1—le) - &, if lgl < 1;

¢>:R%]oo,+oo]:§»—>{+oo7 i 16> 1,
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[e]e]e]e]e] [e]e) [e]e]e]e]e]e]e]e]
Example of proximal activation operators
Softmax
N
RiR" 5 R™: (E)1<i<n = [ exp(&) /D exp(s)) —u,
J=1 1<i<n

where u = (1,...,1)/n € R".
Then R = prox,, where ¢ = ¢(- + u) + (- | u) and

P R" =] — 00, +00]

- ey ] ~
s ;(ailna—g), if (€)1<i<n € [0,1]" and ;a—l,
+00, otherwise.
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[e]e]e]e]e) (e]e) 00000000

Example of proximal activation operators

Squashing function used in capsnets

plixll o _ 8
T X T PrOXeo| X B = =,

Vx €R") Rx =
( ) Wi

IERERE

where

2
parctan | — il - 5. lel <

b & p(m — p)

5 if 1€l =i
400, otherwise.
(8)
+00 ————— —— 4o
i 3
—u "
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Assumptions

Po : minimize f(Hx, y) + AR(x)
xeC

We assume that f(-, y) and R are twice-differentiable,
f(H-,y) + AR € I'o(R") is either coercive or C is bounded.
The feasible set is defined as

C={xeR"|(Vie{1,...,p}) c(x)>0}
where (Vi € {1,...,p}) —¢; € To(R"). The interior of the feasible set is nonempty.

m Existence of a solution to Py

m Twice-differentiability : training using stochastic gradient descent

B : logarithmic barrier

(Vx €R") B(x) = { - pr:1 In(ci(x)) if x € intC

400 otherwise.

ST aE



Logarithmic barrier method

Constrained Problem Po : miningize f(Hx,y) + AR(x)
x€

Saclay 2021 9 /30
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Logarithmic barrier method

Constrained Problem Po : minincﬁze f(Hx,y) + AR(x)
xe

0

Unconstrained Subproblem Py : minirﬂgize f(Hx,y) + AR(x) + puB(x)
xERN

where p > 0 is the barrier parameter.

ST EE g
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Constrained Problem Po : minincﬁze f(Hx,y) + AR(x)
xe

0

Unconstrained Subproblem Py : minirﬂgize f(Hx,y) + AR(x) + puB(x)
xERN

where p > 0 is the barrier parameter.

Po is replaced by a sequence of subproblems (PM )jeN-
= Subproblems solved approximately for a sequence pj — 0
= Main advantages : feasible iterates, superlinear convergence for NLP

X Inversion of an n X n matrix at each step

ST O)E
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Proximal interior point strat

— Combine interior point method with proximity operator

Exact version of the proximal IPM in [Kaplan and Tichatschke, 1998].

LetxoeintC,z>0, (VkGN)Zgwk and pux — 0;
for k=0,1,... do

Xk+1 = PYOXy, (F(H-,y)+ARA+u,B) (x«)
end for

X No closed-form expression for PrOX, (fF(H-,y)+ AR+ 114 B)

ST WS
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Proximal interior point strategy

— Combine interior point method with proximity operator

Exact version of the proximal IPM in [Kaplan and Tichatschke, 1998].

Let xo GintC,Z>0, (VkGN)ngyk and pux — 0;
for k=0,1,... do

Xkl = PTOX, (7(H.,y) 1 AR+ i 8) (Xk)
end for

X No closed-form expression for PrOX, (fF(H-,y)+ AR+ 114 B)

Proposed forward—backward proximal IPM.
Let xo € intC, v > 0, (Vk € N) v < 7k and px — 0;
for k=0,1,... do
Xk1 = PrOX, . 53 (Xk — Yk (HTV1 f(Hxk,y) + )\VR(Xk)))
end for

v/ Only requires ProX,, ., 3

ST WS
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Proximity operator of the barrier

Affine constraints C= {X ER"|ax < b}
Let ¢ : (x, @) > prox,pz(x). Then, for every (x,a) € R" x R},

b—a'x—+/(b—aTx)?+ 4alal?

2|[all?

o(x, a) =x+

In addition, the Jacobian matrix of ¢ wrt x and the gradient of ¢ wrt o are given by

1 Tx—b
Jg)(x, a)=1I, — > |1+ 2 X aa'
2||all 7/ (b—aTx)? + 4al a|?
and L
(a) — —
Ve (x,a)= a.

(b — aTx)? + 4allal?

RV T
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(o] Iele]e}
Proximity operator of the barrier
Hyperslab constraints C= {x ER" | by <alx< bM}

Let o : (x, @) > prox,pz(x). Then, for every (x,a) € R" x R},

K(x,a) —a' x

o(x, a) = x +
llall?

ai

where k(x, @) is the unique solution in |bm, by, of the following cubic equation,
0=2°—(bm+bu+a' x)2°+(bmby~+a ' x(bm—+bu)—2al|al|*)z— bmbya ' x+o(bm+bu)| all%.

In addition, the Jacobian matrix of ¢ wrt x and the gradient of ¢ wrt o are given by

. 1 (B (50 ) (B (0 2)) ) .
g s =1, - ( —1)aa
v boe) TalP o)
and ) b b
VE;)(Xv a) = K(X’ a) — M37

n(x, a)
where n(x, a) = (by — K(x, @))(bm — &(x, @) — (b + by — 2k(x, @))(k(x, @) — a ' x) — 2c|al|?.

RV TRy



interior point method Proximity operator of the barrier
[e]e] Je]e}

Proximity operator of the barrier

Bound constraints Cc=10,1]
1
0.8+
——p =3.8e-02
— ——yp =2.4e-01
E 06 ——yp =1.5e+00
e}
5
804
2
0.2
0
-0.5 0 0.5 1 1.5

ST
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Motivation Proximal interior point method

[e]e] (e]e]e} [e]e]e] Jo}
Proximity operator of the barrier
Bounded £2-norm C= {X ER™ | |Ix —c|? < p}

Proposition 3
Let ¢ : (x, @) > prox,pz(x). Then, for every (x,a) € R" x R},

p — K(x, @)
p — k(x, a)? + 2a

p(x,a) =c+ (x—¢),

where £(x, @) is the unique solution in ]0, \/p[, of the following cubic equation,
0= 2 —[Ix — cll2® = (p+2a)z + pllx — c.
In addition, the Jacobian matrix of ¢ wrt x and the gradient of ¢ wrt « are given by

pllptoe) —elP

J9(x, a) =
o 0 e) = ot a) = e 22
and )
V(a)x,a = = M(x, a X,a) — c),
00 0) = e MO @) (@) — )
where

2(x = p(x, a))(p(x,0) = )T
P —3lp(xa) — cl? + 2a + 2(p(x, a) — )T (x — o)

M(x,a) = I, —

RV TRy



chitecture

Proximity operator of the barrier
[e]e]e]e] ]

interior point method

Proximity operator of the barrier

Bounded ¢;-norm C= {X eR? | |x|? < 0.7}

B i =1.5e-04
v =9.5e-04

Y =6.0e-03
B e =3.8e-02

0 yp =24e-01
p =1.5e+00

0.5

(pmow (w)) 1
o
1

|

<o

o
I

—
M(/
o
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[e]e]e]e]e) [ Je)

Proposed strategy

Forward—backward proximal IPM.
Let xo € intC, v > 0, (VkEN)ZS'yk and pux —0;
for k=0,1,... do
Xir1 = prox, s (% — v (HT Vaf(Hxie, y) + AVR(x)) )

end for

v/ Efficient algorithm for constrained optimization

X Setting of the parameters (uk, Vi )ken ?
X How to finding the regularization parameter X leading to the best visual quality of
the solution ?
— Unfold proximal IP algorithm over K iterations, untie 7, ;£ and A across network

A 1 Vi M) = proxey s (3 — v (HTVaf(Hxi, y) + M VR (i) ) )

ST TS
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iRestNet architecture

— Unfold proximal IP algorithm over K iterations, untie ~, ; and A across network

Input gr Zv ) Output
RGB image RGB image
3’3’ Ao o y(ll) L» o L
%m Ho X1 ytlm A1) X, XK
X . - L . J
Input : xg = y blurred image? Z

Hidden structures

17 / 3




int method F arrier Proposed architecture
(o] )

iRestNet architecture

— Unfold proximal IP algorithm over K iterations, untie v, 1 and \ across network

Input go 1 g0 1 Output
RGB image RGB image
W LA PRI
Zo o 1 £ L
%V) Ho X1 Sf(lp) M X2 o Xk
x U . L . b
Input : xo = y blurred image?® Z

Hidden structures

u (L:Ej))OSkSK—l : estimate stepsize, positive

Vi = L',Ej) = Softplus(ax)

ST T



iRestNet architecture

— Unfold proximal IP algorithm over K iterations, untie v, 1 and \ across network

Input go 1 g0 1 Output
RGB image RGB image
W LA PRI
Zo o 1 £ D
i Lo x Zv BB N
X U . I . J
Input : xo = y blurred image?» Z

Hidden structures
u (ﬁp))ogkg}(—l : estimate stepsize

u (£5(“))0§k§;<,1 : estimate barrier parameter

. AvgPool AvgPool Fully
* 4x4 4x4 connected
+ SoftPlus + SoftPlus layer

Saclay 2021 17 / 30
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(o] )

iRestNet architecture

— Unfold proximal IP algorithm over K iterations, untie v, 1z and \ across network

Input o [ g
RGB image 2
y(u,l) A Z 2(‘1) [ETEN
%u) Ho X1 Y(I;A) H
X . - L -
Input : xo = y blurred image?® Z

Hidden structures
u (ﬁfj))ogkgK—l : estimate stepsize

u (ﬁip))ogkgK—l : estimate barrier parameter

Output
RGB image

Zm

[ ] (LE( ))OSkSK—l . estimate regularization parameter — image statistics, noise level

ouzenoux et al.

Saclay 2021 17



t method the barrier Proposed architecture
(o] )

iRestNet architecture

— Unfold proximal IP algorithm over K iterations, untie v, 1 and \ across network

Input gy 1 v Output
RGB image RGB image
W Ao ) A
2 o 1 > o “n
P LK X 20 WIN X X
x U - I . )
Input : xo = y blurred image?o Z

Hidden structures
u (/v'gj))ogkgKfl : estimate stepsize
u (Liu))OSkSK—l : estimate barrier parameter
u (ﬁsf\))ogkgKfl : estimate regularization parameter

m A(Xk, [k Yiy Ak) = ProxX, ,.n (xk — Yk (HTvlf(ka,y) + /\kVR(xk)>>

ST T
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(o] )

iRestNet architecture

— Unfold proximal IP algorithm over K iterations, untie v, 1 and \ across network

Input gy 1 g0 1 Output
RGB image RGB image
@ Lo PONEIIN
Z5 o 1 o Zn
yg‘) Ho X 3»(]!41 N X2 ... XK,
x U - L . ]
Input : xog = y blurred image? ol

Hidden structures

(ﬁp))ogkgK—l : estimate stepsize

m
u (ﬁiu))ogkgKfl : estimate barrier parameter

[ (ﬁfj\))ogkgK—l : estimate regularization parameter

m A(Xks i, Yhs Ak) = PTOXy, 18 (Xk = Yk (HTvlf(HXkﬁy) + )\kVR(Xk))>

m Lpp : post-processing layer — e.g. removes small artifacts

ST T
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iRestNet architecture

— Unfold proximal IP algorithm over K iterations, untie v, 1 and X\ across network

Input gy 1 g0 1 Output
RGB image RGB image
P PRI
N 0 1 od S
Fp o X ¥ N X X
x U - L - J
Input : xo = y blurred image?o Z

Hidden structures
u (Eiw))ogkgK—l : estimate stepsize
u (ﬁiu))ogkgK—l : estimate barrier parameter
u (LE(/\))OSkSK—l : estimate regularization parameter

m A(Xk, ks Vky Ak) = Prox,, ,, (Xk — Yk (HTvlf(HXkﬁy) + AkVR(Xk)))
m Lpp @ post-processing layer — removes remaining artifacts

Training Stochastic gradient descent and backpropagation (V.A thanks to
Propositions 1-3)

ST TS
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Network stability

What about the network stability ?

houzenoux et
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[e]e]e]e]e) (e]e)

Network stability

What about the network stability ?

m Deep learning : lack of robustness, e.g. AlexNet [Szegedy et al., 2013]
= Applications with high risk and legal responsibility (medical image processing,

driving, security, etc...) —  need for theoretical guarantees

m Asymptotic and robustness analyses addressed within the framework of averaged
operators [Combettes and Pesquet, 2020]

ST EE



Averaged operators

Let T :R"” — R” and let « € [0,1]. Then, T is a-averaged if there exists a
nonexpansive operator R : R” — R” such that T = (1 — &)/, + aR.

Saclay 2021 19 / 30
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[e]e]e]e]e) (e]e)

Let T :R"” — R” and let « € [0,1]. Then, T is a-averaged if there exists a
nonexpansive operator R : R” — R” such that T = (1 — &)/, + aR.

m If T is averaged, then it is nonexpansive.

= Let o €]0,1]. T is a-averaged if and only if for every x € R" and y € R",
2 2 11—« 2
ITC) = TWIE < lx = ylI7 = ==l = T)(x) = (I = TYX)II"-

— Bound on the output variation when input is perturbed.

ST TS
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[e]e]e]e]e) (e]e)

Relation to generic deep neural networks

Feedforward architecture Ryx_7 0 (Wk_1-+bk—1)0---0Ryo (Wpy-+bo)
— iRestNet shares same structure

Quadratic problem minincﬁze %HHX —yl2P+ %||Dx||2
xX€

Xe41 = Prox.,, 50% — w(H' (Hxe — y) + A\D " Dxy))
= prox,, ., s ([I,7 —v(HTH + XD D)]x, + 'kaTy)
= Ri(Wiexic + by)

m Wy = I, — w(HTH -+ ADT D) weight operator
m by = vHT y bias parameter
= R =prox,, ., 5

— Ry specific activation function



Network stability Nume

method Proximity

g iol I ba r C e X
o] [e]e]e] [e]e]e]e]e] [e]e) [e]e]e] o] [e]e]e]e]
Averageness result

Theorem 1 [Combettes and Pesquet, 2020]

Let o € [1/2,1]. Let K =2. Let p = infxeR", [Ix||=1 (WAWox | x), and let
01 = [WaWo|l + WAl Wal|

If one of the following conditions is satisfied :
(i) Wo=0o0r Wi =0;
(i) [WiWo — 4(1 — a) n|| — [[W2 Wol| + 261 < 4o;
(iii) ao#1, Wy # 0, Wi # 0, and there exists n € [0, a/((1 — «)61)] such that
{91 < 2a
aby + (1 = a)(|lI, = nWiWel| — nlWAWG|[)(61 — [[WiWo]|) < 20e — 1+ (1 — a)p,

then T = Ry o (Wi - +b1) o Ry o (Wp - +bo) is a-averaged.
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[e]e]e]e]e) (e]e)

Averageness result

Let o € [1/2,1]. Let K =3. Let W = Ws 0 Wi o Wp Let p = inf,cpn |xj=1 (Wx | ),
and let
0 = [[W]| + [Wa || W Wo| + (| Wa WA ||| Wol| + [|Wal|[| WALl | Woll

If one of the following conditions is satisfied :
(i) Wo=0o0r Wy =00r Wo =0;
(i) W =8(1—a)lp|| — |W] + 20> < 8a;

(iii) e #1, Wy #0, Wi #£0, W5 # 0, and there exists n € [0, a/((1 — v)62)] such
that

{02 S 4o
b + (1 = a)([[L, — aWI — g WI)(©O: — [IW]) < 2(2a — 1) + (1 — a)p,

then T =Ry o (Ws - +bp) o Ry o (W3 - +b3) o Ry o (Wp - +bg) is a-averaged.

VTR
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[e]e]e]e]e] [e]e) 00000 [e]e]e]e]e]e]e]e]

Averageness result

Let o € [1/2,1]. Let K > 1 be an integer. Let W = Wk _10---0 W, let
p = infxeRn’ |x]|=1 <WX | X>, and let

Motivation Proximal interior point method

Ok—1 = [|WI|

K—2
XD IWkro o Wil W o0 Wiy iall - Wy o+ 0 Wall

£=0 0<jp<--<jp<K—2

If one of the following conditions is satisfied :

(i) There exists k € {0,..., K — 1} such that W, = 0;

(i) W =2K(@1 — )|l = [|W]| +20k—1 < 2Ka;

(i) a#1, for every k € {0,..., K — 1} Wy # 0, and there exists
n € [0,a/((1 — a)fk_1)] such that

{9;(_1 S 2K_1a
afk—1+ (1 = a)(|[Tn — nWI| = nlW[)(Ok-1 — [W])) < 25722 = 1) + (1 — a)p,

then T = Rx_10(Wk_1-+bk_1)0---0Rgo(Wp-+by) is a-averaged.

Take-home message : the stability a neural network depends on its weight operators
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Network stability result

Consider the quadratic problem, assume that HTH and D" D are diagonalizable in the same
basis P.
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Network stability result

Consider the quadratic problem, assume that H' H and D' D are diagonalizable in the same
basis P.

Notation

For every p € {1,...,n} let 5’3’) and ﬁg’) denote the p*® eigenvalue of H' H and DT D in P,
resp. Let S_ and . be defined by

B_ = min ﬁl (17'yk (ﬁfj’)+>\kﬁg”)) and B, = max H (17yk (B +,\kﬁg’))).

1<p<n o 1<p<n
Let 6_1 —1and for every k € {0, ..., K — 1},
O = Z 6,1 max (1 = (ﬁfjl) + )\kﬁg”))) e (1 = 3 (ﬁ[(j”) =+ )\/ﬁ(Dql))) |

1<q;<n
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Network ility result

T

Consider the quadratic problem, assume that H' H and D' D are diagonalizable in the same

basis P.
Notation
For every p € {1,...,n} let 523) and ﬁg’) denote the p*® eigenvalue of H' H and DT D in P,
resp. Let S_ and (B, be defined by
K—1 ® ® K—1
= [ _ P P _
g = min EO (1= (817 +25g))) and By = max H (1= (B + 289 -
Let 6_1 =1and for every k € {0, ..., K — 1},

Z 9/ 1 mMax

1<q;<n

(=20 (37 u8)) - (1= (459 28 |

Let « € [1/2,1]. If one of the following conditions is satisfied :
(i) By +pB- <0and fx_1 <2K-1(2a — 1);
(i) 0 < By + B <2K+(1 — @) and 20K_1 < By + B— +2K(2a — 1);
(i) 2K¥1(1 — @) < B4 + B— and Oy < 2K,
then the operator Rx_1 o (Wk_1 - +bkx—_1)0--0 Ryo (W - +bpy) is a-averaged.
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Numerical experiments

Image deblurring y=Hx+w

= H € R"™ " : circular convolution with known blur
m w € R" : additive white Gaussian noise with standard deviation o
my € R", X € R":RGB images

Variational formulation

wimize LM HzHi (Onx)} +(Dx)}
o 20 T 2
-

m § : smoothing parameter, § = 0.01 for iRestNet

m Dy € R"™" D, € R" " : horizontal and vertical spatial gradient operators
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Network characteristics

Tnput
RGB image

Output
RGB image

A Ly
XK,

m Number of layers : K = 40
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Network characteristics

Tnput I o, ) Output
RGB image RGB image
& ‘ " . &
m Number of layers : K = 40 Mo, XK .
m Estimation of regularization parameter o=y ﬁ—i) R
o

A = ,CE(A)(X;() _ o(y) x Softplus(bk)
n(xx) + Softplus(ck)

where 7(xx) is the standard deviation of [(Duxi) ' (Dyxx)']" and g(y) is an estimation of
noise level [Ramadhan et al.,2017],

5(y) = median(|Wy|)/0.6745,

where |Why| is the vector gathering the absolute value of the diagonal coefficients of the
first level Haar wavelet decomposition of the blurred image.

— iRestNet does not require knowledge of noise level
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Network characteristics

Input =9 LR ) Output
RGB image RGB image
el N
‘ 0 A £,
@ Ho_| X; X,
m Number of layers : K = 40 £ 1y XK, —
m Estimation of regularization parameter =y o

Lo

A = ,CE(A)(X;() _ o(y) x Softplus(bk)
n(xx) + Softplus(ck)

where 7(xx) is the standard deviation of [(Duxi) ' (Dyxx)']" and g(y) is an estimation of
noise level [Ramadhan et al.,2017],

5(y) = median(|Wy|)/0.6745,

where |Why| is the vector gathering the absolute value of the diagonal coefficients of the
first level Haar wavelet decomposition of the blurred image.

— iRestNet does not require knowledge of noise level

m Post-processing Ly, [Zhang et al.,2017]

‘ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU
+BN +BN +BN +BN +BN +BN +BN
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Numerical experiments
Dataset

= Training set : 200 RGB images from BSD500 + 1000 images from COCO
= Validation set : 100 validation images from BSD500
m Test set : 200 test images from BSD500
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Numerical experiments
Dataset

= Training set : 200 RGB images from BSD500 + 1000 images from COCO
= Validation set : 100 validation images from BSD500
m Test set : 200 test images from BSD500
Test configurations
m GaussA : Gaussian kernel with std=1.6, o = 0.008
= GaussB : Gaussian kernel with std=1.6, o € [0.01, 0.05]
m GaussC : Gaussian kernel with std=3, o = 0.04
m Motion : motion kernel from [Levin et al.,2009] o = 0.01

m Square : 7 X 7 uniform kernel, o = 0.01
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Numerical experiments
Dataset

= Training set : 200 RGB images from BSD500 + 1000 images from COCO
= Validation set : 100 validation images from BSD500
m Test set : 200 test images from BSD500
Test configurations
m GaussA : Gaussian kernel with std=1.6, o = 0.008
m GaussB : Gaussian kernel with std=1.6, o € [0.01, 0.05]
m GaussC : Gaussian kernel with std=3, o = 0.04
m Motion : motion kernel from [Levin et al.,2009] o = 0.01
m Square : 7 X 7 uniform kernel, o = 0.01

Training
m Loss : Structural Slmilarity Measure (SSIM) [Wang et al., 2004], ADAM optimizer
m Lo, ..., Lo trained individually, £,, 0 L39 0 - - - 0 L3 trained end-to-end — low memory

= Implemented with Pytorch using a GPU, ~3-4 days per training (one iRestNet for each
degradation model)
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Numerical experiments
Dataset

= Training set : 200 RGB images from BSD500 + 1000 images from COCO
= Validation set : 100 validation images from BSD500
m Test set : 200 test images from BSD500
Test configurations
m GaussA : Gaussian kernel with std=1.6, o = 0.008
m GaussB : Gaussian kernel with std=1.6, o € [0.01, 0.05]
m GaussC : Gaussian kernel with std=3, o = 0.04
m Motion : motion kernel from [Levin et al.,2009] o = 0.01

m Square : 7 X 7 uniform kernel, o = 0.01

Training
m Loss : Structural Slmilarity Measure (SSIM) [Wang et al., 2004], ADAM optimizer
m Lo, ..., Lo trained individually, £,, 0 L39 0 - - - 0 L3 trained end-to-end — low memory

= Implemented with Pytorch using a GPU, ~3-4 days per training (one iRestNet for each
degradation model)

Competitors

= VAR : solution to P with projected gradient algorithm, (X, §) leading to best SSIM
m Deep learning methods : EPLL [Zoran and Weiss, 2011], MLP [Schuler et al.,2013], IRCNN
[Zhang et al.,2017] (require noise level)
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Results

v/ Higher average SSIM than competitors
v/ Higher SSIM on almost all images

GaussA  GaussB GaussC ~ Motion  Square

Blurred 0.675 0.522 0.326 0.548 0.543
VAR 0.804 0.724 0.585 0.829 0.756
EPLL 0.799 0.709 0.564 0.838 0.754
MLP 0.821 0.734 0.608 - -

IRCNN 0.841 0.768 0.618 0.907 0.833

iRestNet 0.850 0.786 0.638 0.911 0.839

FIGURE — SSIM results on the test set.

SSIM-SSIMiRestnet SSTM-SSIMiRestNet SSIM-SSIMiestnet

0 J 0 J

0 _

-0.05

-0.04

-0.06 0L -0.1

-0.08 -~ VAR ——VAR
- EPLL -0.15 —EPLL 0.15 VAR

-0.1 MLP MLP ——EPLL
——IRCNN 0.2 |=—IRCNN 0.2 —~—IRCNN

-0.12 i e i J e N
—iRestNet, —iRestNet —iRestNet

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

FIGURE — From left to right : GaussianA, GaussianC, Square.

Chouzenoux et al.
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Ground-truth VAR : 0.622 EPLL : 0.552 IRCNN : 0.685 iRestNet : 0.708

FIGURE — Visual results and SSIM obtained on one test image degraded with Square.

Ground-truth VAR : 0.838 EPLL : 0.842 MLP : 0.862 IRCNN : 0.842 iRestNet : 0.887

FIGURE — Visual results and SSIM obtained on one test image degraded with GaussB.
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Conclusion

m Neural network architecture built in an explainable manner

m Practically efficient methods developed by mixing ideas from iterative
optimization algorithms and NN techniques

m Expressions of the proximity operator of some barrier functions and their gradients

m Requirement of better nonconvex optimization methods

= Optimization concepts are not only useful to train NNs, but also to analyze them
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