Unfolding Proximal Algorithms

Emilie Chouzenoux¹
in collaboration with
C. Bertocchi², M.-C. Corbineau¹, J.C. Pesquet¹, M. Prato²

¹CVN, CentraleSupélec, Université Paris-Saclay, Inria, France ²Università di Modena e Reggio Emilia, Modena, Italy

4 February 2021 Statistics/Machine Learning at Paris Saclay

Applicative Motivation

Inverse problem in imaging

$$y = \mathcal{D}(H\overline{x})$$

where $y \in \mathbb{R}^m$ observed data, \mathcal{D} noise perturbation, $H \in \mathbb{R}^{m \times n}$ linear observation model, $\overline{x} \in \mathbb{R}^n$ original image

Chouzenoux et al.

Applicative Motivation

Inverse problem in imaging

$$y = \mathcal{D}(H\overline{x})$$

where $y \in \mathbb{R}^m$ observed data, \mathcal{D} noise perturbation, $H \in \mathbb{R}^{m \times n}$ linear observation model, $\overline{x} \in \mathbb{R}^n$ original image

Variational methods

minimize
$$f(Hx, y) + \lambda \mathcal{R}(x)$$

where $f:\mathbb{R}^m\times\mathbb{R}^m\to\mathbb{R}$ data-fitting term, $\mathcal{R}:\mathbb{R}^n\to\mathbb{R}$ regularization function, $\lambda>0$ regularization factor, $\mathcal{C}\subset\mathbb{R}^n$

- ✓ Incorporate prior knowledge about solution and enforce desirable constraints
- ✓ Grounded on clear mathematical concepts
- ✗ No closed-form solution → iterative algorithms
- Objective function not always reflecting perceived quality
- X Estimation of λ and tuning of algorithm parameters \rightarrow time-consuming

Applicative Motivation

Inverse problem in imaging

$$y = \mathcal{D}(H\overline{x})$$

where $y \in \mathbb{R}^m$ observed data, \mathcal{D} noise perturbation, $H \in \mathbb{R}^{m \times n}$ linear observation model, $\overline{x} \in \mathbb{R}^n$ original image

Variational methods

minimize
$$f(Hx, y) + \lambda \mathcal{R}(x)$$

where $f:\mathbb{R}^m\times\mathbb{R}^m\to\mathbb{R}$ data-fitting term, $\mathcal{R}:\mathbb{R}^n\to\mathbb{R}$ regularization function, $\lambda>0$ regularization factor, $\mathcal{C}\subset\mathbb{R}^n$

- ✓ Incorporate prior knowledge about solution and enforce desirable constraints
- Grounded on clear mathematical concepts
- ✗ No closed-form solution → iterative algorithms
- Objective function not always reflecting perceived quality
- $m{\mathsf{X}}$ Estimation of λ and tuning of algorithm parameters o time-consuming

Deep-learning methods

- ✓ Generic methods for nonlinear approximation [Cybenko, 1989]
- ✓ Efficient for incorporating prior knowledge from big databases
- Make it difficult to account for physical models
- X Black-box, empirical approaches

 Motivation
 Proximal interior point method
 Proximity operator of the barrier
 Proposed architecture
 Network stability
 Numerical experiments

 ◆0000
 000
 0000
 00000
 000000

Applicative Motivation

Inverse problem in imaging

$$y = \mathcal{D}(H\overline{x})$$

where $y \in \mathbb{R}^m$ observed data, \mathcal{D} noise perturbation, $H \in \mathbb{R}^{m \times n}$ linear observation model, $\overline{x} \in \mathbb{R}^n$ original image

Variational methods

minimize
$$f(Hx, y) + \lambda \mathcal{R}(x)$$

where $f:\mathbb{R}^m\times\mathbb{R}^m\to\mathbb{R}$ data-fitting term, $\mathcal{R}:\mathbb{R}^n\to\mathbb{R}$ regularization function, $\lambda>0$ regularization factor, $\mathcal{C}\subset\mathbb{R}^n$

- ✓ Incorporate prior knowledge about solution and enforce desirable constraints
- ✓ Grounded on clear mathematical concepts
- ✗ No closed-form solution → iterative algorithms
- Objective function not always reflecting perceived quality
- $m{\mathsf{X}}$ Estimation of λ and tuning of algorithm parameters o time-consuming

Deep-learning methods

- ✓ Generic methods for nonlinear approximation [Cybenko, 1989]
- ✓ Efficient for incorporating prior knowledge from big databases
- X Make it difficult to account for physical models
- Black-box, empirical approaches
- ightarrow Combine benefits of both approaches : unfold optimization algorithms [Gregor and LeCun, 2010]

Chouzenoux et al.

Theoretical Motivation

Frank Rosenblatt (1928–1971)

Jean-Jacques Moreau (1923–2014)

Projected Gradient Descent

Basic optimization problem

$$\underset{x \in \mathcal{C}}{\text{minimize}} \ \frac{1}{2} \| Hx - y \|^2$$

where C nonempty closed convex subset of \mathbb{R}^n , $y \in \mathbb{R}^m$, and $H \in \mathbb{R}^{m \times n}$.

Projected gradient algorithm

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{proj}_{\mathcal{C}} (x_k - \gamma_k H^{\top} (Hx_k - y))$$

where $\gamma_k > 0$ is the step-size

Projected Gradient Descent

Basic optimization problem

$$\underset{x \in \mathcal{C}}{\text{minimize}} \ \frac{1}{2} \| Hx - y \|^2$$

where C nonempty closed convex subset of \mathbb{R}^n , $y \in \mathbb{R}^m$, and $H \in \mathbb{R}^{m \times n}$.

Projected gradient algorithm

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{proj}_{\mathcal{C}} \left(x_k - \gamma_k H^{\top} (H x_k - y) \right)$$
$$= \operatorname{proj}_{\mathcal{C}} (W_k x_k + \gamma_k H^{\top} y)$$

where $\gamma_k > 0$ is the step-size and $W_k = I_n - \gamma_k H^\top H$.

Projected Gradient Descent

Basic optimization problem

$$\underset{x \in \mathcal{C}}{\text{minimize}} \ \frac{1}{2} \| \textit{Hx} - \textit{y} \|^2$$

where C nonempty closed convex subset of \mathbb{R}^n , $y \in \mathbb{R}^m$, and $H \in \mathbb{R}^{m \times n}$.

Projected gradient algorithm

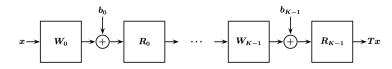
$$(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{proj}_{\mathcal{C}} \left(x_k - \gamma_k H^{\top} (H x_k - y) \right)$$
$$= \operatorname{proj}_{\mathcal{C}} (W_k x_k + \gamma_k H^{\top} y)$$

where $\gamma_k > 0$ is the step-size and $W_k = I_n - \gamma_k H^\top H$.

$$x_0 \longrightarrow W_0 \longrightarrow W_0 \longrightarrow W_0 \longrightarrow W_{K-1} \longrightarrow$$

Chouzenoux et al.

Feedforward NNs



Neural network mode

$$T = T_{K-1} \circ \cdots \circ T_0$$

where

$$(\forall k \in \{0,\ldots,K-1\})$$
 $T_k \colon \mathbb{R}^{n_k} \to \mathbb{R}^{n_{k+1}} \colon \mathsf{x} \mapsto R_k(W_k \mathsf{x} + b_k)$

- $W_k \in \mathbb{R}^{n_{k+1} \times n_k}$ is a weight matrix
- lacksquare b_k is a bias vector in $\mathbb{R}^{n_{k+1}}$
- $R_k: \mathbb{R}^{n_{k+1}} \to \mathbb{R}^{n_{k+1}}$ is an activation operator.

Remark $(W_k)_{0 \le k \le K-1}$ can be convolutive operators

Link

Proximity operator [Moreau, 1962]

Let $\Gamma_0(\mathbb{R}^n)$ be the set of proper lsc convex functions from \mathbb{R}^n to $\mathbb{R} \cup \{+\infty\}$. The **proximity operator** [http://proximity-operator.net/] of $g \in \Gamma_0(\mathbb{R}^n)$ at $x \in \mathbb{R}^n$ is uniquely defined as

$$\operatorname{prox}_{g}(x) = \operatorname*{argmin}_{z \in \mathbb{R}^{n}} \left(g(z) + \frac{1}{2} ||z - x||^{2} \right).$$

Special case

If f is the indicator function of \mathcal{C} , then $\operatorname{prox}_f = \operatorname{proj}_{\mathcal{C}}$. projected gradient algorithm \leadsto proximal-gradient algorithm \leadsto forward-backward algorithm

Link

Proximity operator [Moreau, 1962]

Let $\Gamma_0(\mathbb{R}^n)$ be the set of proper lsc convex functions from \mathbb{R}^n to $\mathbb{R} \cup \{+\infty\}$. The **proximity operator** [http://proximity-operator.net/] of $g \in \Gamma_0(\mathbb{R}^n)$ at $x \in \mathbb{R}^n$ is uniquely defined as

$$\operatorname{prox}_{g}(x) = \operatorname{argmin}_{z \in \mathbb{R}^{n}} \left(g(z) + \frac{1}{2} ||z - x||^{2} \right).$$

Special case

If f is the indicator function of \mathcal{C} , then $\operatorname{prox}_f = \operatorname{proj}_{\mathcal{C}}$. projected gradient algorithm \leadsto proximal-gradient algorithm \leadsto forward-backward algorithm

Most of the activation operators are proximity operators

ReLU

$$\varrho \colon \mathbb{R} \to \mathbb{R} \colon \xi \mapsto \begin{cases} \xi, & \text{if } \xi > 0; \\ 0, & \text{if } \xi \leq 0. \end{cases}$$

Then, $\varrho=\operatorname{proj}_{[0,+\infty[}.$

Parametric rectified linear unit activation function

$$\varrho \colon \mathbb{R} \to \mathbb{R} \colon \xi \mapsto \begin{cases} \xi, & \text{if } \xi > 0; \\ \alpha \xi, & \text{if } \xi \leq 0 \end{cases}, \qquad \alpha \in]0,1].$$

Then $\varrho = \operatorname{prox}_{\phi}$ where

$$\phi\colon \mathbb{R}\to\mathbb{R}\colon \xi\mapsto \begin{cases} 0, & \text{if } \xi>0;\\ (1/\alpha-1)\xi^2/2, & \text{if } \xi\leq0. \end{cases}$$

Unimodal sigmoid activation function

$$\varrho \colon \mathbb{R} \to \mathbb{R} \colon \xi \mapsto \frac{1}{1 + e^{-\xi}} - \frac{1}{2}$$

Then $\varrho = \operatorname{prox}_{\phi}$ where

$$\phi \colon \xi \mapsto \begin{cases} (\xi + 1/2) \ln(\xi + 1/2) + (1/2 - \xi) \ln(1/2 - \xi) - \frac{1}{2} (\xi^2 + 1/4) & \text{if } |\xi| < 1/2; \\ -1/4, & \text{if } |\xi| = 1/2; \\ +\infty, & \text{if } |\xi| > 1/2. \end{cases}$$

Elliot activation function

$$\varrho \colon \mathbb{R} \to \mathbb{R} \colon \xi \mapsto \frac{\xi}{1 + |\xi|}.$$

We have $\varrho = \mathrm{prox}_{\phi}$, where

$$\phi\colon \mathbb{R}\to]-\infty,+\infty]\colon \xi\mapsto \begin{cases} -|\xi|-\ln(1-|\xi|)-\frac{\xi^2}{2}, & \text{if } |\xi|<1;\\ +\infty, & \text{if } |\xi|\geq 1. \end{cases}$$

Chouzenoux et al.

Softmax

$$R: \mathbb{R}^n \to \mathbb{R}^n: (\xi_i)_{1 \le i \le n} \mapsto \left(\exp(\xi_i) \left/ \sum_{j=1}^N \exp(\xi_j) \right)_{1 \le i \le n} - u, \right.$$

where
$$u=(1,\ldots,1)/n\in\mathbb{R}^n$$
.

Then
$$R = \operatorname{prox}_{\varphi}$$
 where $\varphi = \psi(\cdot + u) + \langle \cdot \mid u \rangle$ and

$$\psi \colon \mathbb{R}^n \to]-\infty, +\infty]$$

$$(\xi_i)_{1 \leq i \leq n} \mapsto \begin{cases} \sum_{i=1}^n \left(\xi_i \ln \xi_i - \frac{\xi_i^2}{2} \right), & \text{if } (\xi_i)_{1 \leq i \leq n} \in [0,1]^n \text{ and } \sum_{i=1}^n \xi_i = 1; \\ +\infty, & \text{otherwise.} \end{cases}$$

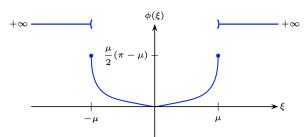
Chouzenoux et al.

Squashing function used in capsnets

$$(\forall x \in \mathbb{R}^n) \quad Rx = \frac{\mu ||x||}{1 + ||x||^2} x = \text{prox}_{\phi \circ \|\cdot\|} x, \quad \mu = \frac{8}{3\sqrt{3}},$$

where

$$\phi\colon \xi \mapsto \begin{cases} \mu \arctan \sqrt{\frac{|\xi|}{\mu - |\xi|}} - \sqrt{|\xi|(\mu - |\xi|)} - \frac{\xi^2}{2}, & \text{if } |\xi| < \mu; \\ \frac{\mu(\pi - \mu)}{2}, & \text{if } |\xi| = \mu; \\ +\infty, & \text{otherwise}. \end{cases}$$



Chouzenoux et al

Problem

Assumptions

$$\mathcal{P}_0$$
: minimize $f(Hx, y) + \lambda \mathcal{R}(x)$

We assume that $f(\cdot, y)$ and \mathcal{R} are twice-differentiable, $f(H\cdot, y) + \lambda \mathcal{R} \in \Gamma_0(\mathbb{R}^n)$ is either coercive or \mathcal{C} is bounded. The feasible set is defined as

$$\mathcal{C} = \{x \in \mathbb{R}^n \mid (\forall i \in \{1, \dots, p\}) \ c_i(x) > 0\}$$

where $(\forall i \in \{1, ..., p\}) - c_i \in \Gamma_0(\mathbb{R}^n)$. The interior of the feasible set is nonempty.

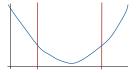
- Existence of a solution to \mathcal{P}_0
- Twice-differentiability: training using stochastic gradient descent
- B: logarithmic barrier

$$(\forall x \in \mathbb{R}^n) \quad \mathcal{B}(x) = \left\{ \begin{array}{cc} -\sum_{i=1}^p \mathsf{ln}(c_i(x)) & \text{if } x \in \mathsf{int}\mathcal{C} \\ +\infty & \text{otherwise}. \end{array} \right.$$

Logarithmic barrier method

Constrained Problem

$$\mathcal{P}_0$$
: minimize $f(Hx, y) + \lambda \mathcal{R}(x)$



Logarithmic barrier method

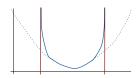
Constrained Problem

$$\mathcal{P}_0$$
: minimize $f(Hx, y) + \lambda \mathcal{R}(x)$

 \Downarrow

Unconstrained Subproblem

where $\mu > 0$ is the barrier parameter.



Logarithmic barrier method

Constrained Problem

$$\mathcal{P}_0$$
: minimize $f(Hx, y) + \lambda \mathcal{R}(x)$

 \Downarrow

Unconstrained Subproblem

$$\mathcal{P}_{\mu}$$
: minimize $f(\mathcal{H}x, y) + \lambda \mathcal{R}(x) + \mu \mathcal{B}(x)$

where $\mu > 0$ is the barrier parameter.

 \mathcal{P}_0 is replaced by a sequence of subproblems $(\mathcal{P}_{\mu_j})_{j\in\mathbb{N}}$.

- lacksquare Subproblems solved approximately for a sequence $\mu_i o 0$
- Main advantages : feasible iterates, superlinear convergence for NLP
- X Inversion of an $n \times n$ matrix at each step

Proximal interior point strategy

 $\rightarrow\,$ Combine interior point method with proximity operator

Exact version of the proximal IPM in [Kaplan and Tichatschke, 1998].

Let
$$x_0 \in \operatorname{int} \mathcal{C}, \ \underline{\gamma} > 0$$
, $(\forall k \in \mathbb{N}) \ \underline{\gamma} \leq \gamma_k$ and $\mu_k \to 0$; for $k = 0, 1, \ldots$ do $x_{k+1} = \operatorname{prox}_{\gamma_k(f(H\cdot, y) + \lambda \mathcal{R} + \mu_k \mathcal{B})}(x_k)$ end for

X No closed-form expression for $\operatorname{prox}_{\gamma_k(f(H\cdot,y)+\lambda\mathcal{R}+\mu_k\mathcal{B})}$

Proximal interior point strategy

ightarrow Combine interior point method with proximity operator

Exact version of the proximal IPM in [Kaplan and Tichatschke, 1998].

Let
$$x_0 \in \operatorname{int} \mathcal{C}, \ \underline{\gamma} > 0$$
, $(\forall k \in \mathbb{N}) \ \underline{\gamma} \leq \gamma_k$ and $\mu_k \to 0$; for $k = 0, 1, \ldots$ do
$$x_{k+1} = \operatorname{prox}_{\gamma_k(f(H\cdot, y) + \lambda \mathcal{R} + \mu_k \mathcal{B})}(x_k)$$
 end for

X No closed-form expression for $\operatorname{prox}_{\gamma_k(f(H\cdot,y)+\lambda\mathcal{R}+\mu_k\mathcal{B})}$

Proposed forward-backward proximal IPM.

Let
$$x_0 \in \operatorname{int}\mathcal{C}, \ \underline{\gamma} > 0$$
, $(\forall k \in \mathbb{N}) \ \underline{\gamma} \leq \gamma_k$ and $\mu_k \to 0$; for $k = 0, 1, \ldots$ do
$$x_{k+1} = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} \left(x_k - \gamma_k \left(H^\top \nabla_1 f(H x_k, y) + \lambda \nabla \mathcal{R}(x_k) \right) \right)$$
 end for

✓ Only requires prox_{γkμkB}

Affine constraints

$$C = \left\{ x \in \mathbb{R}^n \mid a^\top x \le b \right\}$$

Proposition 1

Let $\varphi: (x, \alpha) \mapsto \operatorname{prox}_{\alpha \mathcal{B}}(x)$. Then, for every $(x, \alpha) \in \mathbb{R}^n \times \mathbb{R}_+^*$,

$$\varphi(x,\alpha) = x + \frac{b - a^{\top}x - \sqrt{(b - a^{\top}x)^2 + 4\alpha ||a||^2}}{2||a||^2}a.$$

In addition, the Jacobian matrix of φ wrt x and the gradient of φ wrt α are given by

$$J_{\varphi}^{(x)}(x,\alpha) = I_n - \frac{1}{2\|a\|^2} \left(1 + \frac{a^\top x - b}{\sqrt{(b - a^\top x)^2 + 4\alpha \|a\|^2}} \right) aa^\top$$

and

$$\nabla_{\varphi}^{(\alpha)}(\mathbf{x},\alpha) = \frac{-1}{\sqrt{(b-\mathbf{a}^{\top}\mathbf{x})^2 + 4\alpha\|\mathbf{a}\|^2}}\mathbf{a}.$$

Hyperslab constraints

$$C = \left\{ x \in \mathbb{R}^n \mid b_m \le a^\top x \le b_M \right\}$$

Proposition 2

Let $\varphi: (x, \alpha) \mapsto \operatorname{prox}_{\alpha \mathcal{B}}(x)$. Then, for every $(x, \alpha) \in \mathbb{R}^n \times \mathbb{R}_+^*$,

$$\varphi(x,\alpha) = x + \frac{\kappa(x,\alpha) - \mathbf{a}^{\top}x}{\|\mathbf{a}\|^2}\mathbf{a},$$

where $\kappa(x,\alpha)$ is the unique solution in $]b_m,b_M[$, of the following cubic equation,

$$0 = z^{3} - (b_{m} + b_{M} + a^{T}x)z^{2} + (b_{m}b_{M} + a^{T}x(b_{m} + b_{M}) - 2\alpha ||a||^{2})z - b_{m}b_{M}a^{T}x + \alpha(b_{m} + b_{M})||a||^{2}.$$

In addition, the Jacobian matrix of φ wrt x and the gradient of φ wrt α are given by

$$J_{\varphi}^{(x)}(x,\alpha) = I_n - \frac{1}{\|\mathbf{a}\|^2} \left(\frac{(b_M - \kappa(x,\alpha))(b_m - \kappa(x,\alpha))}{\eta(x,\alpha)} - 1 \right) a \mathbf{a}^\top$$

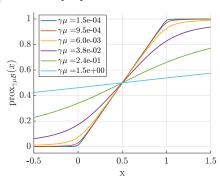
and

$$\nabla_{\varphi}^{(\alpha)}(x,\alpha) = \frac{2\kappa(x,\alpha) - b_m - b_M}{n(x,\alpha)} a,$$

where $\eta(x,\alpha) = (b_M - \kappa(x,\alpha))(b_M - \kappa(x,\alpha)) - (b_M + b_M - 2\kappa(x,\alpha))(\kappa(x,\alpha) - a^\top x) - 2\alpha \|a\|^2$.

Bound constraints

$$\mathcal{C} = [0,1]$$



Bounded ℓ_2 -norm

$$C = \left\{ x \in \mathbb{R}^n \mid \|x - c\|^2 \le \rho \right\}$$

Proposition 3

Let $\varphi: (x, \alpha) \mapsto \operatorname{prox}_{\alpha \mathcal{B}}(x)$. Then, for every $(x, \alpha) \in \mathbb{R}^n \times \mathbb{R}_+^*$,

$$\varphi(x,\alpha) = c + \frac{\rho - \kappa(x,\alpha)^2}{\rho - \kappa(x,\alpha)^2 + 2\alpha}(x-c),$$

where $\kappa(x,\alpha)$ is the unique solution in $]0,\sqrt{\rho}[$, of the following cubic equation,

$$0 = z^{3} - ||x - c||z^{2} - (\rho + 2\alpha)z + \rho||x - c||.$$

In addition, the Jacobian matrix of φ wrt x and the gradient of φ wrt α are given by

$$J_{\varphi}^{(x)}(x,\alpha) = \frac{\rho - \|\varphi(x,\alpha) - c\|^2}{\rho - \|\varphi(x,\alpha) - c\|^2 + 2\alpha} M(x,\alpha)$$

and

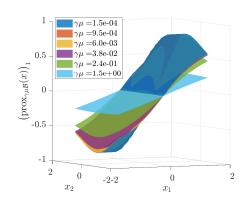
$$\nabla_{\varphi}^{(\alpha)}(x,\alpha) = \frac{-2}{\alpha - \|\varphi(x,\alpha) - c\|^2 + 2\alpha} M(x,\alpha)(\varphi(x,\alpha) - c),$$

where

$$M(x,\alpha) = I_n - \frac{2(x - \varphi(x,\alpha))(\varphi(x,\alpha) - c)^\top}{\rho - 3\|\varphi(x,\alpha) - c\|^2 + 2\alpha + 2(\varphi(x,\alpha) - c)^\top(x - c)}.$$

Bounded
$$\ell_2$$
-norm

$$C = \left\{ x \in \mathbb{R}^2 \mid \|x\|^2 \le 0.7 \right\}$$



Proposed strategy

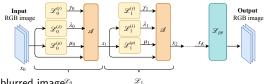
Forward-backward proximal IPM.

Let
$$x_0 \in \operatorname{int} \mathcal{C}, \ \underline{\gamma} > 0$$
, $(\forall k \in \mathbb{N}) \ \underline{\gamma} \leq \gamma_k$ and $\mu_k \to 0$; for $k = 0, 1, \dots$ do
$$x_{k+1} = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} \left(x_k - \gamma_k \left(H^\top \nabla_1 f(Hx_k, y) + \lambda \nabla \mathcal{R}(x_k) \right) \right)$$
 end for

- Efficient algorithm for constrained optimization
- Setting of the parameters $(\mu_k, \gamma_k)_{k \in \mathbb{N}}$?
- \times How to finding the regularization parameter λ leading to the best visual quality of the solution?
- \rightarrow Unfold proximal IP algorithm over K iterations, untie γ , μ and λ across network

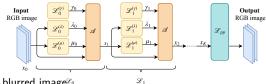
$$\mathcal{A}(x_k, \mu_k, \gamma_k, \lambda_k) = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} \left(x_k - \gamma_k \left(H^\top \nabla_1 f(Hx_k, y) + \lambda_k \nabla \mathcal{R}(x_k) \right) \right)$$

 \longrightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network



Input : $x_0 = y$ blurred image \mathcal{L}_0

 \longrightarrow Unfold proximal IP algorithm over K iterations, untie γ , μ and λ across network



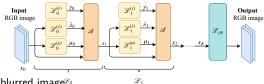
Input : $x_0 = y$ blurred image \mathscr{E}_0

Hidden structures

• $(\mathcal{L}_{k}^{(\gamma)})_{0 \le k \le K-1}$: estimate stepsize, positive

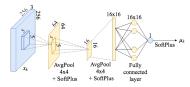
$$\gamma_k = \mathcal{L}_k^{(\gamma)} = \text{Softplus}(a_k)$$

 \longrightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

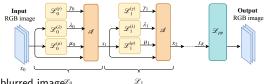


Input : $x_0 = y$ blurred image \mathscr{L}_0

- $(\mathcal{L}_k^{(\gamma)})_{0 \le k \le K-1}$: estimate stepsize
- $(\mathcal{L}_{k}^{(\mu)})_{0 < k < K-1}$: estimate barrier parameter



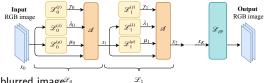
 \longrightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network



Input : $x_0 = y$ blurred image \mathcal{L}_0

- $(\mathcal{L}_{k}^{(\gamma)})_{0 \le k \le K-1}$: estimate stepsize
- $lackbrack (\mathcal{L}_k^{(\mu)})_{0 \leq k \leq K-1}$: estimate barrier parameter
- $(\mathcal{L}_k^{(\lambda)})_{0 \leq k \leq K-1}$: estimate regularization parameter o image statistics, noise level

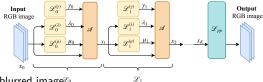
 \longrightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network



Input : $x_0 = y$ blurred image \mathcal{L}_0

- $(\mathcal{L}_{k}^{(\gamma)})_{0 \le k \le K-1}$: estimate stepsize
- $lackbrack (\mathcal{L}_k^{(\mu)})_{0 \leq k \leq K-1}$: estimate barrier parameter
- $(\mathcal{L}_k^{(\lambda)})_{0 \leq k \leq K-1}$: estimate regularization parameter

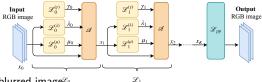
 \longrightarrow Unfold proximal IP algorithm over K iterations, untie γ , μ and λ across network



Input : $x_0 = y$ blurred image \mathcal{L}_0

- $(\mathcal{L}_k^{(\gamma)})_{0 \leq k \leq K-1}$: estimate stepsize
- $(\mathcal{L}_{k}^{(\mu)})_{0 \leq k \leq K-1} :$ estimate barrier parameter
- $(\mathcal{L}_{k}^{(\lambda)})_{0 \le k \le K-1}$: estimate regularization parameter
- $\blacksquare \ \mathcal{A}(x_k, \mu_k, \gamma_k, \lambda_k) = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} \left(x_k \gamma_k \left(\mathbf{H}^\top \nabla_1 f(\mathbf{H} x_k, \mathbf{y}) + \lambda_k \nabla \mathcal{R}(\mathbf{x}_k) \right) \right)$
- lacksquare $\mathcal{L}_{\mathrm{pp}}$: post-processing layer ightarrow e.g. removes small artifacts

 \longrightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network



Input : $x_0 = y$ blurred image \mathcal{E}_0

Hidden structures

- $(\mathcal{L}_{k}^{(\gamma)})_{0 \leq k \leq K-1}$: estimate stepsize
- $(\mathcal{L}_{k}^{(\mu)})_{0 \leq k \leq K-1}$: estimate barrier parameter
- $(\mathcal{L}_{k}^{(\lambda)})_{0 \leq k \leq K-1}$: estimate regularization parameter
- lacksquare $\mathcal{L}_{\mathrm{pp}}$: post-processing layer ightarrow removes remaining artifacts

Training Stochastic gradient descent and backpropagation ($\nabla \mathcal{A}$ thanks to Propositions 1-3)

Network stability

What about the network stability?

Chouzenoux et al.

n Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

Network stability

What about the network stability?

- Deep learning: lack of robustness, e.g. AlexNet [Szegedy et al., 2013]
- Applications with high risk and legal responsibility (medical image processing, driving, security, etc...) → need for theoretical guarantees
- Asymptotic and robustness analyses addressed within the framework of averaged operators [Combettes and Pesquet, 2020]

Averaged operators

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ and let $\alpha \in [0,1]$. Then, T is α -averaged if there exists a nonexpansive operator $R: \mathbb{R}^n \to \mathbb{R}^n$ such that $T = (1 - \alpha)I_n + \alpha R$.

Averaged operators

Definition – α -averaged operator

Let $T:\mathbb{R}^n \to \mathbb{R}^n$ and let $\alpha \in [0,1]$. Then, T is α -averaged if there exists a nonexpansive operator $R:\mathbb{R}^n \to \mathbb{R}^n$ such that $T=(1-\alpha)I_n+\alpha R$.

- If *T* is averaged, then it is nonexpansive.
- Let $\alpha \in]0,1]$. T is α -averaged if and only if for every $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$,

$$\|T(x) - T(y)\|^2 \le \|x - y\|^2 - \frac{1 - \alpha}{\alpha} \|(I_n - T)(x) - (I_n - T)(y)\|^2.$$

⇒ Bound on the output variation when input is perturbed.

Relation to generic deep neural networks

Feedforward architecture $R_{K-1} \circ (W_{K-1} \cdot + b_{K-1}) \circ \cdots \circ R_0 \circ (W_0 \cdot + b_0)$

→ iRestNet shares same structure

Quadratic problem $\min_{x \in \mathcal{C}} \min_{\mathbf{z}} \frac{1}{2} \|H\mathbf{x} - \mathbf{y}\|^2 + \frac{\lambda}{2} \|D\mathbf{x}\|^2$

$$\begin{aligned} x_{k+1} &= \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} (x_k - \gamma_k (H^\top (Hx_k - y) + \lambda_k D^\top Dx_k)) \\ &= \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} \left([I_n - \gamma_k (H^\top H + \lambda_k D^\top D)] x_k + \gamma_k H^\top y \right) \\ &= R_k (W_k x_k + b_k) \end{aligned}$$

- $W_k = I_n \gamma_k (H^\top H + \lambda D^\top D)$ weight operator
- $b_k = \gamma_k H^{\top} y$ bias parameter
- $\blacksquare \ R_k = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}}$
- $\rightarrow R_k$ specific activation function

Chouzenoux et al.

Averageness result

Let
$$\alpha \in [1/2,1]$$
. Let $K=2$. Let $\rho=\inf_{x\in\mathbb{R}^n,\;\|x\|=1}\langle W_1W_0x\mid x\rangle$, and let
$$\theta_1=\|W_1W_0\|+\|W_1\|\|W_0\|$$

If one of the following conditions is satisfied:

- (i) $W_0 = 0$ or $W_1 = 0$:
- (ii) $||W_1W_0 4(1-\alpha)I_n|| ||W_1W_0|| + 2\theta_1 < 4\alpha$;
- (iii) $\alpha \neq 1$, $W_0 \neq 0$, $W_1 \neq 0$, and there exists $\eta \in [0, \alpha/((1-\alpha)\theta_1)]$ such that

$$\begin{cases} \theta_1 \leq 2\alpha \\ \alpha\theta_1 + (1-\alpha)(\|\mathbb{I}_n - \eta W_1 W_0\| - \eta \|W_1 W_0\|)(\theta_1 - \|W_1 W_0\|) \leq 2\alpha - 1 + (1-\alpha)\rho, \end{cases}$$

then $T = R_1 \circ (W_1 \cdot + b_1) \circ R_0 \circ (W_0 \cdot + b_0)$ is α -averaged.

Averageness result

Theorem 1 [Combettes and Pesquet, 2020]

Let $\alpha \in [1/2,1]$. Let K=3. Let $W=W_2\circ W_1\circ W_0$ Let $\rho=\inf_{x\in\mathbb{R}^n,\;\|x\|=1}\langle Wx\mid x\rangle$, and let

$$\theta_2 = ||W|| + ||W_2|| ||W_1W_0|| + ||W_2W_1|| ||W_0|| + ||W_2|| ||W_1|| ||W_0||$$

If one of the following conditions is satisfied :

- (i) $W_0 = 0$ or $W_1 = 0$ or $W_2 = 0$;
- (ii) $||W 8(1 \alpha)I_n|| ||W|| + 2\theta_2 \le 8\alpha$;
- (iii) $\alpha \neq 1$, $W_0 \neq 0$, $W_1 \neq 0$, $W_2 \neq 0$, and there exists $\eta \in [0, \alpha/((1-\alpha)\theta_2)]$ such that

$$\begin{cases} \theta_2 \leq 4\alpha \\ \alpha\theta_2 + (1-\alpha)(\|\mathbb{I}_n - \eta W\| - \eta \|W\|)(\theta_2 - \|W\|) \leq 2(2\alpha - 1) + (1-\alpha)\rho, \end{cases}$$

then $T = R_2 \circ (W_2 \cdot + b_2) \circ R_2 \circ (W_3 \cdot + b_3) \circ R_0 \circ (W_0 \cdot + b_0)$ is α -averaged.

Averageness result

Theorem 1 [Combettes and Pesquet, 2020]

Let $\alpha \in [1/2,1]$. Let $K \geq 1$ be an integer. Let $W = W_{K-1} \circ \cdots \circ W_0$, let $\rho = \inf_{x \in \mathbb{R}^n, \ \|x\| = 1} \langle Wx \mid x \rangle$, and let

$$\theta_{K-1} = ||W||$$

$$+ \sum_{\ell=0}^{K-2} \sum_{0 < i_0 < \dots < i_\ell < K-2} \| W_{K-1} \circ \dots \circ W_{j_{\ell+1}} \| \| W_{j_{\ell}} \circ \dots \circ W_{j_{\ell-1}+1} \| \dots \| W_{j_0} \circ \dots \circ W_0 \|.$$

If one of the following conditions is satisfied:

- (i) There exists $k \in \{0, \dots, K-1\}$ such that $W_k = 0$;
- (ii) $||W 2^K (1 \alpha)I_n|| ||W|| + 2\theta_{K-1} \le 2^K \alpha$;
- (iii) $\alpha \neq 1$, for every $k \in \{0, \ldots, K-1\}$ $W_k \neq 0$, and there exists $\eta \in [0, \alpha/((1-\alpha)\theta_{K-1})]$ such that

$$\begin{cases} \theta_{K-1} \leq 2^{K-1} \alpha \\ \alpha \theta_{K-1} + (1-\alpha)(\|\mathbb{I}_n - \eta W\| - \eta \|W\|)(\theta_{K-1} - \|W\|) \leq 2^{K-2}(2\alpha - 1) + (1-\alpha)\rho, \end{cases}$$

then
$$T = R_{K-1} \circ (W_{K-1} \cdot + b_{K-1}) \circ \cdots \circ R_0 \circ (W_0 \cdot + b_0)$$
 is α -averaged.

Take-home message: the stability a neural network depends on its weight operators

Chouzenoux et al.

00000

Network stability result

Assumption

Consider the quadratic problem, assume that $H^{\top}H$ and $D^{\top}D$ are diagonalizable in the same basis \mathcal{P} .

Network stability result

Assumption

Consider the quadratic problem, assume that $H^{\top}H$ and $D^{\top}D$ are diagonalizable in the same basis \mathcal{P} .

Notation

For every $p \in \{1, ..., n\}$ let $\beta_H^{(p)}$ and $\beta_D^{(p)}$ denote the p^{th} eigenvalue of $H^{\top}H$ and $D^{\top}D$ in \mathcal{P} , resp. Let β_- and β_+ be defined by

$$\beta_{-} = \min_{1 \leq \rho \leq n} \prod_{k=0}^{K-1} \left(1 - \gamma_k \left(\beta_H^{(\rho)} + \lambda_k \beta_D^{(\rho)} \right) \right) \text{ and } \beta_{+} = \max_{1 \leq \rho \leq n} \prod_{k=0}^{K-1} \left(1 - \gamma_k \left(\beta_H^{(\rho)} + \lambda_k \beta_D^{(\rho)} \right) \right).$$

Let $\theta_{-1} = 1$ and, for every $k \in \{0, \dots, K-1\}$,

$$\theta_k = \sum_{l=0}^k \theta_{l-1} \max_{1 \leq q_l \leq n} \Big| \left(1 - \gamma_k \left(\beta_H^{(q_l)} + \lambda_k \beta_D^{(q_l)} \right) \right) \dots \left(1 - \gamma_l \left(\beta_H^{(q_l)} + \lambda_l \beta_D^{(q_l)} \right) \right) \Big|.$$

Network stability result

Assumption

Consider the quadratic problem, assume that $H^{\top}H$ and $D^{\top}D$ are diagonalizable in the same basis \mathcal{P} .

Notation

For every $p \in \{1, \dots, n\}$ let $\beta_H^{(p)}$ and $\beta_D^{(p)}$ denote the p^{th} eigenvalue of $H^{\top}H$ and $D^{\top}D$ in \mathcal{P} , resp. Let β_- and β_+ be defined by

$$\beta_{-} = \min_{1 \leq \rho \leq n} \prod_{k=0}^{K-1} \left(1 - \gamma_k \left(\beta_H^{(\rho)} + \lambda_k \beta_D^{(\rho)} \right) \right) \text{ and } \beta_{+} = \max_{1 \leq \rho \leq n} \prod_{k=0}^{K-1} \left(1 - \gamma_k \left(\beta_H^{(\rho)} + \lambda_k \beta_D^{(\rho)} \right) \right).$$

Let $\theta_{-1}=1$ and, for every $k\in\{0,\ldots,K-1\}$,

$$\theta_k = \sum_{l=0}^k \theta_{l-1} \max_{1 \leq q_l \leq n} \Big| \left(1 - \gamma_k \left(\beta_H^{(q_l)} + \lambda_k \beta_D^{(q_l)} \right) \right) \dots \left(1 - \gamma_l \left(\beta_H^{(q_l)} + \lambda_l \beta_D^{(q_l)} \right) \right) \Big|.$$

Theorem 2

Let $\alpha \in [1/2, 1]$. If one of the following conditions is satisfied :

(i)
$$\beta_+ + \beta_- \le 0$$
 and $\theta_{K-1} \le 2^{K-1}(2\alpha - 1)$;

(ii)
$$0 < \beta_+ + \beta_- < 2^{K+1}(1-\alpha)$$
 and $2\theta_{K-1} < \beta_+ + \beta_- + 2^K(2\alpha-1)$;

(iii)
$$2^{K+1}(1-\alpha) \le \beta_+ + \beta_-$$
 and $\theta_{K-1} \le 2^{K-1}$,

then the operator $R_{K-1} \circ (W_{K-1} \cdot + b_{K-1}) \circ \cdots \circ R_0 \circ (W_0 \cdot + b_0)$ is α -averaged.

Image deblurring

$$y = H\overline{x} + \omega$$

- $H \in \mathbb{R}^{n \times n}$: circular convolution with known blur
- $\omega \in \mathbb{R}^n$: additive white Gaussian noise with standard deviation σ
- $v \in \mathbb{R}^n$, $\overline{x} \in \mathbb{R}^n$: RGB images

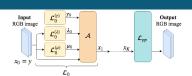
Variational formulation

$$\underset{x \in [0, x_{\text{max}}]^n}{\text{minimize}} \quad \frac{1}{2} \|Hx - y\|^2 + \lambda \sum_{i=1}^n \sqrt{\frac{(D_{\text{h}}x)_i^2 + (D_{\text{v}}x)_i^2}{\delta^2}} + 1$$

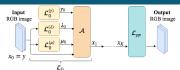
- δ : smoothing parameter, $\delta = 0.01$ for iRestNet
- $D_h \in \mathbb{R}^{n \times n}$, $D_v \in \mathbb{R}^{n \times n}$: horizontal and vertical spatial gradient operators

Network characteristics

■ Number of layers : K = 40



Network characteristics



- Number of layers : K = 40
- **Estimation of regularization parameter**

$$\lambda_k = \mathcal{L}_k^{(\lambda)}(x_k) = \frac{\widehat{\sigma}(y) \times \text{Softplus}(b_k)}{\eta(x_k) + \text{Softplus}(c_k)}$$

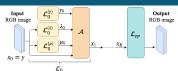
where $\eta(x_k)$ is the standard deviation of $[(D_h x_k)^\top (D_v x_k)^\top]^\top$ and $\widehat{\sigma}(y)$ is an estimation of noise level [Ramadhan *et al.*,2017],

$$\widehat{\sigma}(y) = \text{median}(|W_{\text{H}}y|)/0.6745,$$

where $|W_{\rm H}y|$ is the vector gathering the absolute value of the diagonal coefficients of the first level Haar wavelet decomposition of the blurred image.

→ iRestNet does not require knowledge of noise level

Network characteristics



- Number of layers : K = 40
- **Estimation of regularization parameter**

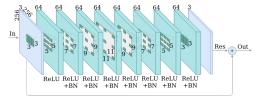
$$\lambda_k = \mathcal{L}_k^{(\lambda)}(x_k) = \frac{\widehat{\sigma}(y) \times \text{Softplus}(b_k)}{\eta(x_k) + \text{Softplus}(c_k)}$$

where $\eta(x_k)$ is the standard deviation of $[(D_h x_k)^\top (D_v x_k)^\top]^\top$ and $\widehat{\sigma}(y)$ is an estimation of noise level [Ramadhan *et al.*,2017],

$$\widehat{\sigma}(y) = \text{median}(|W_{\text{H}}y|)/0.6745,$$

where $|W_{\rm H}y|$ is the vector gathering the absolute value of the diagonal coefficients of the first level Haar wavelet decomposition of the blurred image.

- ightarrow iRestNet does not require knowledge of noise level
- Post-processing \mathcal{L}_{pp} [Zhang et al.,2017]



Numerical experiments

Dataset

 \blacksquare Training set : 200 RGB images from BSD500 + 1000 images from COCO

■ Validation set : 100 validation images from BSD500

■ Test set : 200 test images from BSD500

Dataset

- Training set: 200 RGB images from BSD500 + 1000 images from COCO
- Validation set: 100 validation images from BSD500
- Test set : 200 test images from BSD500

Test configurations

- GaussA : Gaussian kernel with std=1.6, $\sigma = 0.008$
- GaussB : Gaussian kernel with std=1.6, $\sigma \in [0.01, 0.05]$
- GaussC : Gaussian kernel with std=3, $\sigma = 0.04$
- Motion : motion kernel from [Levin et al.,2009] $\sigma = 0.01$
- Square : 7×7 uniform kernel, $\sigma = 0.01$

Dataset

- Training set: 200 RGB images from BSD500 + 1000 images from COCO
- Validation set: 100 validation images from BSD500
- Test set : 200 test images from BSD500

Test configurations

- GaussA : Gaussian kernel with std=1.6, $\sigma = 0.008$
- Gaussian kernel with std=1.6, $\sigma \in [0.01, 0.05]$
- GaussC : Gaussian kernel with std=3, $\sigma = 0.04$
- Motion : motion kernel from [Levin et al.,2009] $\sigma = 0.01$
- Square : 7×7 uniform kernel, $\sigma = 0.01$

Training

- Loss: Structural Similarity Measure (SSIM) [Wang et al., 2004], ADAM optimizer
- $\blacksquare \ \mathcal{L}_0, \ \dots, \ \mathcal{L}_{29} \ \text{trained individually,} \ \mathcal{L}_{\mathrm{pp}} \circ \mathcal{L}_{39} \circ \dots \circ \mathcal{L}_{30} \ \text{trained end-to-end} \to \text{low memory}$
- Implemented with Pytorch using a GPU, ~3-4 days per training (one iRestNet for each degradation model)

Numerical experiments

Dataset

■ Training set: 200 RGB images from BSD500 + 1000 images from COCO

Validation set: 100 validation images from BSD500

■ Test set: 200 test images from BSD500

Test configurations

■ GaussA : Gaussian kernel with std=1.6. $\sigma = 0.008$

■ GaussB : Gaussian kernel with std=1.6, $\sigma \in [0.01, 0.05]$

■ GaussC: Gaussian kernel with std=3. $\sigma = 0.04$

■ Motion : motion kernel from [Levin et al.,2009] $\sigma = 0.01$

Square : 7×7 uniform kernel, $\sigma = 0.01$

Training

- Loss: Structural SImilarity Measure (SSIM) [Wang et al., 2004], ADAM optimizer
- $\mathcal{L}_{0}, \ldots, \mathcal{L}_{29}$ trained individually, $\mathcal{L}_{DD} \circ \mathcal{L}_{39} \circ \cdots \circ \mathcal{L}_{30}$ trained end-to-end \rightarrow low memory
- Implemented with Pytorch using a GPU, \sim 3-4 days per training (one iRestNet for each degradation model)

Competitors

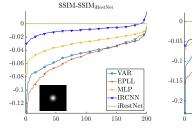
- VAR : solution to \mathcal{P}_0 with projected gradient algorithm, (λ, δ) leading to best SSIM
- Deep learning methods: EPLL [Zoran and Weiss, 2011], MLP [Schuler et al., 2013], IRCNN [Zhang et al., 2017] (require noise level)

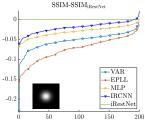
Results

- ✓ Higher average SSIM than competitors
- ✓ Higher SSIM on almost all images

	GaussA	GaussB	GaussC	Motion	Square
Blurred	0.675	0.522	0.326	0.548	0.543
VAR	0.804	0.724	0.585	0.829	0.756
EPLL	0.799	0.709	0.564	0.838	0.754
MLP	0.821	0.734	0.608	-	-
IRCNN	0.841	0.768	0.618	0.907	0.833
iRestNet	0.850	0.786	0.638	0.911	0.839

FIGURE - SSIM results on the test set.





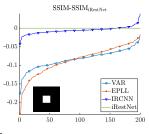


FIGURE - From left to right : GaussianA, GaussianC, Square.

Visual results

✓ Better contrast and more details

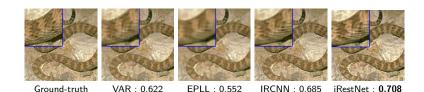


FIGURE - Visual results and SSIM obtained on one test image degraded with Square.

FIGURE - Visual results and SSIM obtained on one test image degraded with GaussB.

Conclusion

- Neural network architecture built in an explainable manner
- Practically efficient methods developed by mixing ideas from iterative optimization algorithms and NN techniques
- Expressions of the proximity operator of some barrier functions and their gradients
- Requirement of better nonconvex optimization methods
- Optimization concepts are not only useful to train NNs, but also to analyze them

n Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

Related publications

iRestNet

C. Bertocchi, E. Chouzenoux, M.-C. Corbineau, J.-C. Pesquet, and M. Prato

Deep unfolding of a proximal interior point method for image restoration

Inverse Problems, vol. 36, no 3, pp. 034005, Feb. 2020.

M. Galinier, M. Prato, C. Bertocchi, E. Chouzenoux, and J.-C. Pesquet

A hybrid interior point - deep learning appproach for Poisson image deblurring IEEE International Workshop on Machine Learning for Signal Processing, 2020.

Variational analysis of neural networks

P. L. Combettes and J.-C. Pesquet

Deep neural network structures solving variational inequalities

Set-Valued and Variational Analysis, vol. 28, pp. 491-518, Sept. 2020.

P. L. Combettes and J.-C. Pesquet

Lipschitz certificates for layered network structures driven by averaged activation operators

SIAM Journal on Mathematics of Data Science, vol. 2, no. 2, pp. 529-557, June 2020.

Proximal interior point methods

M.-C. Corbineau, E. Chouzenoux, and J.-C. Pesquet

A Proximal Interior Point Algorithm with applications to image processing

Journal of Mathematical Imaging and Vision, vol. 62, no. 6, pp. 919-940, 2020

Motivation Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiment

Thank you!