Maximum Entropy Distributions For Image Synthesis Under Statistical Constraints

Agnès Desolneux

CNRS and Ecole Normale Supérieure Paris-Saclay

Journée Statistique et Informatique à Paris Saclay Vendredi 5 février 2021

école———
normale ———
supérieure ———
paris—saclav——

The problem of exemplar-based texture synthesis

Sampling under statistical constraints

Given an image $I_0 \in \mathbb{R}^d$, and some statistical features (empirical mean, covariance, etc.) $F(I_0) \in \mathbb{R}^p$, the goal is to sample an image I such that

"
$$F(I) = F(I_0)$$
".

Sampling under statistical constraints

Given an image $I_0 \in \mathbb{R}^d$, and some statistical features (empirical mean, covariance, etc.) $F(I_0) \in \mathbb{R}^p$, the goal is to sample an image I such that

"
$$F(I) = F(I_0)$$
".

Stochastic framework : look for a probability measure P on images $X \in \mathbb{R}^d$ such that P is of **maximum entropy and** such that

$$F(X)=F(I_0)$$
 almost surely when $X\sim P$ (Microcanonical model) or $\mathbb{E}_P(F(X))=F(I_0)$ (Macrocanonical model), (def by [Bruna-Mallat 2018]).

The notion of **entropy** : when P has a probability density f_P with respect to the Lebesgue measure dx on \mathbb{R}^d , then its (differential) entropy is

$$H(P) = -\int_{\mathbb{R}^d} f_P(x) \log f_P(x) dx.$$

J. Bruna and S. Mallat. Multiscale Sparse Microcanonical Models. *Mathematical Statistics and Learning*, 2018.

Macrocanonical models : exponential models

For $\theta \in \mathbb{R}^P$, let us define the exponential model P_θ by

$$f_{P_{\theta}}(x) = \frac{1}{Z(\theta)} e^{-\langle \theta, F(x) - F(I_0) \rangle},$$

where

$$Z(\theta) = \int_{\mathbb{R}^d} e^{-\langle \theta, F(y) - F(I_0) \rangle} dy.$$

Notice that

$$\nabla \log Z(\theta) = -\mathbb{E}_{P_{\theta}}(F(X) - F(I_0)),$$

and

$$D^2 \log Z(\theta) = \mathbb{E}_{P_{\Theta}} \left[(F(X) - F(I_0))(F(X) - F(I_0))^t \right].$$

Macrocanonical models : exponential models

For $\theta \in \mathbb{R}^P$, let us define the exponential model P_θ by

$$f_{P_{\theta}}(x) = \frac{1}{Z(\theta)} e^{-\langle \theta, F(x) - F(I_0) \rangle},$$

where

$$Z(\theta) = \int_{\mathbb{R}^d} e^{-\langle \theta, F(y) - F(I_0) \rangle} dy.$$

Notice that

$$\nabla \log Z(\theta) = -\mathbb{E}_{P_{\theta}}(F(X) - F(I_0)),$$

and

$$D^2 \log Z(\theta) = \mathbb{E}_{P_{\Theta}} \Big[(F(X) - F(I_0))(F(X) - F(I_0))^t \Big].$$

Therefore

$$\theta \mapsto \log Z(\theta)$$
 is convex

and its minimum is achieved (if it exists) at a θ^* such that $\mathbb{E}_{P_{\theta^*}}(F(X)) = F(I_0)$.

Assume that we have θ^* such that $\mathbb{E}_{P_{\theta^*}}(F(X)) = F(I_0)$.

Now let P be another distribution that satisfies $\mathbb{E}_{P}(F) = F(I_0) = \mathbb{E}_{P_{\theta^{\star}}}(F)$. Then

$$\mathrm{KL}(P||P_{\theta^*}) = \int_{\mathbb{R}^d} f_P(x) \log \frac{f_P(x)}{f_{P_{\theta}^*}(x)} dx = -H(P) + H(P_{\theta^*}) \geqslant 0.$$

Therefore P_{θ^*} is of maximum entropy among all distributions that satisfy $\mathbb{E}_P(F) = F(I_0)$.

But depending on F, it's not always easy to find θ^* and to sample from P_{θ} .

S. C. Zhu, Y. N. Wu, and D. Mumford, Filters, random fields and maximum entropy (FRAME): towards a unified theory for texture modeling, *International Journal of Computer Vision*, 1998.

1. Gaussian Texture Synthesis

First and second-order statistics

First and second-order statistics

Starting from an exemplar texture image $I_0 \in \mathbb{R}^d$, defined on a rectangular domain $\Omega \subset \mathbb{Z}^2$, where $d = |\Omega|$ is the number of pixels, one can consider its average gray-level m_0 and its auto-correlation matrix C_0 given by

$$m_0 = \frac{1}{d} \sum_{k \in \Omega} I_0(k),$$

and
$$C_0(k,l) = \frac{1}{d} \sum_{n \in \Omega} (I_0(k+n) - m_0)(I_0(l+n) - m_0),$$

where I_0 is extended to \mathbb{Z}^2 by periodicity.

Then the macrocanonical distribution under the constraints $\mathbb{E}(X)=(m_0\ldots,m_0)$ and $\mathrm{Cov}(X)=C_0$ is the Gaussian distribution of mean $\mathbf{m_0}=(m_0,\ldots,m_0)\in\mathbb{R}^d$ and covariance matrix C_0 .

How to sample from this Gaussian distribution?

Simply take a discrete white noise W on Ω , i.e. the W(k) are i.i.d. $\mathcal{N}(0,1)$. Then define

$$X = \mathbf{m_0} + \frac{1}{\sqrt{d}}(I_0 - \mathbf{m_0}) * W,$$

where * is the (discrete periodic) convolution :

$$(I * W)(k) = \sum_{n \in \Omega} I(k-n)W(n).$$

 \Longrightarrow We have that $X \sim \mathcal{N}(\mathbf{m_0}, C_0)$.

B. Galerne, Y. Gousseau, J.-M. Morel, Random Phase Textures: Theory and Synthesis, *IEEE Transactions on Image Processing*, 2011.

First and second-order statistics : example

Original image I_0

First and second-order statistics: example

Sample Image $I \sim \mathcal{N}(m_0, C_0)$

Some examples of « microtextures »

Test the algorithm online at www.ipol.im/pub/art/2011/ggm_rpn/.

Some more examples

2. Texture synthesis from CNN features

The framework

Fix $x_0 \in \mathbb{R}^d$ (exemplar texture), μ a reference measure on \mathbb{R}^d and $F: \mathbb{R}^d \to \mathbb{R}^p$ (constraints) with $p \ll d$.

- $ightharpoonup \mathbb{R}^d$: image space,
- $ightharpoonup \mathbb{R}^p$: parameter space.

The notion of entropy is replaced by the KL divergence from a reference probability measure μ , i.e. consider

$$\mathit{KL}(P\|\mu) = \int_{\mathbb{R}^d} \frac{dP}{d\mu}(x) \log \frac{dP}{d\mu}(x) \ d\mu(x), \ \text{when } P \ll \mu \ \text{and} \ +\infty \ \text{otherwise}.$$

Consider exponential models : for $x \in \mathbb{R}^d$, define

$$\frac{\mathrm{d}\Pi_{\theta}}{\mathrm{d}\mu}(x) = \frac{\exp[-\langle \theta, F(x) - F(x_0) \rangle]}{\int_{\mathbb{R}^d} \exp[-\langle \theta, F(y) - F(x_0) \rangle] \, dy}.$$

Question : can we get practical conditions for the existence of a macrocanonical model $\Pi^* = \Pi_{\theta^*}$?

Turning to the *finite dimensional* and *convex* dual problem, we get :

Proposition : If there exists $\alpha > 0$ such that

- for all $\eta > 0$, $\int_{\mathbb{R}^d} \exp[\eta \|x\|^{\alpha}] d\mu(x) < +\infty$;
- ► $\sup_{x \in \mathbb{R}^d} \{ F(x) (1 + ||x||^{\alpha})^{-1} \} < +\infty;$
- for all $\theta \in \mathbb{S}^{p-1}$, $\mu(\{x \in \mathbb{R}^d; \langle \theta, F(x) F(x_0) \rangle < 0\}) > 0$,

then there exists $\theta^* \in \mathbb{R}^p$ such that Π_{θ^*} is a macrocanonical model associated with F and x_0 .

- 1. How to find the optimal θ^* ?
- 2. How to sample from the model $\frac{d\Pi_{\theta}}{d\mu}(x) \propto \exp[-\langle \theta, F(x) F(x_0) \rangle]$?

V. De Bortoli, A. Desolneux, A. Durmus, B. Galerne and A. Leclaire. Maximum entropy methods for texture synthesis: theory and practice. *SIAM Journal on Mathematics of Data Science (SIMODS)*, 2020.

Finding the optimal parameters ...

The optimal parameters θ^* minimize the *log-partition function*

$$L(\theta) = \log \left[\int_{\mathbb{R}^d} \exp(-\langle \theta, F(x) - F(x_0) \rangle) d\mu(x) \right].$$

Properties of the log-partition function:

- $ightharpoonup
 abla^2_{\theta} L(\theta) = \operatorname{Cov}_{\Pi_{\theta}}(F F(x_0)) \Rightarrow \operatorname{convexity}$

Gradient descent:

$$\theta_{n+1} = \operatorname{Proj}_{K}[\theta_{n} + \delta_{n+1}\mathbb{E}_{\Pi_{\theta_{n}}}(F - F(x_{0}))],$$

where *K* is some compact convex set which contains θ^* .

But need to compute $\mathbb{E}_{\Pi_{\theta}}(F)\Rightarrow$ *Monte Carlo* approximation of $\mathbb{E}_{\Pi_{\theta}}(F)$ \Rightarrow how to sample from Π_{θ} ?

Sampling from Π_{θ} ...

Usually it is not possible to sample from $\Pi(\mathrm{d}x) \propto \exp[-U(x)]\mathrm{d}x$, but, approximate sampling is available (under some conditions) via **Langevin dynamic**

$$X_{n+1} = X_n - \gamma_{n+1} \nabla U(X_n) + \sqrt{2\gamma_{n+1}} Z_{n+1},$$

where $Z_{n+1} \sim \mathcal{N}(0, \mathrm{Id})$, i.i.d., and $\gamma_n > 0$.

ightarrow sample $pprox \Pi(\mathrm{d}x) \propto \exp[-U(x)]\mathrm{d}x$.

A. Durmus and E. Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin algorithm. *Ann. Appl. Probab.*, 2017.

Combining dynamics

- **—** parameter sequence $\in \mathbb{R}^p$ (optimization)
- image sequence $\in \mathbb{R}^d$ (sampling)

Let
$$U_{\theta}(x) = \langle \theta, F(x) - F(x_0) \rangle + r(x)$$
 (assuming that $\frac{d\mu}{d\text{Leb}}(x) \propto \exp(-r(x))$).

Finding optimal parameters θ^* is the minimum of the log-partition function which is a *convex problem*. Gradient descent dynamics

$$\theta_{n+1} = \theta_n + \delta_{n+1} \mathbb{E}_{\Pi_{\theta_n}} (F - F(x_0))$$

Sampling from a Gibbs measure The potential $x \mapsto U_{\theta}(x)$ is usually non-convex but has curvature at infinity. Langevin dynamics

$$X_{n+1} = X_n - \gamma_{n+1} \nabla U_{\theta}(X_n) + \sqrt{2\gamma_{n+1}} Z_{n+1}$$

⇒ Combining dynamics

$$X_{k+1}^n = X_k^n - \gamma_n \nabla U_{\theta_n}(X_k^n) + \sqrt{2\gamma_n} Z_{k+1}^n, \text{ with } X_0^n = X_{m_{n-1}}^{n-1},$$

$$\theta_{n+1} = \text{Proj}_{K}[\theta_{n} + \delta_{n+1}m_{n}^{-1} \sum_{k=1}^{m_{n}} \{F(X_{k}^{n}) - F(x_{0})\}],$$

where $Z_k^n \sim \mathcal{N}(0, \mathrm{Id})$, i.i.d.

Main result : De Bortoli, Durmus, Pereyra, Fernandez Vidal (2018).

Theorem: [Convergence of the parameters]

If F is smooth and $\|F\|\leqslant V$ with $V:\mathbb{R}^d\to [1,+\infty)$ a Lyapunov function for the Langevin dynamics, and

$$\sum_{k=1}^{+\infty} \delta_k = +\infty, \quad \sum_{k=1}^{+\infty} \frac{\delta_k}{m_k \gamma_k} < +\infty, \quad \sum_{k=1}^{+\infty} \delta_k \gamma_k^{1/2} < +\infty.$$

then $(\theta_n)_{n\in\mathbb{N}}$ converges almost surely and in L^1 to the optimal parameters.

Remark: F does **not** need to be convex (neural network features \checkmark).

 $\mathbf{j} = \text{family of layers}$ $c_\ell = \text{channels of layer } \ell$ $\mathcal{G}_{\ell,c} = \text{CNN feature at layer } \ell \text{ and channel } c$ $n_{\ell,c} = \text{number of pixels at layer } \ell \text{ and channel } c$

Structure of the neural network VGG-19

Choice of features : mean of each *channel* for selected *layers*, $p\approx 10^3$, i.e.

$$F(x) = \left(\sum_{i=1}^{n_{\ell,c}} \mathcal{G}_{\ell,c}(x)_i / n_{\ell,c}\right)_{\ell \in \mathbf{j}, c \in c_{\ell}}.$$

Examples

Input (x_0)

Initialization (Gaussian)

After 10000 iterations

Examples

Examples

Extension: style transfer

Conclusion

Sampling from maximum entropy models under statistical constraints :

- allows to understand the constraints (features, descriptors, SIFT for instance),
- raises many mathematical questions (existence, sampling algorithms, etc.)
- provides generative models of images (used then as priors?)