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The problem of exemplar-based texture synthesis



Sampling under statistical constraints

Given animage Iy € RY, and some statistical features (empirical mean,
covariance, etc.) F(Iy) € R?, the goal is to sample an image I such that

“ F(I)=F(l) .



Sampling under statistical constraints

Given an image I, € R?, and some statistical features (empirical mean,
covariance, etc.) F(Iy) € R?, the goal is to sample an image I such that

“ F(I)=F) .
Stochastic framework : look for a probability measure P on images X € R*
such that P is of maximum entropy and such that
F(X) = F(Ip) almost surely when X ~ P (Microcanonical model)
or Ep(F(X))=F(h) (Macrocanonical model),

(def by [Bruna-Mallat 2018]).

The notion of entropy : when P has a probability density f» with respect to the
Lebesgue measure dx on R*, then its (differential) entropy is

H(P) = = [ foto)logfo(x) .

J. Bruna and S. Mallat. Multiscale Sparse Microcanonical Models. Mathematical Statistics and
Learning, 2018.



Macrocanonical models : exponential models

For @ € R, let us define the exponential model Py by

1 —<0F)—F()>

fre(x) = m )

where
7(0) = 7<9,F(y)7F(lo)>d .
0= e y
Notice that
Vlog Z(0) = —Ep, (F(X) — F(Io)),
and

Dlog Z(68) = Er [(F(X) — F(I0))(F(X) — F(1))'].



Macrocanonical models : exponential models

For @ € R, let us define the exponential model Py by

1 —<0F)—F()>

fre(x) = m )

where
_ —<0,F(y)—F(lp)>
Z(0) /]Rd e dy.
Notice that
Vlog Z(0) = ~Er, (F(X) — (L),
and
Dlog Z(68) = Er [(F(X) — F(I0))(F(X) — F(1))'].
Therefore

0 — log Z(0) is convex

and its minimum is achieved (if it exists) at a #* such that Ep,, (F(X)) = F(lo).



Assume that we have 6 such that Ep,. (F(X)) = F(Io).
Now let P be another distribution that satisfies Ep(F) = F(lp) = Ep,. (F).
Then

fr(x)
fry(x)

KL(P|[Py+) = / fol(x)log dx = —H(P) + H(Pg+) > 0.

Therefore Py« is of maximum entropy among all distributions that satisfy
Ep(F) = F(Ip).

But depending on F, it's not always easy to find 6* and to sample from Pj.

S. C. Zhu, Y. N. Wu, and D. Mumford, Filters, random fields and maximum entropy (FRAME) :
towards a unified theory for texture modeling, International Journal of Computer Vision, 1998.



1. Gaussian Texture Synthesis



First and second-order statistics



First and second-order statistics

Starting from an exemplar texture image I, € R?, defined on a rectangular
domain Q C 72, where d = |Q] is the number of pixels, one can consider its
average gray-level my and its auto-correlation matrix Cy given by

my = %Zlo(k),

keQ

and  Co(k,I) = % > "ok + 1) — mo)(Io(I + 1) — mo),

neq)

where I; is extended to Z? by periodicity.

Then the macrocanonical distribution under the constraints
E(X) = (mg...,mp) and Cov(X) = Cy is the Gaussian distribution of mean
mo = (my, ..., my) € R? and covariance matrix Co.



How to sample from this Gaussian distribution ?

Simply take a discrete white noise W on €, i.e. the W(k) are i.i.d. A(0,1).
Then define

1
X:m0+ﬁ(10—m0)*w,

where x is the (discrete periodic) convolution :
(I W)(k) = 32, cq I(k = m)W(n).

= We have that X ~ A (my, C).

B. Galerne, Y. Gousseau, J.-M. Morel, Random Phase Textures : Theory and Synthesis, IEEE
Transactions on Image Processing, 2011.



First and second-order statistics : example

Original image Iy



First and second-order statistics : example

Sample Image I ~ A (my, Cp)



Some examples of « microtextures »

Test the algorithm online at www . ipol.im/pub/art/2011/ggm_rpn/.


www.ipol.im/pub/art/2011/ggm_rpn/

Some more examples



2. Texture synthesis from CNN features



The framework

Fix xo € R? (exemplar texture), 1 a reference measure on R? and
F: R — R (constraints) with p < d.

» R?:image space,
» RR? : parameter space.

The notion of entropy is replaced by the KL divergence from a reference
probability measure p, i.e. consider

KL(P||pn) = d—P(x) log d—P(x) du(x), when P < pand + oo otherwise.
Rd d,LL d,LL

Consider exponential models : for x € RY, define

@(x _ exp[—(0, F(x) — F(xo))]
dp Ja exp[—(0, F(y) — F(xo))] dy’

Question : can we get practical conditions for the existence of a
macrocanonical model IT* = TIg» ?



Turning to the finite dimensional and convex dual problem, we get :
Proposition : If there exists a > 0 such that

» foralln >0, [, exp[n]lx|]|*]du(x) < 4o0;

> sup, e {F(x) (1 + [|x[|*) 7'} < +o0;

» forall @ € "7, u({x € R% (0, F(x) — F(x0)) < 0}) > 0,

then there exists 6* € R” such that I1y« is a macrocanonical model
associated with F and x.

1. How to find the optimal 6* ?
2. How to sample from the model dd%(x) x exp[—(0, F(x) — F(x0))] ?

V. De Bortoli, A. Desolneux, A. Durmus, B. Galerne and A. Leclaire. Maximum entropy methods for
texture synthesis : theory and practice. SIAM Journal on Mathematics of Data Science (SIMODS),
2020.



Finding the optimal parameters ...

The optimal parameters 8* minimize the log-partition function

L(6) = 1og | | exp(~(0,F(x) = Flro)))dutx)|.

Properties of the log-partition function :
> VoL(0) = —Eu, (F — F(x0)),
» V3L(0) = Covn, (F — F(xo)) = convexity

Gradient descent :
Ont1 = Proj[0n + dui1Em,, (F — F(x0))],

where K is some compact convex set which contains 6*.

But need to compute Er, (F) = Monte Carlo approximation of Er, (F)
= how to sample from II, ?



Sampling from II, ...

Usually it is not possible to sample from II(dx) o« exp[—U(x)]dx, but,
approximate sampling is available (under some conditions) via Langevin
dynamic

XnJrl =X, — ’Yn+1vu(Xn) + 2’Yn+1zn+17

where Z,11 ~ N(0,1d), i.i.d., and v, > 0.
— sample ~ II(dx) o exp[—U(x)]dx .

A. Durmus and E. Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin
algorithm. Ann. Appl. Probab., 2017.



Combining dynamics

perturbed
gradient

descent

Langevin algorithm

O,

(o0
@S
e

NS

@

[l - parameter sequence € R” (optimization)
[l - image sequence € R’ (sampling)



Let Uy (x) = (0, F(x) — F(x0)) + r(x) (assuming that %(x) x exp(—r(x)))-

Finding optimal parameters Sampling from a Gibbs measure
0* is the minimum of the log-partition The potential x — Uy (x) is usually
function which is a convex problem. non-convex but has curvature at infinity.
Gradient descent dynamics Langevin dynamics

Ony1 = On + 6pt1En, (F — F(x0)) Xnt1 = Xn — Yur1VUa (Xn) + /29412011

= Combining dynamics
X1 = Xi = wVUs, (Xi) + V20Ziga, with Xg = X5,

Oni1 = Projy [0n + Suam, > {F(X) — F(x0)}],
k=1

where Z; ~ N(0,1d), i.i.d.



Main result : De Bortoli, Durmus, Pereyra, Fernandez Vidal (2018).

Theorem :[Convergence of the parameters]
If F is smooth and ||F|| < V with V : R — [1, +00) a Lyapunov function for
the Langevin dynamics, and

+oo +oco S +oo
Z(Sk = 400, Z ko< 00, Zék’y,}/z < +o00.
=1 =1 Tk =1

then (6,,).en converges almost surely and in L' to the optimal parameters.

Remark : F does not need to be convex (neural network features v').



j = family of layers

¢, = channels of layer ¢

Gec = CNN feature at layer ¢ and channel ¢
ne,. = number of pixels at layer £ and channel ¢

Structure of the neural network VGG-19

Choice of features : mean of each channel for selected layers, p ~ 10°, i.e.
F(x) = ( ,ni]c gz,c(x)i/ﬂz,c)zq,cecg-



Examples

Input (xo) Initialization (Gaussian)  After 10000 iterations



Examples

full CNN deep CNN shallow CNN exemplar image



Examples

exemplar image xq

Gatys ours

Lu-Zhu-Wu



Extension : style transfer

exemplar image xq

(b)



Conclusion

Sampling from maximum entropy models under statistical constraints :

» allows to understand the constraints (features, descriptors, SIFT for
instance),

» raises many mathematical questions (existence, sampling algorithms,
etc.)

» provides generative models of images (used then as priors ?)



