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The problem of exemplar-based texture synthesis



Sampling under statistical constraints

Given an image I0 ∈ Rd, and some statistical features (empirical mean,
covariance, etc.) F(I0) ∈ Rp, the goal is to sample an image I such that

“ F(I) = F(I0) ”.

Stochastic framework : look for a probability measure P on images X ∈ Rd

such that P is of maximum entropy and such that

F(X) = F(I0) almost surely when X ∼ P (Microcanonical model)

or EP(F(X)) = F(I0) (Macrocanonical model),

(def by [Bruna-Mallat 2018]).

The notion of entropy : when P has a probability density fP with respect to the
Lebesgue measure dx on Rd, then its (differential) entropy is

H(P) = −
∫
Rd

fP(x) log fP(x) dx.

J. Bruna and S. Mallat. Multiscale Sparse Microcanonical Models. Mathematical Statistics and

Learning, 2018.
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Macrocanonical models : exponential models

For θ ∈ RP, let us define the exponential model Pθ by

fPθ (x) =
1

Z(θ)
e−<θ,F(x)−F(I0)>,

where
Z(θ) =

∫
Rd

e−<θ,F(y)−F(I0)> dy.

Notice that
∇ log Z(θ) = −EPθ (F(X)− F(I0)),

and
D2 log Z(θ) = EPΘ

[
(F(X)− F(I0))(F(X)− F(I0))

t
]
.

Therefore
θ 7→ log Z(θ) is convex

and its minimum is achieved (if it exists) at a θ? such that EPθ? (F(X)) = F(I0).
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Assume that we have θ? such that EPθ? (F(X)) = F(I0).

Now let P be another distribution that satisfies EP(F) = F(I0) = EPθ? (F).
Then

KL(P‖Pθ?) =

∫
Rd

fP(x) log
fP(x)

fP?
θ
(x)

dx = −H(P) + H(Pθ?) > 0.

Therefore Pθ? is of maximum entropy among all distributions that satisfy
EP(F) = F(I0).

But depending on F, it’s not always easy to find θ? and to sample from Pθ.

S. C. Zhu, Y. N. Wu, and D. Mumford, Filters, random fields and maximum entropy (FRAME) :

towards a unified theory for texture modeling, International Journal of Computer Vision, 1998.



1. Gaussian Texture Synthesis



First and second-order statistics



First and second-order statistics

Starting from an exemplar texture image I0 ∈ Rd, defined on a rectangular
domain Ω ⊂ Z2, where d = |Ω| is the number of pixels, one can consider its
average gray-level m0 and its auto-correlation matrix C0 given by

m0 =
1
d

∑
k∈Ω

I0(k),

and C0(k, l) =
1
d

∑
n∈Ω

(I0(k + n)−m0)(I0(l + n)−m0),

where I0 is extended to Z2 by periodicity.

Then the macrocanonical distribution under the constraints
E(X) = (m0 . . . ,m0) and Cov(X) = C0 is the Gaussian distribution of mean
m0 = (m0, . . . ,m0) ∈ Rd and covariance matrix C0.



How to sample from this Gaussian distribution ?

Simply take a discrete white noise W on Ω, i.e. the W(k) are i.i.d. N (0, 1).
Then define

X = m0 +
1√
d

(I0 −m0) ∗W,

where ∗ is the (discrete periodic) convolution :
(I ∗W)(k) =

∑
n∈Ω I(k− n)W(n).

=⇒We have that X ∼ N (m0,C0).

B. Galerne, Y. Gousseau, J.-M. Morel, Random Phase Textures : Theory and Synthesis, IEEE

Transactions on Image Processing, 2011.



First and second-order statistics : example

Original image I0



First and second-order statistics : example

Sample Image I ∼ N (m0,C0)



Some examples of « microtextures »

Test the algorithm online at www.ipol.im/pub/art/2011/ggm_rpn/.

www.ipol.im/pub/art/2011/ggm_rpn/


Some more examples



2. Texture synthesis from CNN features



The framework

Fix x0 ∈ Rd (exemplar texture), µ a reference measure on Rd and
F : Rd → Rp (constraints) with p� d.

I Rd : image space,
I Rp : parameter space.

The notion of entropy is replaced by the KL divergence from a reference
probability measure µ, i.e. consider

KL(P‖µ) =

∫
Rd

dP
dµ

(x) log
dP
dµ

(x) dµ(x), when P� µ and +∞ otherwise.

Consider exponential models : for x ∈ Rd, define

dΠθ

dµ
(x) =

exp[−〈θ, F(x)− F(x0)〉]∫
Rd exp[−〈θ, F(y)− F(x0)〉] dy

.

Question : can we get practical conditions for the existence of a
macrocanonical model Π? = Πθ? ?



Turning to the finite dimensional and convex dual problem, we get :

Proposition : If there exists α > 0 such that
I for all η > 0,

∫
Rd exp[η‖x‖α]dµ(x) < +∞ ;

I supx∈Rd{F(x)(1 + ‖x‖α)−1} < +∞ ;

I for all θ ∈ Sp−1, µ({x ∈ Rd; 〈θ, F(x)− F(x0)〉 < 0}) > 0,

then there exists θ? ∈ Rp such that Πθ? is a macrocanonical model
associated with F and x0.

1. How to find the optimal θ? ?

2. How to sample from the model dΠθ
dµ (x) ∝ exp[−〈θ, F(x)− F(x0)〉] ?

V. De Bortoli, A. Desolneux, A. Durmus, B. Galerne and A. Leclaire. Maximum entropy methods for

texture synthesis : theory and practice. SIAM Journal on Mathematics of Data Science (SIMODS),

2020.



Finding the optimal parameters . . .

The optimal parameters θ? minimize the log-partition function

L(θ) = log
[∫

Rd
exp(−〈θ, F(x)− F(x0)〉)dµ(x)

]
.

Properties of the log-partition function :
I ∇θL(θ) = −EΠθ (F− F(x0)),

I ∇2
θL(θ) = CovΠθ (F− F(x0)) ⇒ convexity

Gradient descent :

θn+1 = ProjK[θn + δn+1EΠθn
(F− F(x0))],

where K is some compact convex set which contains θ?.

But need to compute EΠθ (F)⇒ Monte Carlo approximation of EΠθ (F)
⇒ how to sample from Πθ ?



Sampling from Πθ . . .

Usually it is not possible to sample from Π(dx) ∝ exp[−U(x)]dx, but,
approximate sampling is available (under some conditions) via Langevin
dynamic

Xn+1 = Xn − γn+1∇U(Xn) +
√

2γn+1Zn+1,

where Zn+1 ∼ N (0, Id), i.i.d., and γn > 0.

→ sample ≈ Π(dx) ∝ exp[−U(x)]dx .

A. Durmus and E. Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin

algorithm. Ann. Appl. Probab., 2017.



Combining dynamics

θ0

θ1

θ2

X0
1, . . . ,X

0
m0

X1
1, . . . ,X

1
m1

X2
1, . . . ,X

2
m2

perturbed

gradient

descent

Langevin algorithm

Monte Carlo estimation

– parameter sequence ∈ Rp (optimization)
– image sequence ∈ Rd (sampling)



Let Uθ(x) = 〈θ, F(x)− F(x0)〉+ r(x) (assuming that dµ
dLeb (x) ∝ exp(−r(x))).

Finding optimal parameters
θ? is the minimum of the log-partition
function which is a convex problem.
Gradient descent dynamics

θn+1 = θn + δn+1EΠθn
(F− F(x0))

Sampling from a Gibbs measure
The potential x 7→ Uθ(x) is usually
non-convex but has curvature at infinity.
Langevin dynamics

Xn+1 = Xn − γn+1∇Uθ(Xn) +
√

2γn+1Zn+1

⇒ Combining dynamics

Xn
k+1 = Xn

k − γn∇Uθn (Xn
k ) +

√
2γnZn

k+1, with Xn
0 = Xn−1

mn−1 ,

θn+1 = ProjK[θn + δn+1m−1
n

mn∑
k=1

{F(Xn
k )− F(x0)}],

where Zn
k ∼ N (0, Id), i.i.d.



Main result : De Bortoli, Durmus, Pereyra, Fernandez Vidal (2018).

Theorem :[Convergence of the parameters]
If F is smooth and ‖F‖ 6 V with V : Rd → [1,+∞) a Lyapunov function for
the Langevin dynamics, and

+∞∑
k=1

δk = +∞,
+∞∑
k=1

δk

mkγk
< +∞,

+∞∑
k=1

δkγ
1/2
k < +∞.

then (θn)n∈N converges almost surely and in L1 to the optimal parameters.

Remark : F does not need to be convex (neural network features X).



j = family of layers
c` = channels of layer `

G`,c = CNN feature at layer ` and channel c
n`,c = number of pixels at layer ` and channel c

Structure of the neural network VGG-19

Choice of features : mean of each channel for selected layers, p ≈ 103, i.e.
F(x) = (

∑n`,c
i=1 G`,c(x)i/n`,c)`∈j,c∈c` .



Examples

Input (x0) Initialization (Gaussian) After 10000 iterations



Examples
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full CNN deep CNN shallow CNN exemplar image

Figure 10. Influence of j. As expected the best visual results of SOUL after 104 iterations are obtained
with the full CNN setting. The local structure and some details (the petals of the flowers, the form of the beans)
are lost when using the shallow CNN setting. On the other hand, using only the deep part of the CNN is not
suitable for texture with strong low frequency components. For instance in the flower image, almost no grass is
retrieved when using the deep CNN setting. The hyperparameters are fixed as follows: ”n = 10≠3, “n = 10≠5

and mn = 1.

that all the produced images have exactly the same color statistics as the exemplar image,
i.e. that the equality holds almost surely. This procedure can be implemented by reimposing
at each Langevin step the mean and the color covariance matrix of the images. We call this
model CNN + color projection. The e�ect of imposing, in expectation or almost surely, the
color constraints is investigated in Figure 11 and we observe that the proposed modifications
do reimpose the color statistics of order 1 and 2.

Behavior of the parameter sequence. We now study the behavior of the sequence (◊n)nœN.
In Figure 12 we present the evolution of (◊n)nœN for some layers in j and three channels for each
layer. The sequence (◊n)nœN does not converge, even though we observe some stabilization of
the averaged sequences. The reasons for the failure of the convergence are twofold. First, in
all our settings we fix the hyperparameters as follows: ”n = 10≠3, “n = 10≠5 and mn = 1 but
run only 105 iterations. Considering a continuous Langevin dynamics, the images we observe
correspond to a time T = 105 ◊ “n = 1 of the evolution. Increasing the stepsize “n is not
an option since it yields diverging sequences of images. Second, the chain is slowly mixing
and therefore it is hard to produce entirely di�erent, yet visually coherent, samples with one
run of SOUL. As a consequence, the Markov chain is prevented from e�ciently exploring the
image space.



Examples
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Jetchev-Bergmann-Vollgraf Gatys ours exemplar image x0

Figure 16. Comparison with [54]. The images presented in the column “Jetchev-Bergmann-Vollgraf”
are synthesized with the algorithm introduced in [54], the ones presented in the column “Gatys” are generated
with [44] and the third column contains our results.

Lu-Zhu-Wu Gatys ours exemplar image x0

Figure 17. Comparison with [65]. The images presented in the column “Lu-Zhu-Wu” are synthesized
with the algorithm introduced in [65], the ones presented in the column “Gatys” are generated with [44] and the
third column contains our results.

5.2.3. Texture style transfer. We conclude this experimental part by considering other
applications than texture synthesis and assess that the proposed algorithm can be used for
the task of style transfer. Indeed given one content image xcontent, a style image xstyle, not
necessarily of the same size, and jcontent µ j we consider the same CNN feature as before but
x0 is replaced by xcontent for j œ jcontent in (2.2). In the rest of the neural network features,



Extension : style transfer
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x0 is replaced by xstyle in (2.2), i.e.

F (x) =
1
G

k
j (x) ≠ G

k
j (x

j
0)

2
jœj,kœ{1,...,cj}

,

with xj
0 = xcontent if j œ jcontent and xstyle otherwise. These new features are well-suited

to perform a style transfer task as illustrated in Figure 18 with jcontent = {1, 3, 6, 8, 11} and
j = {1, 3, 6, 8, 11, 13, 15, 24, 26, 31}.

exemplar image x0 (a) (b) (c)

Figure 18. Style transfer. In (a), (b) and (c) we present the outputs of the SOUL algorithm with an
exemplar content given in the leftmost column and exemplar style given by the first row. See Subsection 5.2.3
for more details.



Conclusion

Sampling from maximum entropy models under statistical constraints :

I allows to understand the constraints (features, descriptors, SIFT for
instance),

I raises many mathematical questions (existence, sampling algorithms,
etc.)

I provides generative models of images (used then as priors ?)


