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Missing values

Partially observed exemplars
Non-response in questionnaires
Missing correspondences across tables
Measurements not performed (eg due to patient urgency)

Ubiquitous in health and social sciences

How to build predictive models on such data?
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Supervised learning settings

Given n pairs (x, y) ∈ X × Y drawn i.i.d.
find a function f : X → Y such that f (x) ≈ y

Notation: ŷ def
= f (x)

Risk minimization
Loss function l : Y ×Y → Ò

Bayes predictor: f? ∈ argmin
f :X→Y

Å
[
l
(
f (x), y

) ]
For quadratic loss, f?(x) = Å[y |x]
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Supervised learning procedures

A learning procedure gives f̂n from Dn,train = {(Xi, Yi), i = 1, . . . , n}

Bayes consistency
A Bayes-consistent procedure asymptotically gives a Bayes
predictor

Å[` (f̂n(X), Y)] −−−−→n→∞
Å[` (f?(X), Y)]

Empirical risk minimization

Estimation of f : f̂n ∈ argmin
f∈F

n∑
i=1
l
(
f (xi), yi

)
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Notations

Full data X ∈ Òd

Missingness indicator M ∈ {0,1}d, Mj = 1 i� Xj is not observed

Incomplete data X̃ ∈
⊗d

j=1(Xj ∪ {NA}),
X̃ = X � (1 −M) + NA � M

Example realization x = (1.1, 2.3,−3.1, 8, 5.27)
m = (0, 1,0,0, 1)
x̃ = (1.1, NA, − 3.1, 8, NA)

Observed fraction xo = (1.1, · , − 3.1, 8, · )
Unobserved fraction xm = ( · , 2.3, · , · , 5.27)
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Missing values and parametric likelihoods [Rubin 1976]

Model a) a distribution fθ for the complete data x
b) a random process gφ generating a mask m

Statistical inference: estimate θ

(full likelihood) L1(θ,φ) =
n∏
i=1

∫
fθ (xi,o, xi,m) gφ (mi |xi,o, xi,m) dxi,m

Expectation over
missing-values mechanism

(ignoring missing mechanism) L2(θ) =
n∏
i=1

∫
fθ (xi,o, xi,m) dxi,m

G Varoquaux 9



Missing values and parametric likelihoods [Rubin 1976]

Model a) a distribution fθ for the complete data x
b) a random process gφ generating a mask m

Statistical inference: estimate θ

(full likelihood) L1(θ,φ) =
n∏
i=1

∫
fθ (xi,o, xi,m) gφ (mi |xi,o, xi,m) dxi,m

Expectation over
missing-values mechanism

(ignoring missing mechanism) L2(θ) =
n∏
i=1

∫
fθ (xi,o, xi,m) dxi,m

G Varoquaux 9



Ignorable missingness [Rubin 1976]

Definition: Missing at random situation (MAR)
for non-observed values, the probability of missingness does
not depend on this non-observed value.

[Rubin 1976], modern formulation in [Josse... 2019]

observed(x′,mi) = observed(xi,mi) ⇒ gφ (mi |x′) = gφ (mi |xi)

Theorem [Rubin 1976], in MAR, maximizing likelihood that ignores
the missing mechanism gives the same maximum-likelihood
estimates θ for of model a) as the full likelihood.
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Ignorable missingness [Rubin 1976]

Definition: Missing at random situation (MAR)
for non-observed values, the probability of missingness does
not depend on this non-observed value.

[Rubin 1976], modern formulation in [Josse... 2019]

observed(x′,mi) = observed(xi,mi) ⇒ gφ (mi |x′) = gφ (mi |xi)

Special case: Missing completely at random (MCAR)
M is independent of X

Missing Not at Random situation (MNAR)
Missingness not ignorable ⇒ Hard

must explicitly model the mechanism
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Missing-values settings

Complete MCAR MNAR (censored)
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Estimation procedures that build upon ignorability

Expectation maximization
Optimize likelihood L2(θ) (ignoring missing mechanism) by alternating:

Expectation in Likelihood over unobserved values, using
parameters θ (t)

Maximization of the resulting expression over θ to give θ (t+1)

Imputation & plug-in estimation
1. Use a routine to compute P(xi,m |xi,o)
2. Create a complete data (emulating the expectation in L2)

3. Apply standard routine to maximize likelihood of complete data
Bonus: monte-carlo approximation by multiple-imputations
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Estimation procedures that build upon ignorability

Expectation maximization

Imputation & plug-in estimation

In prediction settings,
procedures must be adapted to work out-of-sample

[Josse... 2019]

The predictive model is applied on partially-observed test data
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Supervised learning with missing values

Focus on risks not likelihood

Missing values at test time
⇒ f must predict on missing values

f : X → Y f̂n ∈ argmin
f∈F

n∑
i=1
l
(
f (xi), yi

)
Semi discrete space X =

⊗d
j=1(Xj ∪ {NA})
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2 Adapting learning procedures

[Josse... 2019] “On the consistency of supervised learning with
missing values”



Test-time imputation

Theorem [Josse... 2019], given f?, Bayes predictor on
fully-observed data,

f?MI(x̃) = ÅXm |Xo=xo
[
f?(Xm, xo)

]
,

is a Bayes-optimal predictor in MAR settings.

The expectation can be computed by sampling multiple
imputations.

Note: single imputation is not, in general, consistent
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Train-time constant imputation

(constant imputation) x′1 = x11M1=0 + α1M1=1.

Assumption (Regression model) Y = f?(X) + ε, with X has a
continuous density g > 0 on [0, 1]d, ‖f?‖∞ < ∞, and ε |= (X,M1)

Assumption (Missingness pattern - MAR) X2, . . . , Xd fully
observed and missingness M1 on X1 satisfies M1 |= X1 |X2, . . . , Xd
and is such that the function
(x2, . . . , xd) ↦→ Ð[M1 = 1|X2 = x2, . . . , Xd = xd] is continuous.
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Train-time constant imputation

(constant imputation) x′1 = x11M1=0 + α1M1=1.

Theorem [Josse... 2019], The Bayes predictor after constant
imputation, f?SI(x

′) = Å[Y |X′ = x′],

is equal to the Bayes predictor on the original data almost
everywhere.

Corollary constant imputation followed by universally-
consistent learner is a procedure consistent almost
everywhere.1

1Almost everywhere because input data landing exactly on imputation constant α will be mistaken
for an NA.G Varoquaux 17



Adapting supervised learning procedures

Di�erent trade o�s than statistical inference

Good imputation is not necessary

Also in [Josse... 2019]
Risk of tree-based models which can optimize naturally for
inputs in semi-discrete spaces.
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3 Linear mechanism, non-linear predictor
The seemingly-simple case of data generated from a linear
mechanism.

Linear predictor on linearly-generated data with missing
values: non consistency and solutions [Le Morvan... 2020b]



Linear mechanism and missing data

Settings y = X w, Z is observed: X masked by M

The best predictor may not be linear

Example
Let Y = X1 + X2 + ε, where X2 = exp(X1) + ε1.
When only X1 is observed, the model can be rewritten as

Y = X1 + exp(X1) + ε + ε1,

G Varoquaux 20
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Linear mechanism, missing data, and Gaussian variates

Assumption Gaussian pattern mixture model
X conditional on M is Gaussian: for all m ∈ {0, 1}d, there exist
µm and Σm such that

X | (M = m) ∼ N (µm, Σm).

Proposition The optimal predictor is a polynomial of X and
cross-products of M, with 2d terms.

f?(Z) = β?0,0 +
d∑
j=1
β?j,0Mj +

d∑
j=1
β?j,1MjXj +

d∑
i=1

d∑
j=1
β?i,j,2MiMjXj + . . .
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Estimation and finite-sample bounds

Polynomial fitting is linear fitting on expended basis

Theorem Estimating the polynomial coe�cients with
ordinary least squares leads to a risk R of order O(2d/n):

σ2 +
2d c1
n + 1 ≤ R ≤ cσ2 2d−1(d + 2) (1 + log n)

n
+ σ2.

G Varoquaux 22
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Multi-layer perceptron

The Bayes predictor is piece-wise a�ne

Theorem: Feeding the concatenated vector (X � (1 −M),M) to
a Multi-Layer Perceptron with ReLU non-linearities and width
2d is Bayes consistent.

Heuristic: Reducing the width of the network controls model
complexity.

G Varoquaux 23
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Experimental results
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Linear mechanism

The linear predictor, even with constant imputation, is not
consistent

Basis expansion with polynomial of the mask is consistent,
but O(2d) sample complexity

MLP is consistent, requiring 2d width for high-entropy
missing-values mechanism, but can adapt

G Varoquaux 25



4 Di�erentiable programming: a neural
architecture

Craft a dedicated neural architecture to approximate the
Bayes predictor

NeuMiss networks: di�erentiable programming for
supervised learning with missing values [Le Morvan... 2020a]



Intuition: linear regression with missing values

Y = β?1 X1 + β
?
2 X2 + β

?
0

cor(X1, X2) = 0.5.

If X2 is missing, the coe�cient of X1

should compensate for the
missingness of X2.

effect of X2 lost effect of X2 
accounted for by 

X1 

The di�culty of supervised learning with missing values is to handle up to 2d

missing data patterns (i.e. 2d possible inputs of varying length).
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Expression of Bayes predictor

Assumptions: Linear model: Y = β?0 +
d∑
j=1
β?j Xj + ε

Gaussian data: X ∼ N (µ, Σ)

MCAR settings
f?(Xobs,M) = β?0 +

〈
β?obs, Xobs

〉
+

〈
β?mis, µmis+Σmis,obs(Σobs)

−1(Xobs−µobs)
〉

Gaussian self-masking settings
f?(Xobs,M) = β?0 + 〈β?obs, Xobs〉 +

〈
β?mis, (Id + DmisΣ

−1
mis|obs)

−1

×
(
µ̃mis + DmisΣ−1

mis|obs
(
µmis + Σmis,obs (Σobs)−1 (Xobs − µobs)

) )〉

Main di�culty: approx. of Σ−1
obs, for any missing data pattern!

NeuMann iterations: approximate Σ−1
obs by unrolling the order-` trun-

cation of a NeuMann series:
S(`)obs(m) = (Id − Σobs(m))S

(`−1)
obs(m) + Id.
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Approximation error

Proposition
Let ν be the smallest eigenvalue of Σ.
Assume that the spectral radius of Σ is < 1.

Å
[ (
f?` (Xobs,M) − f

?(Xobs,M)
)2

]
≤
(1 − ν)2` ‖β?‖22

ν
Å
[

Id − S(0)obs(M)Σobs(M)

2

2

]
where f?l is the Bayes predictor, replacing the inverse by its
order-l Neumann approximation.
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NeuMiss: a dedicated architecture

X −

µ

W (1)

(Id− Σobs)
+ W (2)

(Id− Σobs)
+ W (3)

(Σmis,obs)
+

µ

W (4)

β
Y

�m̄ �m̄ �m

Neumann iterations Non-linearity

A new type of non-linearity: the multiplication entrywise by
the missingness indicator.
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Empirical results: approximation e�ciency
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NeuMiss needs less samples to approximate well
(and predict well)
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Empirical results: prediction performance

MAR Gaussian self-masking
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NeuMiss prediction performance close to optimal
NeuMiss is robust to the missing-data mechanism
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Summary

Risk minimization good imputation is not necessary
Semi-discrete input⇒ optimization di�cult

Formalisation [Josse... 2019]

Bayes predictors
2d sub-models
⇒ complex model even for simple data-generating mechanisms

Tailored model:
functional form to capture dependencies between sub-models
Risk minimization can make it robust to missing-value mechanisms
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