Supervised Learning with Missing Values

Gaël Varoquaux

ĺnría_

with Julie Josse, Erwan Scornet, Marine Le Morvan, Nicolas Prost, & Thomas Moreau

Missing values

Partially observed exemplars

- Non-response in questionnaires
- Missing correspondences across tables
- Measurements not performed (eg due to patient urgency)

Ubiquitous in health and social sciences

Missing values

Partially observed exemplars

- Non-response in questionnaires
- Missing correspondences across tables
- Measurements not performed (eg due to patient urgency)

Ubiquitous in health and social sciences

How to build predictive models on such data?

Outline

- 1 Settings
 Supervised learning theory
 Classical missing-values framework
- 2 Adapting learning procedures
- 3 Linear mechanism, non-linear predictor
- 4 Differentiable programming: a neural architecture

Settings

- ■Supervised learning theory
- Classical missing-values framework

Based on [Josse... 2019] "On the consistency of supervised learning with missing values"

1 Settings

Supervised learning theory

Classical missing-values framework

Supervised learning settings

Given n pairs $(x, y) \in \mathcal{X} \times \mathcal{Y}$ drawn i.i.d.find a function $f: \mathcal{X} \to \mathcal{Y}$ such that $f(x) \approx y$ Notation: $\hat{y} \stackrel{\text{def}}{=} f(x)$

Risk minimization

- Loss function $l: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$
- Bayes predictor: $f^* \in \operatorname{argmin} \mathbb{E} [l(f(x), y)]$
- For quadratic loss, $f^*(x) = \mathbb{E}[y|x]$

6 Varoquaux

Supervised learning procedures

A learning procedure gives \hat{f}_n from $\mathcal{D}_{n,\text{train}} = \{(\mathbf{X}_i, Y_i), i = 1, \dots, n\}$

Bayes consistency

■ A Bayes-consistent procedure asymptotically gives a Bayes predictor

$$\mathbb{E}[\ell(\hat{f}_n(\mathbf{X}), \mathbf{Y})] \xrightarrow[n \to \infty]{} \mathbb{E}[\ell(f^{\star}(\mathbf{X}), \mathbf{Y})]$$

Empirical risk minimization

$$\hat{f}_n \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^n l(f(x_i), y_i)$$

1 Settings

Supervised learning theory Classical missing-values framework

Notations

Full data
$$\mathbf{X} \in \mathbb{R}^d$$
Missingness indicator $\mathbf{M} \in \{0,1\}^d$, $M_j = 1$ iff X_j is not observed Incomplete data $\widetilde{\mathbf{X}} \in \bigotimes_{j=1}^d (X_j \cup \{\mathsf{NA}\})$, $\widetilde{\mathbf{X}} = \mathbf{X} \odot (\mathbf{1} - \mathbf{M}) + \mathsf{NA} \odot \mathbf{M}$

Example realization
$$\mathbf{x} = (1.1, 2.3, -3.1, 8, 5.27)$$

 $\mathbf{m} = (0, 1, 0, 0, 1)$
 $\widetilde{\mathbf{x}} = (1.1, \text{ NA}, -3.1, 8, \text{ NA})$
Observed fraction $\mathbf{x}_o = (1.1, \cdot, -3.1, 8, \cdot)$
Unobserved fraction $\mathbf{x}_m = (\cdot, 2.3, \cdot, \cdot, 5.27)$

Missing values and parametric likelihoods [Rubin 1976]

Model a) a distribution f_{θ} for the complete data **x b)** a random process g_{ϕ} generating a mask **m**

Statistical inference: estimate θ

(full likelihood)
$$\mathcal{L}_1(\theta,\phi) = \prod_{i=1}^n \int \!\! f_\theta(\mathbf{x}_{i,o},\mathbf{x}_{i,m}) \, g_\phi(\mathbf{m}_i|\mathbf{x}_{i,o},\mathbf{x}_{i,m}) \, \mathrm{d}\mathbf{x}_{i,m}$$
 Expectation over missing-values mechanism

Missing values and parametric likelihoods [Rubin 1976]

Model a) a distribution f_{θ} for the complete data \mathbf{x} **b)** a random process g_{ϕ} generating a mask \mathbf{m}

Statistical inference: estimate θ

(full likelihood)
$$\mathcal{L}_{1}(\theta,\phi) = \prod_{i=1}^{n} \int f_{\theta}(\mathbf{x}_{i,o},\mathbf{x}_{i,m}) \, g_{\phi}(\mathbf{m}_{i}|\mathbf{x}_{i,o},\mathbf{x}_{i,m}) \, \mathrm{d}\mathbf{x}_{i,m}$$
Expectation over missing-values mechanism

(ignoring missing mechanism)
$$\mathcal{L}_2(\theta) = \prod_{i=1}^n \int f_{\theta}(\mathbf{x}_{i,o}, \mathbf{x}_{i,m}) \, d\mathbf{x}_{i,m}$$

Ignorable missingness [Rubin 1976]

Definition: Missing at random situation (MAR)

for non-observed values, the probability of missingness does not depend on this non-observed value.

[Rubin 1976], modern formulation in [Josse... 2019]

$$\mathsf{observed}(\mathbf{x}',\mathbf{m}_i) = \mathsf{observed}(\mathbf{x}_i,\mathbf{m}_i) \ \Rightarrow \ g_\phi(\mathbf{m}_i|\mathbf{x}') = g_\phi(\mathbf{m}_i|\mathbf{x}_i)$$

Theorem [Rubin 1976], in MAR, maximizing likelihood that ignores the missing mechanism gives the same maximum-likelihood estimates θ for of model a) as the full likelihood.

Ignorable missingness [Rubin 1976]

Definition: Missing at random situation (MAR)

for non-observed values, the probability of missingness does not depend on this non-observed value.

[Rubin 1976], modern formulation in [Josse... 2019]

$$\mathsf{observed}(\mathbf{x}',\mathbf{m}_i) = \mathsf{observed}(\mathbf{x}_i,\mathbf{m}_i) \ \Rightarrow \ g_\phi(\mathbf{m}_i|\mathbf{x}') = g_\phi(\mathbf{m}_i|\mathbf{x}_i)$$

Special case: Missing completely at random (MCAR)

M is independent of **X**

Missing Not at Random situation (MNAR)

Missingness not ignorable

 \Rightarrow Hard

must explicitly model the mechanism

Missing-values settings

Estimation procedures that build upon ignorability

Expectation maximization

Optimize likelihood $\mathcal{L}_2(\theta)$ (ignoring missing mechanism) by alternating:

- Expectation in Likelihood over unobserved values, using parameters $\theta^{(t)}$
- Maximization of the resulting expression over θ to give $\theta^{(t+1)}$

Varoquaux 12

Estimation procedures that build upon ignorability

Expectation maximization

Optimize likelihood $\mathcal{L}_2(\theta)$ (ignoring missing mechanism) by alternating:

- Expectation in Likelihood over unobserved values, using parameters $\theta^{(t)}$
- Maximization of the resulting expression over θ to give $\theta^{(t+1)}$

Imputation & plug-in estimation

- **1.** Use a routine to compute $\mathcal{P}(x_{i,m}|x_{i,o})$
- **2.** Create a complete data (emulating the expectation in \mathcal{L}_2)
- 3. Apply standard routine to maximize likelihood of complete data Bonus: monte-carlo approximation by multiple-imputations

Estimation procedures that build upon ignorability

Expectation maximization

Imputation & plug-in estimation

In prediction settings,

procedures must be adapted to work out-of-sample

[Josse... 2019]

The predictive model is applied on partially-observed test data

o varoquaux

Supervised learning with missing values

Focus on risks not likelihood

■Missing values at test time

 \Rightarrow f must predict on missing values

$$\hat{f}: \mathcal{X} \to \mathcal{Y}$$
 $\hat{f}_n \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^n l(f(x_i), y_i)$

■Semi discrete space $X = \bigotimes_{j=1}^{d} (X_j \cup \{NA\})$

2 Adapting learning procedures

[Josse... 2019] "On the consistency of supervised learning with missing values"

Test-time imputation

Theorem [Josse... 2019], given f^* , Bayes predictor on fully-observed data,

$$f_{\mathrm{MI}}^{\star}(\widetilde{\boldsymbol{x}}) = \mathbb{E}_{\boldsymbol{X}_{m}|\boldsymbol{X}_{o}=\boldsymbol{x}_{o}}\big[f^{\star}(\boldsymbol{X}_{m},\boldsymbol{x}_{o})\big],$$

is a Bayes-optimal predictor in MAR settings.

The expectation can be computed by sampling multiple imputations.

Note: single imputation is not, in general, consistent

Train-time constant imputation

(constant imputation)
$$x'_1 = x_1 \mathbb{1}_{M_1=0} + \alpha \mathbb{1}_{M_1=1}.$$

Assumption (Regression model) $Y = f^*(\mathbf{X}) + \varepsilon$, with **X** has a continuous density g > 0 on $[0,1]^d$, $||f^*||_{\infty} < \infty$, and $\varepsilon \perp \!\!\! \perp (\mathbf{X}, M_1)$

Assumption (Missingness pattern - MAR) $X_2, ..., X_d$ fully observed and missingness M_1 on X_1 satisfies $M_1 \perp\!\!\!\perp X_1 | X_2, ..., X_d$ and is such that the function

 $(x_2,...,x_d) \mapsto \mathbb{P}[M_1 = 1 | X_2 = x_2,...,X_d = x_d]$ is continuous.

Train-time constant imputation

$$X_1' = X_1 \mathbb{1}_{M_1=0} + \alpha \mathbb{1}_{M_1=1}.$$

Theorem [Josse... 2019], The Bayes predictor after constant imputation, $f_{SI}^{\star}(\mathbf{x}') = \mathbb{E}[Y|X'=x'],$

is equal to the Bayes predictor on the original data almost everywhere.

Corollary constant imputation followed by universallyconsistent learner is a procedure consistent almost everywhere.¹

¹Almost everywhere because input data landing exactly on imputation constant α will be mistaken

Adapting supervised learning procedures

- Different trade offs than statistical inference
- ■Good imputation is not necessary

Also in [Josse... 2019]

■ Risk of tree-based models which can optimize naturally for inputs in semi-discrete spaces.

3 Linear mechanism, non-linear predictor

The seemingly-simple case of data generated from a linear mechanism.

Linear predictor on linearly-generated data with missing values: non consistency and solutions [Le Morvan... 2020b]

Linear mechanism and missing data

Settings
$$y = X w$$
,

Z is observed: X masked by M

The best predictor may not be linear

Example

Let
$$Y = X_1 + X_2 + \varepsilon$$
, where $X_2 = \exp(X_1) + \varepsilon_1$.

When only X_1 is observed, the model can be rewritten as

$$Y = X_1 + \exp(X_1) + \varepsilon + \varepsilon_1,$$

Linear mechanism, missing data, and Gaussian variates

Assumption Gaussian pattern mixture model

X conditional on M is Gaussian: for all $m \in \{0, 1\}^d$, there exist μ_m and Σ_m such that

$$X \mid (M = m) \sim \mathcal{N}(\mu_m, \Sigma_m).$$

Proposition The optimal predictor is a polynomial of X and cross-products of M, with 2^d terms.

$$f^{\star}(Z) = \beta_{0,0}^{\star} + \sum_{j=1}^{d} \beta_{j,0}^{\star} M_{j} + \sum_{j=1}^{d} \beta_{j,1}^{\star} M_{j} X_{j} + \sum_{j=1}^{d} \sum_{j=1}^{d} \beta_{i,j,2}^{\star} M_{i} M_{j} X_{j} + \dots$$

Varoquaux

Estimation and finite-sample bounds

Polynomial fitting is linear fitting on expended basis

Theorem Estimating the polynomial coefficients with ordinary least squares leads to a risk R of order $O(2^d/n)$:

$$\sigma^2 + \frac{2^d c_1}{n+1} \leq R \leq c \sigma^2 \frac{2^{d-1}(d+2)(1+\log n)}{n} + \sigma^2.$$

Multi-layer perceptron

The Bayes predictor is piece-wise affine

Theorem: Feeding the concatenated vector $(X \odot (\mathbf{1} - M), M)$ to a Multi-Layer Perceptron with ReLU non-linearities and width $\mathbf{2}^d$ is Bayes consistent.

Heuristic: Reducing the width of the network controls model complexity.

Experimental results

Experimental results

The Multi-layer perceptron is robust to violations of the model

Varoquaux 24

Linear mechanism

- ■The linear predictor, even with constant imputation, is not consistent
- Basis expansion with polynomial of the mask is consistent, but $O(2^d)$ sample complexity
- ■MLP is consistent, requiring 2^d width for high-entropy missing-values mechanism, but can adapt

4 Differentiable programming: a neural architecture

Craft a dedicated neural architecture to approximate the Bayes predictor

NeuMiss networks: differentiable programming for supervised learning with missing values [Le Morvan... 2020a]

Intuition: linear regression with missing values

$$Y = \beta_1^* X_1 + \beta_2^* X_2 + \beta_0^*$$
$$cor(X_1, X_2) = 0.5.$$

If X_2 is missing, the coefficient of X_1 should **compensate for the** missingness of X_2 .

The difficulty of supervised learning with missing values is to handle **up to** 2^d missing data patterns (i.e. 2^d possible inputs of varying length).

Expression of Bayes predictor

Assumptions:

Linear model:
$$Y = \beta_0^* + \sum_{j=1}^{a} \beta_j^* X_j + \epsilon$$

Gaussian data: $X \sim \mathcal{N}(\mu, \Sigma)$

MCAR settings

$$f^{\star}(X_{obs}, M) = \beta_{o}^{\star} + \left\langle \beta_{obs}^{\star}, X_{obs} \right\rangle + \left\langle \beta_{mis}^{\star}, \, \mu_{mis} + \Sigma_{mis,obs}(\Sigma_{obs})^{-1}(X_{obs} - \mu_{obs}) \right\rangle$$

varoquaux 2

Expression of Bayes predictor

Assumptions: Linear model:
$$Y = \beta_0^* + \sum_{j=1}^d \beta_j^* X_j + \epsilon$$

Gaussian data: $X \sim \mathcal{N}(\mu, \Sigma)$

MCAR settings

$$f^{\star}(X_{obs}, M) = \beta_{o}^{\star} + \left\langle \beta_{obs}^{\star}, X_{obs} \right\rangle + \left\langle \beta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \right\rangle$$

Gaussian self-masking settings
$$f^{\star}(X_{obs}, M) = \beta_{o}^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \left\langle \beta_{mis}^{\star}, (Id + D_{mis} \Sigma_{mis|obs}^{-1})^{-1} \times \left(\tilde{\mu}_{mis} + D_{mis} \Sigma_{mis|obs}^{-1} (\mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs})) \right) \right\rangle$$

Expression of Bayes predictor

Main difficulty: approx. of Σ_{obs}^{-1} , for any missing data pattern!

NeuMann iterations: approximate Σ_{obs}^{-1} by unrolling the order- ℓ truncation of a NeuMann series:

cation of a Neumann series:
$$S_{obs(m)}^{(\ell)} = (Id - \Sigma_{obs(m)}) S_{obs(m)}^{(\ell-1)} + Id.$$

$$f^{\star}(X_{obs}, M) = \beta_{o}^{\star} + \left\langle \beta_{obs}^{\star}, X_{obs} \right\rangle + \left\langle \beta_{mis}^{\star}, \, \mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \right\rangle$$

Gaussian self-masking settings

$$f^{\star}(X_{obs}, M) = \beta_{o}^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \left\langle \beta_{mis}^{\star}, (Id + D_{mis} \Sigma_{mis|obs}^{-1})^{-1} \times \left(\tilde{\mu}_{mis} + D_{mis} \Sigma_{mis|obs}^{-1} (\mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs})) \right) \right\rangle$$

Approximation error

Proposition

Let v be the smallest eigenvalue of Σ .

Assume that the spectral radius of Σ is < 1.

$$\mathbb{E}\left[\left(f_{\ell}^{\star}(X_{obs}, M) - f^{\star}(X_{obs}, M)\right)^{2}\right]$$

$$\leq \frac{(1 - \nu)^{2\ell} \|\boldsymbol{\beta}^{\star}\|_{2}^{2}}{\nu} \mathbb{E}\left[\left\|Id - S_{obs(M)}^{(O)} \Sigma_{obs(M)}\right\|_{2}^{2}\right]$$

where f_l^{\star} is the Bayes predictor, replacing the inverse by its order-l Neumann approximation.

NeuMiss: a dedicated architecture

A new type of non-linearity: the multiplication entrywise by the missingness indicator.

6 Varoquaux

Empirical results: approximation efficiency

NeuMiss needs less samples to approximate well (and predict well)

Empirical results: prediction performance

- NeuMiss prediction performance close to optimal
- NeuMiss is robust to the missing-data mechanism

varoquaux

Summary

Risk minimization good imputation is not necessary

Semi-discrete input ⇒ optimization difficult

Formalisation [Josse... 2019]

Bayes predictors

2^d sub-models

 \Rightarrow complex model even for simple data-generating mechanisms

Tailored model:

functional form to capture dependencies between sub-models Risk minimization can make it robust to missing-value mechanisms

References I

J. Josse, N. Prost, E. Scornet, and G. Varoquaux. On the consistency of supervised learning with missing values. *arXiv* preprint arXiv:1902.06931, 2019.

- M. Le Morvan, J. Josse, T. Moreau, E. Scornet, and G. Varoquaux. Neumiss networks: differential programming for supervised learning with missing values. In *Advances in Neural Information Processing Systems* 33, 2020a.
- M. Le Morvan, N. Prost, J. Josse, E. Scornet, and G. Varoquaux. Linear predictor on linearly-generated data with missing values: non consistency and solutions. *AISTATS*, 2020b.

D. B. Rubin. Inference and missing data. *Biometrika*, 63(3):581–592, 1976.

Varoquaux