Model risk measures for multi-asset European products Florent Bouly¹, Tristan Carrel², Saeed Sadeghi Arjmand³, Amadou Yoro Thiam⁴, and Thuy Vo⁵ ¹Université de Lille (florent.bouly@univ-lille.fr) ²Université de Poitiers (tristan.carrel@univ-poitiers.fr) ³Ecole Polytechnique (saeed.sadeghi-arjmand@polytechnique.edu) ⁴Université Toulouse 1 (amadouyoro.thiam@tse-fr.eu) ⁵ENS Lyon (thuy.vo@ens-lyon.fr) February 17, 2022 ## Abstract We consider two financial assets whose prices are given by X_T and Y_T at a future date T>0 with known distributions. Given a real-valued function $f:\mathbb{R}^2\to\mathbb{R}$, we propose a valuation method to price a product paying $Z_T=f(X_T,Y_T)$ at date T, in a market where a certain level of information is also available on the prices of some multi-asset payoffs, such as options on the spread X-Y (as for CMS rates) or on the ratio X/Y (as for FX rates). We model the dependence between the two assets by using a copula, and show how to construct a subfamily of copulas that are compatible with the available market information. Next, we provide bounds on the price of the product Z, and specialize the results in the case of dual binaries.