Numerical algorithm for two-phase flows drift-flux model
in a porous media on a staggered grid
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‘ Context I

FLICA4 is a 3D compressible code specially devoted to reactor core analysis which solves a com-
pressible drift-flux model for two-phase flows in a porous medium [1]. To define convective fluxes,
FLICA4 uses a specific finite volume numerical method based on an extension of the Roe’s approx-
imate Riemann colocated solver [2]. Nevertheless, an analysis of this type of method shows that in
low-Mach number, it is necessary to apply modifications to the 2D or 3D geometries on a cartesian
mesh otherwise this method does not converge to the right solution when the mach number tends
to zero [3]. For this reason, we apply a so-called “pressure correction”. Although this correction is
necessary to reach the required precision, it may produces some checkerboard oscillations in space,
especially in the 1D case.

Since these checkerboard oscillations are sometimes critical and may lead to unstable resolutions
or even divergence in some cases, we also investigate another numerical algorithm to solve this com-
pressible drift-flux model in the low Mach regim. The key point is to develope a compressible solver
on staggered grid since checkerboard oscillations cannot exist on this type of discretisation. The aim
of this work is to present such a compressible scheme and to validate it in low Mach regime with
test cases describing a simplified nuclear core.

‘ Four equation Drift-flux model in porous medium |

The four equations model (M) is established from the six equations equations model in porous
medium [1]. A Drift-flux model is used to take into account the slip between the vapor and the liquid
phase.
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> Unknows:

> Given quantities:

o 7: mixture velocity o ¢ porosity

o ?: gravity
e (): power density
e K (7,): singular pressure loss coefficient

o (' = %: concentration
e P: mixture pressure

ec or h: internal mixture energy or specific
mixture enthalpy

> Simplifying hypothesis (neglected terms):
e [',,: vapor production at the heating surfaces,
e 7. friction between the wall and the fluid,
e /{.,: phase mass diffusion term due to two-phase flow turbulence,
e 7: viscous stress tensor and turbulence effects modeling,
e ¢: fluid heat conduction and energy turbulence diffusion terms.

> Closure models:

e Equation of state: Stiffened gas EOS [5] = £(P,p,h ou e¢) =0,

e Non-equilibrium thermodynamics: the vapor phase is assumed to be saturated = /. .(p,, P) =
(P),
e Non-equilibrium Kinematics: the relative velocity between liquid and vapor phases is taken into

account by a Kinetic constitutive equation =- Vi — 7@ — 7; = @(7, h,C, P). Here, we choose Ishii
drift-model [4].
e Interphase mass exchange [',: we choose F3 model [1].

> Boundary conditions:

e Inlet: concentration, velocity and specific enthalpy,
e Outlet: pressure.

‘ Time-Space discretization |

STAGGERED GRID

A principal grid is used for scalar transport equations (mass, internal energy, vapor mass). The
so-called scalar variables are defined at the center of every mesh cell: pressure, internal energies,
concentration. Three other grids are used, one for each velocity component. Velocity nodes are
located on the center of the faces normal to the velocity component.
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In the equations of mixture momentum, we use the centered value for the evaluation of scalar vari-
ables to the faces. To ensure the stability of the numerical scheme, we use a donor (upwind) scheme

approximation in each convection terms for each balance equations.
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‘ Solution algorithm |

Let (S) denote the non linear system we ought to solve at each physical time step. This system is
linearized using a Newton-Raphson iterative method. This method gives a linear system of equations
for the increments of the principal variables U = (P, h,C, V)"
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A(UF) : jacobian of nonlinear system (.S)

e Step 1: Eliminating the velocity increments
We consider vector (momentum) balance equations of system (.5):
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By analogy, we obtain (AV?), 1., (AVY) Vi et (AV7),,-1-.
e Step 2: Pressure solver
We consider scalar balance equations of system (5):
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(2) results in:
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We develop the first row of the system (3), we get the following equation:
(T (AP pae + (T30 (AV )y 4 (T o2 (AV) e (T2 (AV ) agge + (1) o (AVY) oy
H(T) s (AVF )y + (J0) o 1(AVE) e = Dy (4)
We make use of the velocity increments calculated in the last step. Their integration in the equation
(4) gives us:
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e Step 3: Other increments

> Velocity increments As a solution of the pressure equation (5), the pressure increments will be
used to compute the velocity increments (step 1).

> Enthalpy increments To compute the enthalpy increments we need is to develop the second row
of the system (3).

> Concentration increments The same method as above is applied to calculate the concentration
increments that can be computed using the third row of the system (3).

‘ Numerical tests I

The physical quantities that we use in these tests match the functioning of the Pressurized Water
Reactors. We consider a 4.2 meter long channel heated by a uniform thermal flux Q = 1.E8 w/m? on
which we impose the following conditions: inlet concentration C; = 0, inlet enthalpies h; = 1.3E° J/kg
and h, = 2.6E° J/kg, inlet velocities uv; = u, = 1.0 m/s and outlet pressure P, = 155 bar. In the figure
below, we compare the results of homogeneous and Ishii models to an analytical solutions obtained
with low Mach mixture model [5].
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