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Shallow Water equations

Shallow Water equations:

∂th+ div(hu) = 0,

∂t(hu) + div(hu⊗ u) + gh∇h = −gh∇b.

u(t, x): flow velocity

z

x ∈ Ω ⊂ R2

h(t, x): water height

b(x): topography
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Shallow Water equations

Dimensionless Shallow Water equations:

L
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∂th+ div(hu) = 0,

L
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∂t(hu) + div(hu⊗ u) +

ghref

u2
ref

h∇h = −ghref

u2
ref

bref
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Shallow Water equations

Dimensionless Shallow Water equations:

Sr∂th+ div(hu) = 0,

Sr∂t(hu) + div(hu⊗ u) +
1

Fr2h∇h = − 1

Fr2βh∇b.

with

Sr(= St) =
L

trefuref
the Strouhal number (vortex),

Fr =
uref√
ghref

the Froude number (flow vs gravity waves velocities)

and β =
bref

href
.
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Shallow Water equations

Dimensionless Shallow Water equations:

Sr∂th+ div(hu) = 0,

Sr∂t(hu) + div(hu⊗ u) +
1

Fr2h∇h = − 1

Fr2βh∇b.

with

Sr(= St) =
L

trefuref
the Strouhal number,

Fr =
uref√
ghref

= εα (ε� 1) the Froude number

and β =
bref

href
= 1.
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Multiple scales in Shallow Water equations

Low Froude number flows:

velocities of the flow < speed of the gravity waves

=⇒ multiple length / time scales
(depending on initial and boundary conditions).

During tref :
trefuref = L/Sr tref

√
ghref = (L/Sr)/εα

distance of an advected particle < distance of gravity waves.

In a O(L) domain:
L/uref = Sr tref L/

√
href = εα Sr tref

time scales for advected particle > time scales for gravity waves.
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Multiscale topography
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εx : slow variations

x/ε : quick variations(ε ! 1) x
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Multiscale topography

100

4

0 10 20 30 40 50 60 70 9080

!2

0

2

εx : slow variations

x/ε : quick variations(ε ! 1) x

X =
x

ε
χ = εx.
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Outline

1 Balanced flow, topography at the ‘normal’ scale: b = b(x)

2 Balanced flow, topography with quick variations: b = b(X,x)
Weakly nonlinear regime
Fully nonlinear regime

3 Topography with long scale variations: b = b(x, χ)

Formal derivations

D. Bresch, R. Klein, C. L., 2011
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Balanced flow, topography at the ‘normal’ scale: b = b(x)

b = b(x), Fr = ε, Sr = 1

Flow on advective time scales.

Shallow Water equations:

∂th+ div(hu) = 0,

∂t(hu) + div(hu⊗ u) +
1

ε2
h∇h =

1

ε2
h∇b.

Asymptotic development:

h(t, x, ε) =
∑
i

εihi(t, x),

u(t, x, ε) =
∑
i

εiui(t, x).
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Balanced flow, topography at the ‘normal’ scale: b = b(x)

b = b(x), Fr = ε, Sr = 1

O(ε−2)
h0∇(h0 + b) = 0 ,

O(ε−1)
h1∇(h0 + b) + h0∇h1 = 0 ,

O(ε0)

∂th
0 + div(h0u0) = 0,

∂t(h
0u0) + div(h0u0 ⊗ u0)+

h2∇(h0 + b) + h1∇h1 + h0∇h2 = 0.
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Balanced flow, topography at the ‘normal’ scale: b = b(x)

b = b(x), Fr = ε, Sr = 1

O(ε−2)
h0∇(h0 + b) = 0 , h0 + b ≡ c0(t)

O(ε−1)
h1∇(h0 + b) + h0∇h1 = 0 , h1 ≡ c1(t)

O(ε0)

∂th
0 + div(h0u0) = 0,

∂t(h
0u0) + div(h0u0 ⊗ u0)+

h2∇(h0 + b) + h1∇h1 + h0∇h2 = 0.

∂b

∂t
= 0 : div(h0u0) = − d

dt
c0(t),

dc0

dt
= − 1

|Ω|

∫
Ω

h0u0 · ndσ

∂t(h
0u0) + div(h0u0 ⊗ u0) + h0∇h2 = 0.
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Balanced flow, topography at the ‘normal’ scale: b = b(x)

b = b(x), Fr = ε, Sr = 1

Shallow Water limit when b = b(x), Fr = ε, Sr = 1:

Lake equations

∂t(h
0u0) + div(h0u0 ⊗ u0) + h0∇h2 = 0,

dc0

dt
=
dh0

dt
= − 1

|Ω|

∮
Ω

h0u0 · ndσ

+ initial / boundary conditions on h0, c0.

see D. Bresch, G. Métivier, AMRX, 2010

for a rigorous justification of the limit.
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Balanced flow, topography with quick variations: b = b(X, x)

Outline

1 Balanced flow, topography at the ‘normal’ scale: b = b(x)

2 Balanced flow, topography with quick variations: b = b(X,x)
Weakly nonlinear regime
Fully nonlinear regime

3 Topography with long scale variations: b = b(x, χ)
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Balanced flow, topography with quick variations: b = b(X, x)
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Balanced flow, topography with quick variations: b = b(X, x) Weakly nonlinear regime

b = b(X, x), Fr = ε3/2, Sr = ε−1

Characteristic lengths too short to support gravity waves.
Weakly nonlinear regime.

Shallow Water equations:

∂th+ εdiv(hu) = 0,

∂t(hu) + εdiv(hu⊗ u) +
1

ε2
h∇h =

1

ε2
h∇b.

Asymptotic development:

h(t, x, ε) =
∑
i

εihi(t,X, x),

u(t, x, ε) =
∑
i

εiui(t,X, x).
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Balanced flow, topography with quick variations: b = b(X, x) Weakly nonlinear regime

b = b(X, x), Fr = ε3/2, Sr = ε−1

O(ε−3)
h0∇X(h0 + b) = 0 ,

O(ε−2)

h0∇x(h0 + b) + h1∇X(h0 + b) + h0∇Xh1 = 0 ,

. . .

O(ε0)
∂th

0 + divX(h0u0) = 0,
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O(ε−3)

h0∇X(h0 + b) = 0 , h0(t,X, x) + b(X,x) ≡ c(t, x)
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X

+ h0∇Xh1
X

= h0∇x(h0 + b)
X

= 0 : c(t, x) = c(t).

. . .

O(ε0)

∂th
0 + divX(h0u0) = 0, ∂t(h0 + b)

X
= 0 : c(t) = c,

h0(X,x) = −b(X,x) + c.
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Balanced flow, topography with quick variations: b = b(X, x) Weakly nonlinear regime
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Balanced flow, topography with quick variations: b = b(X, x) Weakly nonlinear regime

b = b(X, x), Fr = ε3/2, Sr = ε−1

O(ε1)

∂th
1 + divx(h0u0) + divX(h1u0) + divX(h0u1) = 0.
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Balanced flow, topography with quick variations: b = b(X, x) Weakly nonlinear regime

b = b(X, x), Fr = ε3/2, Sr = ε−1

O(ε1)

∂th
1 + divx(h0u0) + divX(h1u0) + divX(h0u1) = 0.∫

Ω
O(ε1)

X
dx :

dh1

dt
= − 1

|Ω|

∮
Ω
h0u0

X · ndσ
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Balanced flow, topography with quick variations: b = b(X, x) Weakly nonlinear regime

b = b(X, x), Fr = ε3/2, Sr = ε−1

O(ε1)

∂th
1 + divx(h0u0) + divX(h1u0) + divX(h0u1) = 0.∫

Ω
O(ε1)

X
dx :

dh1

dt
= − 1

|Ω|

∮
Ω
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X · ndσ

We assume rigid vertical walls on ∂Ω: h1 = cst = 0.
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Balanced flow, topography with quick variations: b = b(X, x) Weakly nonlinear regime

b = b(X, x), Fr = ε3/2, Sr = ε−1

O(ε1)

∂th
1 + divx(h0u0) + divX(h1u0) + divX(h0u1) = 0.∫

Ω
O(ε1)

X
dx :

dh1

dt
= − 1

|Ω|

∮
Ω
h0u0

X · ndσ

We assume rigid vertical walls on ∂Ω: h1 = cst = 0.

divx(h0u0)
X

= 0.
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Balanced flow, topography with quick variations: b = b(X, x) Weakly nonlinear regime

b = b(X, x), Fr = ε3/2, Sr = ε−1

Using each equation we obtain:

∂t(h
0u0) + divX(h0u0 ⊗ u0) + h0∇xh2 + h0∇Xh3 = 0

divX(h0u0) = 0

divxh0u0
X

= 0

∇Xh2 = 0

with h0(X,x) = c− b(X,x).

�X energy principle

−→ large scale ? Average in X.

−→ small scale ? h̃ = h− hX .
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Balanced flow, topography with quick variations: b = b(X, x) Weakly nonlinear regime

b = b(X, x), Fr = ε3/2, Sr = ε−1

At large scale: 
∂t(h0u0)

X
+ h0

X∇xh2 = −h3∇Xb
X

divxh0u0
X

= 0

response of the leading-order large-scale flow to accumulated
small-scale pressure forces on the topography,

the second order h2 acts like a Lagrangian multiplier.
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Balanced flow, topography with quick variations: b = b(X, x) Weakly nonlinear regime

b = b(X, x), Fr = ε3/2, Sr = ε−1

At small scale:∂t(̃h0u0) + divX(h0u0 ⊗ u0) + ˜h0∇Xh3 = b̃∇xh2

divX (̃h0u0) = 0

interactions between small and large scales,

∇xh2 acts on the fluctuations of the topography to drive the small
scale flow.

Weakly nonlinear limit version of the lake equations with oscillatory
topography.

D. Bresch, D. Gérard-Varet, AML, 2007
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Balanced flow, topography with quick variations: b = b(X, x) Fully nonlinear regime

b = b(X, x), Fr = ε, Sr = 1

Characteristic lengths too short to support gravity waves.
Fully nonlinear regime.

Shallow Water equations:

∂th+ div(hu) = 0,

∂t(hu) + div(hu⊗ u) +
1

ε2
h∇h =

1

ε2
h∇b.

Asymptotic development:

h(t, x, ε) =
∑
i

εihi(t,X, x),

u(t, x, ε) =
∑
i

εiui(t,X, x).
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Balanced flow, topography with quick variations: b = b(X, x) Fully nonlinear regime

b = b(X, x), Fr = ε, Sr = 1

O(ε−3)
h0∇X(h0 + b) = 0 ,

h0(t,X, x) + b(X,x) ≡ c(t, x)

O(ε−2)
h0∇x(h0 + b) + h1∇X(h0 + b) + h0∇Xh1 = 0 ,

h0(t,X, x) + b(X,x) ≡ c(t)

O(ε−1)
divX(h0u0) = 0 ,

divX(h0u0 ⊗ u0) + h0∇xh1 + h0∇Xh2 = 0.

−→ small scale ?
−→ large scale ?
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Balanced flow, topography with quick variations: b = b(X, x) Fully nonlinear regime

b = b(X, x), Fr = ε, Sr = 1

u0 · ∇Xu0 +∇Xh2 = −∇xh1.

Small scale:

Taking the curl (ζ = curlu = −∂X2u1 + ∂X1u2):

u0 · ∇Xζ0 + ζ0divXu
0 = divX(ζ0u0) = 0 ,

as divX(h0u0) = 0, it reads h0u0 · ∇X(ζ0/h0) = 0.

ζ0 = H0Q(ψ∗,0, x, t) ,

if Q is a potential vorticity distribution function,
if ψ∗,0 is a stream function for h0u0,

ψ∗,0 = ψ0 +X⊥ · h0u0
X

with h0u0 = ∇⊥Xψ∗,0 ,
h0∇2

Xψ
0 −∇Xh0 · ∇Xψ0 = (h0)3Q(ψ∗,0, x, t)−∇Xh0 · .

Cell problem for a stationary vortical flow over variable topography.
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Balanced flow, topography with quick variations: b = b(X, x) Fully nonlinear regime

b = b(X, x), Fr = ε, Sr = 1

u0 · ∇Xu0 +∇Xh2 = −∇xh1.

Large scale:

U · T +∇xh1 = −q,
with U = h0u0

X
, ũ = u0 − 1

h0
h0u0

X
= 1

h0
∇⊥Xψ0 ,

T = 1
h0
∇X ũ

X
and .

O(ε0)
X

:

divxU = −divx
(
(∇xh1 + q) · T−1

)
= −dh

0
X

dt
.
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Balanced flow, topography with quick variations: b = b(X, x) Fully nonlinear regime

b = b(X, x), Fr = ε, Sr = 1

u0 · ∇Xu0 +∇Xh2 = −∇xh1.

Large scale (average in X):

U · T +∇xh1 = −q, Darcy type problem

with U = h0u0
X

, ũ = u0 − 1
h0
h0u0

X
= 1

h0
∇⊥Xψ0 ,

T = 1
h0
∇X ũ

X
and q = ũ · ∇X ũ

X
(small scale viscous forces).

O(ε0)
X

:

divxU = −divx
(
(∇xh1 + q) · T−1

)
= −dh

0
X

dt
.
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Topography with long scale variations: b = b(x, χ)

Outline

1 Balanced flow, topography at the ‘normal’ scale: b = b(x)

2 Balanced flow, topography with quick variations: b = b(X,x)
Weakly nonlinear regime
Fully nonlinear regime

3 Topography with long scale variations: b = b(x, χ)
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Topography with long scale variations: b = b(x, χ)

b = b(x, χ), Fr = ε, Sr = 1
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Topography with long scale variations: b = b(x, χ)

b = b(x, χ), Fr = ε, Sr = 1

Advective times for the normal scale L,
with gravity wave dynamics on a large scale L/ε.

Shallow Water equations:

∂th+ div(hu) = 0,

∂t(hu) + div(hu⊗ u) +
1

ε2
h∇h =

1

ε2
h∇b.

Asymptotic development:

h(t, x, ε) =
∑
i

εihi(t, x, χ),

u(t, x, ε) =
∑
i

εiui(t, x, χ).
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Topography with long scale variations: b = b(x, χ)

b = b(x, χ), Fr = ε, Sr = 1

We get:

h0 + b = c = c(t/, x/, χ/)

divx(h0u0) = 0

h1 = h1(t, χ)∂t(h
0u0) + divx(h0u0 ⊗ u0) + h0∇xh2 + h0∇χh1 = 0,

∂th
1 + divx(h0u1) + divx(h1u0) + divχ(h0u0) = 0.

−→ average in x: long-wave equations
−→ study of the small scale flow
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Topography with long scale variations: b = b(x, χ)

b = b(x, χ), Fr = ε, Sr = 1

Long wave: ∂t
(
h0u0

x
)

+ h0
x∇χh1 = h2∇xh0

x

∂th
1 + divχ

(
h0u0

x
)

= 0.

≈ standard linearized shallow water equations

h2∇xh0
x

(from h0∇xh2): net resistance
(small-scale flow through the rough topography).
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Topography with long scale variations: b = b(x, χ)

b = b(x, χ), Fr = ε, Sr = 1

Small scale:∂t˜̃h0u0 + divx(h0u0 ⊗ u0) + h0∇xh2 = −˜̃h0∇χh1,

divx
˜̃h0u0 = 0,

where ϕ = ϕx + ˜̃ϕ.

divergence free,

h2: Lagrangian multiplier,

small-scale flow driven by the long-wave unbalanced part of the
large-scale height gradient.

R. Klein, JCP, 1995 (low Mach number)
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Topography with long scale variations: b = b(x, χ)

b = b(x, χ), Fr = ε, Sr = 1

If b(x, χ) = b(χ):

=⇒ wave equation with spatially varying signal speed for h1:

∂2
t h

1 − divχ
(
(c− b(χ))∇χh1

)
= 0 , (1)

where c = b+ h0 ≡ const.
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Conclusion

Concluding remarks

1 Balanced flow, topography at the ‘normal’ scale: b = b(x)

2 Balanced flow, topography with quick variations: b = b(X,x)

Weakly nonlinear regime

Fully nonlinear regime

3 Topography with long scale variations: b = b(x, χ)
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Conclusion

Concluding remarks

1 Balanced flow, topography at the ‘normal’ scale: b = b(x)
Fr = ε, Sr = 1: Lake equations.

2 Balanced flow, topography with quick variations: b = b(X,x)

Weakly nonlinear regime
Fr = ε3/2, Sr = ε−1: The large-scale accumulation of net pressure

forces drives the large-scale balanced flow; the large-scale height
gradients produce small-scale forces driving the small-scale flow.
Fully nonlinear regime
Fr = ε, Sr = 1: Darcy-type equation with accumulation of small-scale

forces; the small-scale flow is driven by the large-scale mean height
gradients (vorticity).

3 Topography with long scale variations: b = b(x, χ)
Fr = ε, Sr = 1: as for the weakly nonlinear case, but the large-scale

flow involves non-balanced terms.

Carine Lucas (MAPMO - Orléans) Asymptotic limits of the Shallow Water equations 6 nov. 2015 - 29 / 29


	Balanced flow, topography at the `normal' scale: b=b(x)
	Balanced flow, topography with quick variations: b=b(X,x)
	Weakly nonlinear regime
	Fully nonlinear regime

	Topography with long scale variations: b=b(x, )

