Asymptotic limits of the Shallow Water equations

Carine Lucas

MAPMO - univ. Orléans, France

Work in collaboration with:
Didier Bresch (LAMA, univ. Savoie Mont Blanc, France)
Rupert Klein (Free University of Berlin, Germany).
Shallow Water equations:

\[
\begin{align*}
\partial_t h + \text{div}(hu) &= 0, \\
\partial_t (hu) + \text{div}(hu \otimes u) + gh\nabla h &= -gh\nabla b.
\end{align*}
\]

- \(u(t, x) \): flow velocity
- \(h(t, x) \): water height
- \(b(x) \): topography
- \(x \in \Omega \subset \mathbb{R}^2 \)
Shallow Water equations:

\[\partial_t h + \text{div}(hu) = 0, \]

\[\partial_t (hu) + \text{div}(hu \otimes u) + gh \nabla h = -gh \nabla b. \]
Shallow Water equations

Dimensionless Shallow Water equations:

\[
\frac{L}{t_{\text{ref}} u_{\text{ref}}} \partial_t h + \text{div}(hu) = 0,
\]
\[
\frac{L}{t_{\text{ref}} u_{\text{ref}}} \partial_t (hu) + \text{div}(hu \otimes u) + \frac{gh_{\text{ref}}}{u_{\text{ref}}^2} h \nabla h = -\frac{gh_{\text{ref}}}{u_{\text{ref}}^2} b_{\text{ref}} h \nabla b.
\]

$h(t, x)$: water height

$b(x)$: topography

$u(t, x)$: flow velocity

b_{ref}: reference topography

h_{ref}: reference water height

L: characteristic length

$x \in \Omega \subset \mathbb{R}^2$
Shallow Water equations

Dimensionless Shallow Water equations:

$$Sr \partial_t h + \text{div}(hu) = 0,$$

$$Sr \partial_t (hu) + \text{div}(hu \otimes u) + \frac{1}{Fr^2} h \nabla h = - \frac{1}{Fr^2} \beta h \nabla b.$$

with

$$Sr (= St) = \frac{L}{t_{ref} u_{ref}}$$ the Strouhal number (vortex),

$$Fr = \frac{u_{ref}}{\sqrt{gh_{ref}}}$$ the Froude number (flow vs gravity waves velocities)

and $$\beta = \frac{b_{ref}}{h_{ref}}.$$
Dimensionless Shallow Water equations:

\[S_r \partial_t h + \text{div}(hu) = 0, \]

\[S_r \partial_t (hu) + \text{div}(hu \otimes u) + \frac{1}{Fr^2} h \nabla h = -\frac{1}{Fr^2} \beta h \nabla b. \]

with

\[S_r (= St) = \frac{L}{t_{ref} u_{ref}} \] the Strouhal number,

\[Fr = \frac{u_{ref}}{\sqrt{gh_{ref}}} = \varepsilon^\alpha (\varepsilon \ll 1) \] the Froude number

and \[\beta = \frac{b_{ref}}{h_{ref}} = 1. \]
Low Froude number flows:

velocities of the flow $<$ speed of the gravity waves

\Rightarrow multiple length / time scales
(depending on initial and boundary conditions).
Low Froude number flows:

velocities of the flow $< \text{speed of the gravity waves}$

$\implies \text{multiple length / time scales}$

(depending on initial and boundary conditions).

During t_{ref}:

$$t_{\text{ref}} u_{\text{ref}} = \frac{L}{S\epsilon}$$

$$t_{\text{ref}} \sqrt{g h_{\text{ref}}} = \left(\frac{L}{S \epsilon} \right) / \epsilon^{\alpha}$$

distance of an advected particle $<$ distance of gravity waves.
Multiple scales in Shallow Water equations

Low Froude number flows:

velocities of the flow $< \text{speed of the gravity waves}$

\implies multiple length / time scales
(depending on initial and boundary conditions).

During t_{ref}:

\[
t_{\text{ref}} u_{\text{ref}} = \frac{L}{Sr} \quad \text{distance of an advected particle} < \text{distance of gravity waves.}
\]

\[
t_{\text{ref}} \sqrt{gh_{\text{ref}}} = \frac{(L/Sr)}{\varepsilon^\alpha} \quad \text{time scales for advected particle} > \text{time scales for gravity waves.}
\]

In a $O(L)$ domain:

\[
\frac{L}{u_{\text{ref}}} = Sr t_{\text{ref}} \quad \text{time scales for advected particle} > \text{time scales for gravity waves.}
\]
Multiscale topography

\[(\varepsilon \ll 1) \quad x \quad x/\varepsilon : \text{quick variations}\]

\[\varepsilon x : \text{slow variations}\]
Multiscale topography

\((\varepsilon \ll 1) \)

\(x \)

\(x/\varepsilon : \text{quick variations} \)

\(\varepsilon x : \text{slow variations} \)

\[X = \frac{x}{\varepsilon} \quad \chi = \varepsilon x. \]
1. Balanced flow, topography at the ‘normal’ scale: $b = b(x)$

2. Balanced flow, topography with quick variations: $b = b(X, x)$
 - Weakly nonlinear regime
 - Fully nonlinear regime

3. Topography with long scale variations: $b = b(x, \chi)$

Formal derivations

D. Bresch, R. Klein, C. L., 2011
Balanced flow, topography at the ‘normal’ scale: $b = b(x)$

2. Balanced flow, topography with quick variations: $b = b(X, x)$
 - Weakly nonlinear regime
 - Fully nonlinear regime

3. Topography with long scale variations: $b = b(x, \chi)$
Balanced flow, topography at the ‘normal’ scale: \(b = b(x) \)

\[\begin{align*}
 b &= b(x), \quad \text{Fr} = \varepsilon, \quad \text{Sr} = 1
\end{align*} \]

Flow on advective time scales.

Shallow Water equations:

\[\begin{align*}
 \partial_t h + \text{div}(hu) &= 0, \\
 \partial_t (hu) + \text{div}(hu \otimes u) + \frac{1}{\varepsilon^2} h \nabla h &= \frac{1}{\varepsilon^2} h \nabla b.
\end{align*} \]
Balanced flow, topography at the ‘normal’ scale: \(b = b(x) \)

\[
b = b(x), \quad \text{Fr} = \varepsilon, \quad \text{Sr} = 1
\]

Flow on advective time scales.

Shallow Water equations:

\[
\partial_t h + \text{div}(hu) = 0,
\]

\[
\partial_t (hu) + \text{div}(hu \otimes u) + \frac{1}{\varepsilon^2} h \nabla h = \frac{1}{\varepsilon^2} h \nabla b.
\]

Asymptotic development:

\[
h(t, x, \varepsilon) = \sum_i \varepsilon^i h^i(t, x),
\]

\[
u(t, x, \varepsilon) = \sum_i \varepsilon^i u^i(t, x).
\]
Balanced flow, topography at the 'normal' scale: $b = b(x)$

\[b = b(x), \; \text{Fr} = \varepsilon, \; \text{Sr} = 1 \]

\[O(\varepsilon^{-2}) \]

\[h^0 \nabla (h^0 + b) = 0, \]

\[O(\varepsilon^{-1}) \]

\[h^1 \nabla (h^0 + b) + h^0 \nabla h^1 = 0, \]

\[O(\varepsilon^0) \]

\[\partial_t h^0 + \text{div}(h^0 u^0) = 0, \]

\[\partial_t (h^0 u^0) + \text{div}(h^0 u^0 \otimes u^0) + h^2 \nabla (h^0 + b) + h^1 \nabla h^1 + h^0 \nabla h^2 = 0. \]
Balanced flow, topography at the ‘normal’ scale: \(b = b(x) \)

\[
b = b(x), \quad Fr = \varepsilon, \quad Sr = 1
\]

\(O(\varepsilon^{-2}) \)

\[
h^0 \nabla (h^0 + b) = 0, \quad h^0 + b \equiv c^0(t)
\]

\(O(\varepsilon^{-1}) \)

\[
h^1 \nabla (h^0 + b) + h^0 \nabla h^1 = 0, \quad h^1 \equiv c^1(t)
\]

\(O(\varepsilon^0) \)

\[
\partial_t h^0 + \text{div}(h^0 u^0) = 0,
\]

\[
\partial_t (h^0 u^0) + \text{div}(h^0 u^0 \otimes u^0) + h^2 \nabla (h^0 + b) + h^1 \nabla h^1 + h^0 \nabla h^2 = 0.
\]

\[
\frac{\partial b}{\partial t} = 0: \quad \text{div}(h^0 u^0) = - \frac{d}{dt} c^0(t), \quad \frac{dc^0}{dt} = - \frac{1}{|\Omega|} \int_{\Omega} h^0 u^0 \cdot n \, d\sigma
\]

\[
\partial_t (h^0 u^0) + \text{div}(h^0 u^0 \otimes u^0) + h^0 \nabla h^2 = 0.
\]
Balanced flow, topography at the 'normal' scale: $b = b(x)$

$$b = b(x), \ Fr = \varepsilon, \ Sr = 1$$

Shallow Water limit when $b = b(x), \ Fr = \varepsilon, \ Sr = 1$:

Lake equations

\[
\begin{align*}
\partial_t (h^0 u^0) + \text{div}(h^0 u^0 \otimes u^0) + h^0 \nabla h^2 &= 0, \\
\frac{dc^0}{dt} = \frac{dh^0}{dt} &= -\frac{1}{|\Omega|} \oint_{\Omega} h^0 u^0 \cdot n \, d\sigma
\end{align*}
\]

+ initial / boundary conditions on h^0, c^0.

see D. Bresch, G. Métivier, AMRX, 2010
for a rigorous justification of the limit.
Balanced flow, topography at the ‘normal’ scale: \(b = b(x) \)

2. Balanced flow, topography with quick variations: \(b = b(X, x) \)
 - Weakly nonlinear regime
 - Fully nonlinear regime

3. Topography with long scale variations: \(b = b(x, \chi) \)
Balanced flow, topography with quick variations: $b = b(X, x)$

$$b = b(X, x)$$

$X \in \mathbb{T}^2$
Balanced flow, topography with quick variations: \(b = b(X, x) \)

\[b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1} \]

Characteristic lengths too short to support gravity waves. Weakly nonlinear regime.

Shallow Water equations:

\[
\begin{align*}
 \partial_t h + \varepsilon \text{div}(hu) &= 0, \\
 \partial_t (hu) + \varepsilon \text{div}(hu \otimes u) + \frac{1}{\varepsilon^2} h \nabla h &= \frac{1}{\varepsilon^2} h \nabla b.
\end{align*}
\]
Balanced flow, topography with quick variations: \(b = b(X, x) \)

Weakly nonlinear regime

\(b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1} \)

Characteristic lengths too short to support gravity waves.
Weakly nonlinear regime.

Shallow Water equations:

\[
\begin{align*}
\partial_t h + \varepsilon \text{div}(hu) &= 0, \\
\partial_t (hu) + \varepsilon \text{div}(hu \otimes u) + \frac{1}{\varepsilon^2} h \nabla h &= \frac{1}{\varepsilon^2} h \nabla b.
\end{align*}
\]

Asymptotic development:

\[
\begin{align*}
h(t, x, \varepsilon) &= \sum_i \varepsilon^i h^i(t, X, x), \\
u(t, x, \varepsilon) &= \sum_i \varepsilon^i u^i(t, X, x).
\end{align*}
\]
Balanced flow, topography with quick variations: $b = b(X, x)$

Weakly nonlinear regime

$$b = b(X, x), \quad Fr = \varepsilon^{3/2}, \quad Sr = \varepsilon^{-1}$$

$O(\varepsilon^{-3})$

$$h^0 \nabla_X (h^0 + b) = 0,$$

$O(\varepsilon^{-2})$

$$h^0 \nabla_x (h^0 + b) + h^1 \nabla_X (h^0 + b) + h^0 \nabla_X h^1 = 0,$$
Balanced flow, topography with quick variations: $b = b(X, x)$

Weakly nonlinear regime

\[b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1} \]

\[O(\varepsilon^{-3}) \]

\[h^0 \nabla_X (h^0 + b) = 0, \quad h^0(t, X, x) + b(X, x) \equiv c(t, x) \]

\[O(\varepsilon^{-2}) \]

\[h^0 \nabla_x (h^0 + b) + h^1 \nabla_X (h^0 + b) + h^0 \nabla_X h^1 = 0, \]

\[\bar{h}^0 \nabla_x (\bar{h}^0 + b)^X + \bar{h}^0 \nabla_X h^1 X = \bar{h}^0 \nabla_x (\bar{h}^0 + b)^X = 0 : c(t, x) = c(t). \]
Balanced flow, topography with quick variations: \(b = b(X, x) \)

Weakly nonlinear regime

\[b = b(X, x), \quad Fr = \varepsilon^{3/2}, \quad Sr = \varepsilon^{-1} \]

\[O(\varepsilon^{-3}) \]

\[h^0 \nabla_X (h^0 + b) = 0, \quad h^0(t, X, x) + b(X, x) \equiv c(t, x) \]

\[O(\varepsilon^{-2}) \]

\[h^0 \nabla_x (h^0 + b) + h^1 \nabla_X (h^0 + b) + h^0 \nabla_X h^1 = 0, \]

\[\overline{h^0} \nabla_x (h^0 + b)^X + h^0 \nabla_X h^1^X = \overline{h^0} \nabla_x (h^0 + b)^X = 0 : c(t, x) = c(t). \]

\[\cdots \]

\[O(\varepsilon^0) \]

\[\partial_t h^0 + \text{div}_X (h^0 u^0) = 0, \]
Balanced flow, topography with quick variations: \(b = b(X, x) \)

Weakly nonlinear regime

\[b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1} \]

\(O(\varepsilon^{-3}) \)

\[h^0 \nabla_X (h^0 + b) = 0 , \quad h^0(t, X, x) + b(X, x) \equiv c(t, x) \]

\(O(\varepsilon^{-2}) \)

\[h^0 \nabla_x (h^0 + b) + h^1 \nabla_X (h^0 + b) + h^0 \nabla_X h^1 = 0 , \]

\[\frac{h^0 \nabla_x (h^0 + b)^X}{X} + \frac{h^0 \nabla_X h^1^X}{X} = \frac{h^0 \nabla_x (h^0 + b)^X}{X} = 0 : c(t, x) = c(t). \]

\[\mathrm{...} \]

\(O(\varepsilon^0) \)

\[\partial_t h^0 + \text{div}_X (h^0 u^0) = 0 , \quad \frac{\partial_t (h^0 + b)^X}{X} = 0 : c(t) = c , \]

\[h^0(X, x) = -b(X, x) + c. \]
Balanced flow, topography with quick variations: \(b = b(X, x) \)

\[b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1} \]

\(O(\varepsilon^{-3}) \)

\[h^0 \nabla_X (h^0 + b) = 0, \quad h^0(t, X, x) + b(X, x) \equiv c(t, x) \]

\(O(\varepsilon^{-2}) \)

\[
\begin{align*}
 h^0 \nabla_x (h^0 + b) + h^1 \nabla_X (h^0 + b) + h^0 \nabla_X h^1 &= 0, \\
 \overline{h^0 \nabla_x (h^0 + b)^X} + \overline{h^0 \nabla_X h^1}^X &= \overline{h^0 \nabla_x (h^0 + b)^X} = 0 : c(t, x) = c(t).
\end{align*}
\]

\[h^0 \nabla_X h^1 = 0 : \quad h^1(t, X, x) = h^1(t, x) \quad O(\varepsilon^{-1}) \quad \rightarrow \quad h^1(t, x) = h^1(t). \]

\[\ldots \]

\(O(\varepsilon^0) \)

\[\partial_t h^0 + \text{div}_X (h^0 u^0) = 0, \quad \overline{\partial_t (h^0 + b)^X} = 0 : c(t) = c, \]
Balanced flow, topography with quick variations: $b = b(X, x)$

We are in the weakly nonlinear regime:

$$b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1}$$

Asymptotic limits of the Shallow Water equations $O(\varepsilon^1)$

\[
\partial_t h^1 + \text{div}_x (h^0 u^0) + \text{div}_x (h^1 u^0) + \text{div}_x (h^0 u^1) = 0.
\]
Balanced flow, topography with quick variations: \(b = b(X, x) \)

\[
b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1}
\]

Weakly nonlinear regime

\[
b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1}
\]

Asymptotic limits of the Shallow Water equations

\[
O(\varepsilon^1)
\]

\[
\partial_t h^1 + \text{div}_x(h^0 u^0) + \text{div}_x(h^1 u^0) + \text{div}_x(h^0 u^1) = 0.
\]

\[
\int_{\Omega} O(\varepsilon^1)^X \, dx : \quad \frac{dh^1}{dt} = -\frac{1}{|\Omega|} \int_{\Omega} h^0 u^0 X \cdot n \, d\sigma
\]
Balanced flow, topography with quick variations: \(b = b(X, x) \)

Weakly nonlinear regime

\[b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1} \]

\[O(\varepsilon^1) \]

\[\partial_t h^1 + \text{div}_x (h^0 u^0) + \text{div}_X (h^1 u^0) + \text{div}_X (h^0 u^1) = 0. \]

\[\int_\Omega O(\varepsilon^1)^X dx : \quad \frac{dh^1}{dt} = -\frac{1}{|\Omega|} \int_\Omega h^0 u^0 X \cdot n \, d\sigma \]

We assume rigid vertical walls on \(\partial \Omega \): \(h^1 = \text{cst} = 0 \).
Balanced flow, topography with quick variations: $b = b(X, x)$

Weakly nonlinear regime

$$b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1}$$

$$O(\varepsilon^1)$$

$$\partial_t h^1 + \text{div}_x (h^0 u^0) + \text{div}_X (h^1 u^0) + \text{div}_X (h^0 u^1) = 0.$$

$$\int \Omega O(\varepsilon^1)^X dx : \quad \frac{dh^1}{dt} = -\frac{1}{|\Omega|} \oint_{\Omega} h^0 u^0 X \cdot n \, d\sigma$$

We assume rigid vertical walls on $\partial \Omega$: $$h^1 = \text{cst} = 0.$$

$$\text{div}_x (h^0 u^0)^X = 0.$$
Balanced flow, topography with quick variations: $b = b(X, x)$

$\mathbf{Weakly\ linear\ regime}$

$$b = b(X, x), \ Fr = \varepsilon^{3/2}, \ Sr = \varepsilon^{-1}$$

Using each equation we obtain:

\[
\begin{align*}
\partial_t (h^0 u^0) + \text{div}_X (h^0 u^0 \otimes u^0) + h^0 \nabla_x h^2 + h^0 \nabla_X h^3 &= 0 \\
\text{div}_X (h^0 u^0) &= 0 \\
\text{div}_X h^0 u^0 &= 0 \\
\nabla_X h^2 &= 0
\end{align*}
\]

with $h^0(X, x) = c - b(X, x)$.
Balanced flow, topography with quick variations: \(b = b(X, x) \)

Weakly nonlinear regime

\[b = b(X, x), \quad Fr = \varepsilon^{3/2}, \quad Sr = \varepsilon^{-1} \]

Using each equation we obtain:

\[
\begin{align*}
\partial_t (h^0 u^0) + \text{div}_X (h^0 u^0 \otimes u^0) + h^0 \nabla_x h^2 + h^0 \nabla_X h^3 &= 0 \\
\text{div}_X (h^0 u^0) &= 0 \\
\text{div}_x h^0 u^0 X &= 0 \\
\nabla_X h^2 &= 0
\end{align*}
\]

\(\checkmark \) energy principle

with \(h^0(X, x) = c - b(X, x) \).
Balanced flow, topography with quick variations: $b = b(X, x)$

$$b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1}$$

Using each equation we obtain:

\[
\begin{align*}
\partial_t (h^0 u^0) + \text{div}_X (h^0 u^0 \otimes u^0) + h^0 \nabla_x h^2 + h^0 \nabla_X h^3 &= 0 \\
\text{div}_X (h^0 u^0) &= 0 \\
\text{div}_X h^0 u^0_X &= 0 \\
\nabla_X h^2 &= 0
\end{align*}
\]

✓ energy principle

with $h^0(X, x) = c - b(X, x)$.

→ large scale ? Average in X.
→ small scale ? $\tilde{h} = h - \overline{h}^X$.

Carine Lucas (MAPMO - Orléans) Asymptotic limits of the Shallow Water equations 6 nov. 2015 - 15 / 29
Balanced flow, topography with quick variations: $b = b(X, x)$

Weakly nonlinear regime

$$b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1}$$

At large scale:

\[
\begin{cases}
\partial_t (h^0 u^0)^X + h^0 X \nabla_x h^2 = -h^3 \nabla_X b^X \\
\text{div}_x h^0 u^0 X = 0
\end{cases}
\]

- response of the leading-order large-scale flow to accumulated small-scale pressure forces on the topography,
- the second order h^2 acts like a Lagrangian multiplier.
Balanced flow, topography with quick variations: $b = b(X, x)$

Weakly nonlinear regime

$$b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1}$$

At small scale:

\[
\begin{align*}
\partial_t (\tilde{h}^0 u^0) + \text{div}_X (h^0 u^0 \otimes u^0) + h^0 \nabla_X h^3 &= \tilde{b} \nabla_x h^2 \\
\text{div}_X (\tilde{h}^0 u^0) &= 0
\end{align*}
\]

- interactions between small and large scales,
- $\nabla_x h^2$ acts on the fluctuations of the topography to drive the small scale flow.
Balanced flow, topography with quick variations: $b = b(X, x)$

Weakly nonlinear regime

\[b = b(X, x), \quad \text{Fr} = \varepsilon^{3/2}, \quad \text{Sr} = \varepsilon^{-1} \]

At small scale:

\[
\begin{align*}
\partial_t \overline{h^0 u^0} + \text{div}_X (h^0 u^0 \otimes u^0) + h^0 \nabla_X h^3 &= \tilde{b} \nabla_x h^2 \\
\text{div}_X \overline{h^0 u^0} &= 0
\end{align*}
\]

- interactions between small and large scales,
- $\nabla_x h^2$ acts on the fluctuations of the topography to drive the small scale flow.

Weakly nonlinear limit version of the lake equations with oscillatory topography.

D. Bresch, D. Gérard-Varet, AML, 2007
Balanced flow, topography with quick variations: $b = b(X, x)$

$$b = b(X, x), \; Fr = \varepsilon, \; Sr = 1$$

Characteristic lengths too short to support gravity waves.
Fully nonlinear regime.

Shallow Water equations:

$$\partial_t h + \text{div}(hu) = 0,$$

$$\partial_t (hu) + \text{div}(hu \otimes u) + \frac{1}{\varepsilon^2} h \nabla h = \frac{1}{\varepsilon^2} h \nabla b.$$
Balanced flow, topography with quick variations: $b = b(X, x)$

$$b = b(X, x), \ Fr = \varepsilon, \ Sr = 1$$

Characteristic lengths too short to support gravity waves. Fully nonlinear regime.

Shallow Water equations:

$$\partial_t h + \text{div}(hu) = 0,$$

$$\partial_t (hu) + \text{div}(hu \otimes u) + \frac{1}{\varepsilon^2} h \nabla h = \frac{1}{\varepsilon^2} h \nabla b.$$

Asymptotic development:

$$h(t, x, \varepsilon) = \sum_i \varepsilon^i h^i(t, X, x),$$

$$u(t, x, \varepsilon) = \sum_i \varepsilon^i u^i(t, X, x).$$
Balanced flow, topography with quick variations: $b = b(X, x)$

\[b = b(X, x), \ Fr = \varepsilon, \ Sr = 1 \]

\[O(\varepsilon^{-3}) \]

\[h^0 \nabla_X (h^0 + b) = 0, \]
\[b = b(X, x), \ Fr = \varepsilon, \ Sr = 1 \]

\[O(\varepsilon^{-3}) \]
\[h^0 \nabla_X (h^0 + b) = 0, \quad h^0(t, X, x) + b(X, x) \equiv c(t, x) \]
Balanced flow, topography with quick variations: $b = b(X, x)$

Fully nonlinear regime

$$b = b(X, x), \ Fr = \varepsilon, \ Sr = 1$$

\[O(\varepsilon^{-3}) \]
\[h^0 \nabla_X (h^0 + b) = 0, \quad h^0(t, X, x) + b(X, x) \equiv c(t, x) \]

\[O(\varepsilon^{-2}) \]
\[h^0 \nabla_x (h^0 + b) + h^1 \nabla_X (h^0 + b) + h^0 \nabla_X h^1 = 0, \]
Balanced flow, topography with quick variations: \(b = b(X, x) \)

\[\begin{align*}
\text{Fully nonlinear regime} \\
&= b(X, x), \quad \text{Fr} = \varepsilon, \quad \text{Sr} = 1 \\
\end{align*} \]

\[O(\varepsilon^{-3}) \]

\[h^0 \nabla_X (h^0 + b) = 0, \quad h^0(t, X, x) + b(X, x) \equiv c(t, x) \]

\[O(\varepsilon^{-2}) \]

\[h^0 \nabla_x (h^0 + b) + h^1 \nabla_X (h^0 + b) + h^0 \nabla_X h^1 = 0, \]

\[h^0(t, X, x) + b(X, x) \equiv c(t) \]
Balanced flow, topography with quick variations: $b = b(X, x)$

Fully nonlinear regime

$$b = b(X, x), \ Fr = \varepsilon, \ Sr = 1$$

\[O(\varepsilon^{-3}) \]

$$h^0 \nabla_X (h^0 + b) = 0, \quad h^0(t, X, x) + b(X, x) \equiv c(t, x)$$

\[O(\varepsilon^{-2}) \]

$$h^0 \nabla_x (h^0 + b) + h^1 \nabla_X (h^0 + b) + h^0 \nabla_X h^1 = 0, \quad h^0(t, X, x) + b(X, x) \equiv c(t)$$

\[O(\varepsilon^{-1}) \]

$$\text{div}_X (h^0 u^0) = 0, \quad \text{div}_X (h^0 u^0 \otimes u^0) + h^0 \nabla_x h^1 + h^0 \nabla_X h^2 = 0.$$
Balanced flow, topography with quick variations: \(b = b(X, x) \)

\[
b = b(X, x), \quad \text{Fr} = \varepsilon, \quad \text{Sr} = 1
\]

\[
u^0 \cdot \nabla_X u^0 + \nabla_X h^2 = -\nabla_X h^1.
\]

Small scale:
Balanced flow, topography with quick variations: $b = b(X, x)$

$\mathbf{Fr} = \varepsilon, \mathbf{Sr} = 1$

$$u^0 \cdot \nabla_X u^0 + \nabla_X h^2 = -\nabla_x h^1.$$

Small scale:

Taking the curl ($\zeta = \text{curl} u = -\partial_{X_2} u_1 + \partial_{X_1} u_2$):

$$u^0 \cdot \nabla_X \zeta^0 + \zeta^0 \text{div}_X u^0 = \text{div}_X (\zeta^0 u^0) = 0,$$

as $\text{div}_X (h^0 u^0) = 0$, it reads $h^0 u^0 \cdot \nabla_X (\zeta^0 / h^0) = 0$.

Carine Lucas (MAPMO - Orléans)

Asymptotic limits of the Shallow Water equations 6 nov. 2015 - 20 / 29
Balanced flow, topography with quick variations: \(b = b(X, x) \)

\[b = b(X, x), \; \text{Fr} = \varepsilon, \; \text{Sr} = 1 \]

\[u^0 \cdot \nabla_X u^0 + \nabla_X h^2 = -\nabla_x h^1. \]

Small scale:

Taking the curl (\(\zeta = \text{curl} u = -\partial_{X_2} u_1 + \partial_{X_1} u_2 \)):

\[u^0 \cdot \nabla_X \zeta^0 + \zeta^0 \text{div}_X u^0 = \text{div}_X (\zeta^0 u^0) = 0, \]

as \(\text{div}_X (h^0 u^0) = 0 \), it reads \(h^0 u^0 \cdot \nabla_X (\zeta^0 / h^0) = 0. \)

\[\zeta^0 = H^0 Q(\psi^*, 0, x, t), \]

if \(Q \) is a potential vorticity distribution function,

if \(\psi^*, 0 \) is a stream function for \(h^0 u^0 \),

\[\psi^*, 0 = \psi^0 + X^\perp \cdot \underbrace{h^0 u^0}_{X} \quad \text{with} \quad h^0 u^0 = \nabla^X \psi^*, 0, \]

\[h^0 \nabla^2_X \psi^0 - \nabla_X h^0 \cdot \nabla_X \psi^0 = (h^0)^3 Q(\psi^*, 0, x, t) - \nabla_X h^0 \cdot \overline{h^0 u^0}_{X^\perp}. \]

Cell problem for a stationary vortical flow over variable topography.
{$b = b(X, x), \ Fr = \varepsilon, \ Sr = 1$}

{$u^0 \cdot \nabla_X u^0 + \nabla_X h^2 = -\nabla_x h^1$}.

Small scale:

Taking the curl ($\zeta = \text{curl} u = -\partial_{X_2} u_1 + \partial_{X_1} u_2$):

{$u^0 \cdot \nabla_X \zeta^0 + \zeta^0 \text{div}_X u^0 = \text{div}_X (\zeta^0 u^0) = 0$},

as $\text{div}_X (h^0 u^0) = 0$, it reads $h^0 u^0 \cdot \nabla_X (\zeta^0 / h^0) = 0$.

{$\zeta^0 = H^0 Q(\psi^*, 0, x, t)$},

if Q is a potential vorticity distribution function,

if $\psi^*, 0$ is a stream function for $h^0 u^0$,

{$\psi^*, 0 = \psi^0 + X \perp \cdot h^0 u^0 X$ with $h^0 u^0 = \nabla_X^\perp \psi^*, 0$},

{$h^0 \nabla_X^2 \psi^0 - \nabla_X h^0 \cdot \nabla_X \psi^0 = (h^0)^3 Q(\psi^*, 0, x, t) - \nabla_X h^0 \cdot \frac{\nabla_X h^0 X}{h^0 u^0 X \perp}$}.

Cell problem for a stationary vortical flow over variable topography.
Balanced flow, topography with quick variations: \(b = b(X, x) \)

\[b = b(X, x), \ Fr = \varepsilon, \ Sr = 1 \]

\[u^0 \cdot \nabla_X u^0 + \nabla_X h^2 = -\nabla_x h^1. \]

Large scale:
Balanced flow, topography with quick variations: \(b = b(X, x) \)

\[
b = b(X, x), \quad \text{Fr} = \varepsilon, \quad \text{Sr} = 1
\]

\[
\begin{align*}
 u^0 \cdot \nabla_X u^0 + \nabla_X h^2 &= -\nabla_x h^1. \\

 \text{Large scale (average in } X): \\
 U \cdot T + \nabla_x h^1 &= -q,
\end{align*}
\]

with

\[
\begin{align*}
 U &= h^0 u^0 X, \\
 \tilde{u} &= u^0 - \frac{1}{h^0} \nabla^0 u^0 X = \frac{1}{h^0} \nabla^1_X \psi^0, \\
 T &= \frac{1}{h^0} \nabla_X \tilde{u}^X \\
 \text{and } q &= \tilde{u} \cdot \nabla_X \tilde{u}^X.
\end{align*}
\]
Balanced flow, topography with quick variations: \(b = b(X, x) \)

Fully nonlinear regime

\[
b = b(X, x), \ Fr = \varepsilon, \ Sr = 1
\]

\[
u^0 \cdot \nabla_X u^0 + \nabla_X h^2 = -\nabla_x h^1.
\]

Large scale (average in \(X \)):

\[
U \cdot T + \nabla_x h^1 = -q, \quad \text{Darcy type problem}
\]

with

\[
U = \overline{h^0 u^0_X}, \ \tilde{u} = u^0 - \frac{1}{h^0} \overline{h^0 u^0_X} = \frac{1}{h^0} \nabla_X \psi^0,
\]

\[
T = \frac{1}{h^0} \nabla_X \tilde{u}^X \quad \text{and} \quad q = \frac{\tilde{u}}{h^0} \cdot \nabla_X \tilde{u}^X \quad \text{(small scale viscous forces)}.
\]

\[
O(\varepsilon^0)^X:
\]

\[
div_x U = -div_x ((\nabla_x h^1 + q) \cdot T^{-1}) = -\frac{d\overline{h^0_X}}{dt}.
\]
Outline

1. Balanced flow, topography at the ‘normal’ scale: \(b = b(x) \)

2. Balanced flow, topography with quick variations: \(b = b(X, x) \)
 - Weakly nonlinear regime
 - Fully nonlinear regime

3. Topography with long scale variations: \(b = b(x, \chi) \)
Topography with long scale variations: $b = b(x, \chi)$

\[b = b(x, \chi), \quad Fr = \varepsilon, \quad Sr = 1 \]
Topography with long scale variations:
\[b = b(x, \chi) \]

Advective times for the normal scale \(L \),
with gravity wave dynamics on a large scale \(L/\epsilon \).

Shallow Water equations:

\[
\frac{\partial}{\partial t} h + \text{div}(hu) = 0,
\]

\[
\frac{\partial}{\partial t}(hu) + \text{div}(hu \otimes u) + \frac{1}{\epsilon^2} h \nabla h = \frac{1}{\epsilon^2} h \nabla b.
\]
Topography with long scale variations: \(b = b(x, \chi) \)

\[b = b(x, \chi), \quad \text{Fr} = \varepsilon, \quad \text{Sr} = 1 \]

Advective times for the normal scale \(L \),
with gravity wave dynamics on a large scale \(L/\epsilon \).

Shallow Water equations:

\[
\partial_t h + \text{div}(hu) = 0,
\]

\[
\partial_t (hu) + \text{div}(hu \otimes u) + \frac{1}{\varepsilon^2} h \nabla h = \frac{1}{\varepsilon^2} h \nabla b.
\]

Asymptotic development:

\[
h(t, x, \varepsilon) = \sum_i \varepsilon^i h^i(t, x, \chi),
\]

\[
u(t, x, \varepsilon) = \sum_i \varepsilon^i u^i(t, x, \chi).
\]
Topography with long scale variations: \(b = b(x, \chi) \)

\[b = b(x, \chi), \quad \text{Fr} = \varepsilon, \quad \text{Sr} = 1 \]

We get:

- \(h^0 + b = c = c(t, \xi, \chi) \)
- \(\text{div}_x(h^0 u^0) = 0 \)
- \(h^1 = h^1(t, \chi) \)
- \[
\begin{aligned}
\partial_t (h^0 u^0) + \text{div}_x(h^0 u^0 \otimes u^0) + h^0 \nabla_x h^2 + h^0 \nabla_\chi h^1 &= 0, \\
\partial_t h^1 + \text{div}_x(h^0 u^1) + \text{div}_x(h^1 u^0) + \text{div}_\chi(h^0 u^0) &= 0.
\end{aligned}
\]

→ average in \(x \): long-wave equations

→ study of the small scale flow
Topography with long scale variations: \(b = b(x, \chi) \)

\[
b = b(x, \chi), \quad \text{Fr} = \varepsilon, \quad \text{Sr} = 1
\]

We get:

- \(h^0 + b = c = c(t, \xi, \chi) \)
- \(\text{div}_x(h^0 u^0) = 0 \)
- \(h^1 = h^1(t, \chi) \)
- \[
\begin{align*}
\partial_t(h^0 u^0) + \text{div}_x(h^0 u^0 \otimes u^0) + h^0 \nabla_x h^2 + h^0 \nabla_\chi h^1 &= 0, \\
\partial_t h^1 + \text{div}_x(h^0 u^1) + \text{div}_x(h^1 u^0) + \text{div}_\chi(h^0 u^0) &= 0.
\end{align*}
\]

\[\rightarrow\] average in \(x \): long-wave equations
\[\rightarrow\] study of the small scale flow
Topography with long scale variations: $b = b(x, \chi)$

$$b = b(x, \chi), \ Fr = \varepsilon, \ Sr = 1$$

Long wave:

$$\begin{cases}
\partial_t \left(h^0 u^0_x \right) + h^0_x \nabla \chi h^1 = h^2 \nabla_x h^0_x \\
\partial_t h^1 + \text{div}_\chi \left(h^0 u^0_x \right) = 0.
\end{cases}$$
Topography with long scale variations: $b = b(x, \chi)$

\[b = b(x, \chi), \quad \text{Fr} = \varepsilon, \quad \text{Sr} = 1 \]

Long wave:

\[
\begin{align*}
\partial_t \left(\overline{h^0 u^0_x} \right) + \overline{h^0_x} \nabla \chi h^1 &= \overline{h^2 \nabla_x h^0 x} \\
\partial_t h^1 + \text{div} \chi \left(\overline{h^0 u^0_x} \right) &= 0.
\end{align*}
\]

\[\approx \text{standard linearized shallow water equations} \]

\[\overline{h^2 \nabla_x h^0 x} \] (from $h^0 \nabla_x h^2$): net resistance

(smaller-scale flow through the rough topography).
Topography with long scale variations: $b = b(x, \chi)$

$$b = b(x, \chi), \quad Fr = \varepsilon, \quad Sr = 1$$

Small scale:

$$\begin{cases}
\partial_t \tilde{h}^0 u^0 + \text{div}_x (h^0 u^0 \otimes u^0) + h^0 \nabla_x h^2 = -\tilde{h}^0 \nabla \chi h^1, \\
\text{div}_x h^0 u^0 = 0,
\end{cases}$$

where $\varphi = \bar{\varphi}^x + \tilde{\varphi}.$
Topography with long scale variations: \(b = b(x, \chi) \)

\[
b = b(x, \chi), \quad \text{Fr} = \varepsilon, \quad \text{Sr} = 1
\]

Small scale:

\[
\begin{align*}
\partial_t \tilde{h}_0 u^0 + \text{div}_x (h_0 u^0 \otimes u^0) + h_0 \nabla_x h^2 &= -\tilde{h}_0 \nabla_\chi h^1, \\
\text{div}_x h_0 u^0 &= 0,
\end{align*}
\]

where \(\varphi = \varphi^x + \tilde{\varphi} \).

- divergence free,
- \(h^2 \): Lagrangian multiplier,
- small-scale flow driven by the long-wave unbalanced part of the large-scale height gradient.

R. Klein, JCP, 1995 (low Mach number)
Topography with long scale variations: \(b = b(x, \chi) \)

\[
b = b(x, \chi), \quad \text{Fr} = \varepsilon, \quad \text{Sr} = 1
\]

If \(b(x, \chi) = b(\chi) \):

\[
\implies \text{wave equation with spatially varying signal speed for } h^1:
\]

\[
\partial_t^2 h^1 - \text{div}_\chi ((c - b(\chi)) \nabla_\chi h^1) = 0,
\]

where \(c = b + h^0 \equiv \text{const.} \).
Concluding remarks

1. Balanced flow, topography at the ‘normal’ scale: $b = b(x)$

2. Balanced flow, topography with quick variations: $b = b(X, x)$
 - Weakly nonlinear regime
 - Fully nonlinear regime

3. Topography with long scale variations: $b = b(x, \chi)$
Concluding remarks

1. Balanced flow, topography at the ‘normal’ scale: $b = b(x)$
 $Fr = \varepsilon, Sr = 1$: Lake equations.

2. Balanced flow, topography with quick variations: $b = b(X, x)$
 - Weakly nonlinear regime
 - Fully nonlinear regime

3. Topography with long scale variations: $b = b(x, \chi)$
Concluding remarks

1 Balanced flow, topography at the ‘normal’ scale: $b = b(x)$
 $Fr = \varepsilon$, $Sr = 1$: Lake equations.

2 Balanced flow, topography with quick variations: $b = b(X, x)$
 - Weakly nonlinear regime
 $Fr = \varepsilon^{3/2}$, $Sr = \varepsilon^{-1}$: The large-scale accumulation of net pressure forces drives the large-scale balanced flow; the large-scale height gradients produce small-scale forces driving the small-scale flow.
 - Fully nonlinear regime

3 Topography with long scale variations: $b = b(x, \chi)$
Balanced flow, topography at the ‘normal’ scale: \(b = b(x) \)
Fr = \(\varepsilon \), Sr = 1: Lake equations.

Balanced flow, topography with quick variations: \(b = b(X, x) \)
- Weakly nonlinear regime
 Fr = \(\varepsilon^{3/2} \), Sr = \(\varepsilon^{-1} \): The large-scale accumulation of net pressure forces drives the large-scale balanced flow; the large-scale height gradients produce small-scale forces driving the small-scale flow.
- Fully nonlinear regime
 Fr = \(\varepsilon \), Sr = 1: Darcy-type equation with accumulation of small-scale forces; the small-scale flow is driven by the large-scale mean height gradients (vorticity).

Topography with long scale variations: \(b = b(x, \chi) \)
Balanced flow, topography at the ‘normal’ scale: $b = b(x)$
Fr = ε, Sr = 1: Lake equations.

Balanced flow, topography with quick variations: $b = b(X, x)$

- Weakly nonlinear regime
 Fr = $\varepsilon^{3/2}$, Sr = ε^{-1}: The large-scale accumulation of net pressure forces drives the large-scale balanced flow; the large-scale height gradients produce small-scale forces driving the small-scale flow.

- Fully nonlinear regime
 Fr = ε, Sr = 1: Darcy-type equation with accumulation of small-scale forces; the small-scale flow is driven by the large-scale mean height gradients (vorticity).

Topography with long scale variations: $b = b(x, \chi)$
Fr = ε, Sr = 1: as for the weakly nonlinear case, but the large-scale flow involves non-balanced terms.