Introduction

Godunov scheme and its discrete spacial kernel Accurate schemes at low Mach number

land.

A low Mach correction for the Godunov scheme applied to the linear wave equation with porosity

Jonathan Jung

Université de Pau et des Pays de l'Adour & INRIA Bordeaux Sud Ouest, Cagire Team

Collaborators :

Stéphane Dellacherie (CEA, Saclay & LRC-Manon) Pascal Omnes (CEA, Saclay & Université Paris 13)

Low velocity flows, 5 November 2015

Introduction

Godunov scheme and its discrete spacial kernel Accurate schemes at low Mach number

Study case :

• Nuclear core reactor.

Properties of the flow :

Linear wave equation with porosity

• Low Mach flow :

$$\begin{cases} |\mathbf{u}| \approx 5 \ m.s^{-1}, \\ c \approx 500 \ m.s^{-1}, \\ \Rightarrow M := \frac{|\mathbf{u}|}{c} \approx 10^{-2} \ll 1. \end{cases}$$

- Flow with variable cross-section (porosity).
- Compressible flow : shock wave in some accidental cases.

Aim :

• Develop a "compressible" numerical scheme that is accurate at low Mach number.

Linear wave equation with porosity The low Mach numerical problem

Barotropic Euler equations with porosity

Barotropic Euler equations with porosity

$$\begin{cases} \partial_t(\alpha\rho) + \nabla \cdot (\alpha\rho \mathbf{u}) = \mathbf{0}, \\ \partial_t(\alpha\rho \mathbf{u}) + \nabla \cdot (\alpha\rho \mathbf{u} \otimes \mathbf{u}) + \alpha \nabla p = \mathbf{0}, \end{cases}$$

where $\alpha \in [\alpha_{\min}, 1]$ is the porosity with $\alpha_{\min} > 0$.

- Hyperbolic system (under the condition p'(ρ) > 0) with source term.
- Dimensionless : we introduce $\tilde{x} = \frac{x}{L}$, $\tilde{y} = \frac{y}{L}$, $\tilde{t} = \frac{t}{T}$, $\tilde{\alpha} = \frac{\alpha}{\alpha_0}$, $\tilde{\rho} = \frac{\rho}{\rho_0}$, $\tilde{u}_x = \frac{u_x}{u_0}$, $\tilde{u}_y = \frac{u_y}{u_0}$, $\tilde{p} = \frac{p}{\rho_0}$ avec $u_0 = \frac{L}{T}$, we obtain

$$\begin{cases} \partial_{\tilde{t}}(\alpha\rho) + \nabla \cdot (\alpha\rho\mathbf{u}) = 0, \\ \partial_{\tilde{t}}(\tilde{\alpha}\tilde{\rho}\tilde{\mathbf{u}}) + \tilde{\nabla} \cdot (\tilde{\alpha}\tilde{\rho}\tilde{\mathbf{u}}\otimes\tilde{\mathbf{u}}) + \frac{\tilde{\alpha}}{M^2}\nabla\tilde{p} = 0, \end{cases} \quad \text{with } M = \frac{u_0}{c_0}. \end{cases}$$

Introduction

Godunov scheme and its discrete spacial kernel Accurate schemes at low Mach number Linear wave equation with porosity The low Mach numerical problem

Linear wave equation with porosity

• Change of variable
$$\tilde{\rho} := \tilde{\rho}_{\star} \left(1 + \frac{M}{a_{\star}} \tilde{r} \right)$$
, with $\begin{cases} a_{\star}^{2} = \tilde{\rho}'(\tilde{\rho}_{\star}) \\ \frac{M}{a_{\star}} \tilde{r} \ll 1. \end{cases}$
 $\begin{cases} \partial_{t}(\tilde{\alpha}\tilde{r}) + \tilde{\nabla} \cdot (\tilde{\alpha}\tilde{r}\tilde{\mathbf{u}}) + \frac{a_{\star}}{M} \tilde{\nabla} \cdot (\tilde{\alpha}\tilde{\mathbf{u}}) = 0, \\ \partial_{\tilde{t}}(\tilde{\alpha}\tilde{\mathbf{u}}) + (\tilde{\mathbf{u}} \cdot \tilde{\nabla})(\tilde{\alpha}\tilde{\mathbf{u}}) + \frac{\tilde{\alpha}}{M} \frac{\tilde{\rho}'(\tilde{\rho}_{\star}(1 + \frac{M}{a_{\star}}\tilde{r}))}{a_{\star}(1 + \frac{M}{a_{\star}}\tilde{r})} \nabla \tilde{r} = 0. \end{cases}$

• Linearization around $(\tilde{r} = 0, \tilde{u} = 0)$: linear wave equation with porosity

$$\begin{cases} \partial_t(\alpha r) + \frac{a_\star}{M} \nabla \cdot (\alpha \mathbf{u}) = 0, \\ \partial_t(\alpha \mathbf{u}) + \frac{a_\star}{M} \alpha \nabla r = 0. \end{cases}$$

• Kernel of the spatial operator : **incompressible space** $\mathcal{E}_{\alpha} := \left\{ q = (r, \mathbf{u})^{T} \in L^{2}_{\alpha} \left(\mathbb{T} \right)^{3} \middle| \nabla r = 0 \text{ and } \nabla \cdot \left(\alpha \mathbf{u} \right) = 0 \right\}.$

Aim :

Study the behavior of the numerical scheme with the incompressibles states q ∈ C_α.

Linear wave equation with porosity The low Mach numerical problem

Numerical problem : an initial incompressible condition $q_0 \in \mathcal{E}_{\alpha}$.

Aims :

- Found the origin of the problem on a cartesian mesh.
- Understand the triangular case.

Jonathan Jung

Introduction Finite volume scheme Godunov scheme and its discrete spacial kernel Accurate schemes at low Mach number Discrete study on a cartesian and triandular meshes

Finite volume scheme

Godunov scheme on a triangular or cartesian mesh $(\Omega_i)_{1 \le i \le N}$

$$\begin{cases} \frac{d}{dt}(\alpha r)_{i} + \frac{a_{\star}}{2M} \frac{1}{|\Omega_{i}|} \sum_{\Gamma_{ij} \subset \partial \Omega_{i}} |\Gamma_{ij}| (\alpha \mathbf{u} \cdot \mathbf{n})_{ij} = 0, \\ \frac{d}{dt}(\alpha \mathbf{u})_{i} + \frac{a_{\star}}{2M} \frac{\alpha_{i}}{|\Omega_{i}|} \sum_{\Gamma_{ij} \subset \partial \Omega_{i}} |\Gamma_{ij}| r_{ij} \mathbf{n}_{ij} = 0, \end{cases}$$

where $(r_{ij}, (\alpha \mathbf{u} \cdot \mathbf{n})_{ij})$ is the solution of the 1D Riemann problem¹ in the direction \mathbf{n}_{ij} on $\xi/t = 0$

$$\begin{cases} \alpha_{ij}\partial_t r_{\xi} + \frac{a_{\star}}{M}\partial_{\xi}\left((\alpha u)_{\xi}\right) = 0, \\ \partial_t\left((\alpha u)_{\xi}\right) + \frac{a_{\star}}{M}\alpha_{ij}\partial_{\xi}r_{\xi} = 0, \\ \left(r_{\xi}, (\alpha u)_{\xi}\right)\left(t = 0, \xi\right) = \begin{cases} (r_i, (\alpha u)_j \cdot \mathbf{n}_{ij}) & \text{if } \xi < 0, \\ \left(r_j, (\alpha u)_j \cdot \mathbf{n}_{ij}\right) & \text{otherwise} \end{cases}$$

1. S. Dellacherie, P. Omnes, On the Godunov scheme applied to the variable cross-section linear equation. FVCA6, (4) :313–321, 2011.

Introduction Finite volume scheme Godunov scheme and its discrete spacial kernel Modified equation on a cartesian mesh Accurate schemes at low Mach number Discrete study on a cartesian and triandular meshes

Numerical scheme

• The solution of the Riemann problem on $\xi/t = 0$ is given by

$$\begin{cases} r_{ij} = \frac{r_i + r_j}{2} + \frac{1}{2\alpha_{ij}} ((\alpha \mathbf{u})_i - (\alpha \mathbf{u})_j) \cdot \mathbf{n}_{ij}, \\ ((\alpha \mathbf{u}) \cdot \mathbf{n})_{ij} = \frac{((\alpha \mathbf{u})_i + (\alpha \mathbf{u})_j) \cdot \mathbf{n}_{ij}}{2} + \frac{\alpha_{ij}}{2} (r_i - r_j). \end{cases}$$

• Godunov scheme on a triangular or cartesian mesh $(\Omega_i)_{1 \le i \le N}$ [DO11]

$$\begin{cases} \frac{d}{dt}(\alpha r)_{i} + \frac{a_{\star}}{2M} \frac{1}{|\Omega_{i}|} \sum_{\Gamma_{ij} \subset \partial \Omega_{i}} |\Gamma_{ij}| \Big[((\alpha \mathbf{u})_{i} + (\alpha \mathbf{u})_{j}) \cdot \mathbf{n}_{ij} + \alpha_{ij}(r_{i} - r_{j}) \Big] = 0, \\ \frac{d}{dt}(\alpha \mathbf{u})_{i} + \frac{a_{\star}}{2M} \frac{\alpha_{i}}{|\Omega_{i}|} \sum_{\Gamma_{ij} \subset \partial \Omega_{i}} |\Gamma_{ij}| \Big[r_{i} + r_{j} + \frac{\kappa}{\alpha_{ij}} ((\alpha \mathbf{u})_{i} - (\alpha \mathbf{u})_{j}) \cdot \mathbf{n}_{ij} \Big] \mathbf{n}_{ij} = 0 \end{cases}$$

with $\kappa = 1$.

Found the origin of the problem on a cartesian mesh

Modified equation on a cartesian mesh :

• The Godunov scheme on a cartesian mesh $\Omega_{i,j}$ for αr gives us

$$\partial_{t}(\alpha r)_{i,j} + \frac{a_{\star}}{M} \frac{(\alpha u_{x})_{i+1,j} - (\alpha u_{x})_{i-1,j}}{2\Delta x} + \frac{a_{\star}}{M} \frac{(\alpha u_{y})_{i,j+1} - (\alpha u_{y})_{i,j-1}}{2\Delta y} \\ = \frac{a_{\star}}{2M\Delta x} \left(\alpha_{i+\frac{1}{2},j} \left(r_{i+1,j} - r_{i,j} \right) - \alpha_{i-\frac{1}{2},j} \left(r_{i,j} - r_{i-1,j} \right) \right) \\ + \frac{a_{\star}}{2M\Delta y} \left(\alpha_{i,j+\frac{1}{2}} \left(r_{i,j+1} - r_{i,j} \right) - \alpha_{i,j-\frac{1}{2}} \left(r_{i,j} - r_{i,j-1} \right) \right).$$

• Then, the first order modified equation for αr is

$$\partial_t(\alpha r) + \frac{a_*}{M} \nabla \cdot (\alpha \mathbf{u}) = \frac{a_* \Delta x}{2M} \partial_x(\alpha \partial_x r) + \frac{a_* \Delta y}{2M} \partial_y(\alpha \partial_y r).$$

Finite volume scheme Modified equation on a cartesian mesh Discrete study on a cartesian and triandular meshes

Modified equation on a cartesian mesh

 ${\ensuremath{\, \bullet }}$ We use the same method for $\alpha {\ensuremath{\mathbf u}}$ and we obtain the modified system

$$\partial_{t}(\alpha r) + \frac{a_{\star}}{M} \nabla \cdot (\alpha \mathbf{u}) - \frac{a_{\star} \Delta x}{2M} \partial_{x}(\alpha \partial_{x} r) - \frac{a_{\star} \Delta y}{2M} \partial_{y}(\alpha \partial_{y} r) = 0$$
$$\partial_{t}(\alpha \mathbf{u}) + \frac{a_{\star}}{M} \alpha \nabla r - \begin{pmatrix} \kappa \alpha \frac{a_{\star} \Delta x}{2M} \partial_{x} \left(\frac{1}{\alpha} \partial_{x}(\alpha u_{x})\right) \\ \kappa \alpha \frac{a_{\star} \Delta y}{2M} \partial_{y} \left(\frac{1}{\alpha} \partial_{y}(\alpha u_{y})\right) \end{pmatrix} = 0$$

with $\kappa = 1$. We write it as

$$\partial_t(\alpha q) + rac{\mathcal{L}_{\kappa,\alpha}}{M}(q) = 0 \quad ext{with} \quad \mathcal{L}_{\kappa,\alpha} = L_\alpha - MB_{\kappa,\alpha}.$$

• What is the relation between Ker $\mathcal{L}_{\kappa,\alpha}$ and \mathcal{E}_{α} ?

Finite volume scheme Modified equation on a cartesian mesh Discrete study on a cartesian and triandular meshes

Kernel of the modified equation

Proposition

• If
$$\kappa > 0$$
, we have

Ker
$$\mathcal{L}_{\kappa>0,\alpha} = \left\{ q := (r, \boldsymbol{u})^T | \nabla r = 0 \text{ and } \partial_x(\alpha u_x) = \partial_y(\alpha u_y) = 0 \right\}$$

 $\subsetneq \mathcal{E}_{\alpha}.$

2 If
$$\kappa = 0$$
, we have Ker $\mathcal{L}_{\kappa=0,\alpha} = \mathcal{E}_{\alpha}$.

Conclusion of the study of the continuous case :

• Substitute $\kappa = 1$ by $\kappa = 0$ seams to allow to the Godunov scheme to preserve the incompressible states $q^0 \in \mathcal{E}_{\alpha}$ on cartesian meshes.

To do :

• Test this correction ($\kappa = 0$) at the discret level.

Finite volume scheme Modified equation on a cartesian mesh Discrete study on a cartesian and triandular meshes

Test of the low Mach correction $\kappa = 0$

• Initial condition $q^0 \in \mathcal{E}$:

Aims :

- Study the problem at the discrete level.
- Study the case of a triangular mesh.

Introduction Finite volume scheme Godunov scheme and its discrete spacial kernel Accurate schemes at low Mach number Discrete study on a cartesian and triandular meshes

Discrete study

- We define the spaces $\mathcal{E}_{\alpha}^{\triangle}$ and $\mathcal{E}_{\alpha}^{\Box}$ associated to the incompressible space \mathcal{E}_{α} on a triangular and a cartesian mesh.
- Recall the Godunov scheme on a triangular or cartesian mesh $(\Omega_i)_{1 \le i \le N}$ [DO11]

$$\begin{cases} \frac{d}{dt}(\alpha r)_{i} + \frac{a_{\star}}{2M} \frac{1}{|\Omega_{i}|} \sum_{\Gamma_{ij} \subset \partial \Omega_{i}} |\Gamma_{ij}| \Big[((\alpha \mathbf{u})_{i} + (\alpha \mathbf{u})_{j}) \cdot \mathbf{n}_{ij} + \alpha_{ij}(r_{i} - r_{j}) \Big] = 0, \\ \\ \frac{d}{dt}(\alpha \mathbf{u})_{i} + \frac{a_{\star}}{2M} \frac{\alpha_{i}}{|\Omega_{i}|} \sum_{\Gamma_{ij} \subset \partial \Omega_{i}} |\Gamma_{ij}| \Big[r_{i} + r_{j} + \frac{\kappa}{\alpha_{ij}} ((\alpha \mathbf{u})_{i} - (\alpha \mathbf{u})_{j}) \cdot \mathbf{n}_{ij} \Big] \mathbf{n}_{ij} = 0 \\ \\ \text{with } \kappa = 1. \end{cases}$$

We write it as

$$\frac{d}{dt}(\alpha q_h) + \frac{\mathbb{L}_{\kappa,\alpha}^h}{M}(q_h) = 0,$$

where $q_h = (r_i, \mathbf{u}_i)^T$.

Finite volume scheme Modified equation on a cartesian mesh Discrete study on a cartesian and triandular meshes

• At t = 0.0001(= M) :

Gudunov scheme ($\kappa = 1$) on a cartesian mesh :

• Initial condition $q^0 \in \mathcal{E}^{\square}_{\alpha}$:

Finite volume scheme Modified equation on a cartesian mesh Discrete study on a cartesian and triandular meshes

• At t = 0.0001(= M) :

Low Mach scheme ($\kappa = 0$) on a cartesian mesh :

• Initial condition $q^0 \in \mathcal{E}^{\square}$:

14/36

Finite volume scheme Modified equation on a cartesian mesh Discrete study on a cartesian and triandular meshes

• At t = 0.0001(= M) :

Godunov scheme ($\kappa = 1$) on a triangular mesh :

• Initial condition $q^0 \in \mathcal{E}^{\bigtriangleup}$:

Proposition ($\kappa = 1$ on riangle)

Ker
$$\mathbb{L}^{h}_{\kappa=1,\alpha} = \mathcal{E}^{\triangle}_{\alpha}$$
.

Conclusion on the discrete study of the kernel of the Godunov scheme

Conclusion :

- The Godunov scheme ($\kappa = 1$) does not preserve some incompressible states $\mathcal{E}^{\Box}_{\alpha}$ on a cartesian mesh.
- The low Mach scheme ($\kappa = 0$) preserves the incompressible states $\mathcal{E}_{\alpha}^{\Box}$ on a cartesian mesh.
- The Godunov scheme ($\kappa = 1$) preserves the incompressible states $\mathcal{E}_{\alpha}^{\triangle}$ on a triangular mesh.

BUT :

- We wish a correction that allows to obtain the Godunov scheme when the Mach number tends to 1.
- What happens if the initial condition $q^0 \notin \mathcal{E}_{\alpha}$?
- The study of the kernel \mathcal{E}_{α} is not sufficient.

Hodge decomposition and projection on \mathcal{E}_{lpha}

How can we split a state $q \notin \mathcal{E}_{\alpha}$?

Theorem

Assume that $\alpha \in [\alpha_{\min}, \alpha_{\max}]$ with $\alpha_{\min} > 0$. We build a Hodge decomposition on the weighted spaces

$$\mathcal{E}_{lpha}\oplus\mathcal{E}_{lpha}^{\perp}=\mathcal{L}_{lpha}^{2}\left(\mathbb{T}
ight)^{3},$$

where the **acoustic space** $\mathcal{E}_{\alpha}^{\perp}$ is given by

$$\mathcal{E}_{\alpha}^{\perp} = \left\{ \boldsymbol{q} = (\boldsymbol{r}, \boldsymbol{u})^{\mathsf{T}} \in L_{\alpha}^{2} \left(\mathbb{T} \right)^{3} \Big| \int_{\mathbb{T}} \boldsymbol{r} \alpha d\boldsymbol{x} = 0 \text{ and } \exists \phi \in H_{\alpha}^{1} \left(\mathbb{T} \right), \boldsymbol{u} = \nabla \phi \right\}$$

Definition

The Hodge decomposition allows to define an **orthogonale projection**

$$egin{aligned} \mathcal{P}_lpha &\colon L^2_lpha \left(\mathbb{T}
ight)^3 \longrightarrow \mathcal{E}_lpha \ q \longmapsto \mathbb{P}_lpha q \end{aligned}$$

Structure of the solution of the linear wave equation

Linear wave equation with porosity

$$\begin{cases} \partial_t(\alpha r) + \frac{a_\star}{M} \nabla \cdot (\alpha \mathbf{u}) = \mathbf{0}, \\ \partial_t(\alpha \mathbf{u}) + \frac{a_\star}{M} \alpha \nabla r = \mathbf{0}. \end{cases}$$

Proposition

If q is a solution of the linear wave equation with porosity with an initial condition q^0 , we have

$$\forall q^0 \in \mathcal{E}_\alpha, \quad q(t \geq 0) = q^0 \in \mathcal{E}_\alpha \quad et \quad \forall q^0 \in \mathcal{E}_\alpha^\perp, \quad q(t \geq 0) \in \mathcal{E}_\alpha^\perp.$$

Corollary

The solution q of the linear wave equation with porosity with an initial condition q^0 can be written as

$$q = \mathbb{P}_{lpha} q^{\mathsf{0}} + \left(q - \mathbb{P}_{lpha} q^{\mathsf{0}}
ight) \in \mathcal{E}_{lpha} + \mathcal{E}_{lpha}^{\perp}.$$

Structure of the solution of the linear wave equation

Linear wave equation with porosity

$$\begin{cases} \partial_t(\alpha r) + \frac{a_\star}{M} \nabla \cdot (\alpha \mathbf{u}) = \mathbf{0}, \\ \partial_t(\alpha \mathbf{u}) + \frac{a_\star}{M} \alpha \nabla r = \mathbf{0}. \end{cases}$$

Proposition

The energy of the solution q of the linear wave equation with porosity satisfies

$$\frac{d}{dt}\|q\|_{L^2_\alpha}^2=0.$$

Corollary

The solution q of the linear wave equation with porosity and with an initial condition q^0 satisfies

$$\forall \mathcal{C} > 0, \ \|q^0 - \mathbb{P}_{\alpha}q^0\|_{L^2_{\alpha}} \leq \mathcal{C} \mathcal{M} \Rightarrow \forall t \geq 0, \ \|q - \mathbb{P}_{\alpha}q^0\|_{L^2_{\alpha}}(t) \leq \mathcal{C} \mathcal{M}.$$

Accurate schemes at low Mach number

- We transcribe this property at the discrete level for a short time.
- We build Hodge decompositions on triangular and cartesian meshes.
- We obtain discrete orthogonal projections \mathbb{P}^h_{α} on $\mathcal{E}^{\Box}_{\alpha}$ and $\mathcal{E}^{\bigtriangleup}_{\alpha}$.

Definition

A scheme is **accurate at low Mach number** if the solution q_h given by the scheme satisfies

$$egin{aligned} &orall C_1, C_2 > 0, \ &\| q_h^0 - \mathbb{P}_{\alpha}^h q_h^0 \|_{l^2_{lpha}} = C_1 M \ & \Rightarrow orall t \in [0; C_2 M], \ &\| q_h - \mathbb{P}_{\alpha}^h q_h^0 \|_{l^2_{lpha}}(t) \leq C_3 M, \end{aligned}$$

where C_3 does not depend on M.

Initial condition :

- *a*^{*} = 1.
- $M = 10^{-4}$.
- $q_{h}^{0} = q_{h,1}^{0} + \mathbf{M} q_{h,2}^{0}$ with

$$\begin{cases} r_{h,1}^0(x,y) = 1, \\ (\alpha \mathbf{u}_1)_h^0 = \nabla_h \times \psi_h, \end{cases} \Rightarrow q_{h,1}^0 \in \mathcal{E}_{\alpha}^h \end{cases}$$

and

$$\begin{cases} r_{h,2}^{0}(x,y) = 0, \\ \mathbf{u}_{h,2}^{0} = \nabla_{h}\phi_{h}, \quad \Rightarrow q_{h,2}^{0} \in \left(\mathcal{E}_{\alpha}^{h}\right)^{\perp} \\ \|q_{h,2}^{0}\|_{l_{\alpha}^{2}} = 1, \end{cases}$$

then

$$\|q_h^0 - \mathbb{P}_{\alpha} q_h^0\|_{l^2_{\alpha}} = \|Mq_{h,2}^0\|_{l^2_{\alpha}} = M = O(M).$$

• We plot $\|q_h - \mathbb{P}_{\alpha} q_h^0\|_{l^2_{\alpha}}(t)$ as a fonction of the time.

Cartesian mesh with $\Delta x = \Delta y = 0.02$ and $M = 0.0001 \ll \Delta x$:

Theorem ($\kappa = 1$ on \Box)

$$\begin{aligned} \forall C_1 > 0, \ \exists C_2(C_1) > 0, \ \exists C_3(C_1) > 0, \ \|q_h^h - \mathbb{P}^{h,\square}_{\alpha} q_h^0\|_{l^2_{\alpha}} &= C_1 M \\ \Rightarrow \forall t \ge C_2 M, \ \|q_h - \mathbb{P}^{h,\square}_{\alpha} q_h^0\|_{l^2_{\alpha}}(t) \ge C_3 \min(\Delta x, \Delta y), \end{aligned}$$

for all $M \leq \frac{C_3}{C_1} \min(\Delta x, \Delta y)$.

Cartesian mesh with $\Delta x = \Delta y = 0.02$ and $M = 0.0001 \ll \Delta x$:

Theorem ($\kappa = M$ on \Box)

$$\begin{aligned} \forall C_1, C_2 > 0, \ \exists C_3(C_1, C_2) > 0, \ \|q_h^0 - \mathbb{P}^{h,\square}_{\alpha} q_h^0\|_{l^2_{\alpha}} &= C_1 M \\ \Rightarrow \forall t \in [0; C_2 M], \ \|q_h - \mathbb{P}^{h,\square}_{\alpha} q_h^0\|_{l^2_{\alpha}}(t) \leq C_3 M, \end{aligned}$$

where C_3 does not depend on M.

Cartesian mesh with $\Delta x = \Delta y = 0.02$ and $M = 0.0001 \ll \Delta x$:

Theorem ($\kappa = 1$ on \triangle et $\kappa = 0$ sur \Box)

$$egin{aligned} &orall C_1, C_2 > 0, \ &\|q_h^0 - \mathbb{P}_{lpha}^h q_h^0\|_{l^2_{lpha}} = C_1 M \ &\Rightarrow orall t \geq 0, \ &\|q_h - \mathbb{P}_{lpha}^h q_h^0\|_{l^2_{lpha}}(t) \leq C_3 M, \end{aligned}$$

where C_3 does not depend on M.

Definition Results Conclusion and some tests in the non linear case with $\alpha=1$

Cartesian mesh on $\Delta x = \Delta y = 0.0033$ and $M = 0.01 \gg \Delta x$:

Theorem ($\kappa = 1$ on \Box)

$$\begin{aligned} \forall C_0, C_1, C_2 > 0, \ \exists C_3(C_0, C_1, C_2) > 0, \ \begin{cases} \Delta x \leq C_0 M, \ et \ \Delta y \leq C_0 M, \\ \left\| q_h^0 - \mathbb{P}_{\alpha}^h q_h^0 \right\|_{l^2_{\alpha}} = C_1 M \\ \Rightarrow \forall t \in [0; C_2 M], \ \left\| q_h - \mathbb{P}_{\alpha}^h q_h^0 \right\|_{l^2_{\alpha}}(t) \leq C_3 M, \end{aligned}$$

where C_3 does not depend on M, Δx and Δy .

Conclusion of the linear case

Triangular mesh :

• The Godunov scheme $(\kappa = 1)$ is accurate at low Mach.

Cartesian mesh :

- The Godunov scheme ($\kappa = 1$)
 - is not accurate at low Mach number if $M \ll \min(\Delta x, \Delta y)$.
 - is accurate at low Mach number if $M \gg \min(\Delta x, \Delta y)$.

• Two corrections for low Mach flows :

$$F^{Cor}(W_i, W_j) = F^{God}(W_i, W_j) - \frac{(1 - \kappa) \mathbf{a}_{\star} \alpha_i}{2M \alpha_{ij}} \begin{pmatrix} 0 \\ \left[\left((\alpha \mathbf{u})_i - (\alpha \mathbf{u})_j \right) \cdot \mathbf{n}_{ij} \right] \mathbf{n}_{ij} \end{pmatrix}$$

- $\kappa = 0$ (low Mach correction) : accurate at low Mach,
- $\overline{\kappa = \min(M, 1)}$ (all Mach correction) : accurate at low Mach and allows to obtain the Godunov scheme for $M \ge 1$.

Next step :

• Test the different schemes in the non-linear case.

Extension to the non-linear case with $\alpha = 1$

Euler equations :

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0, \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p = 0, \\ \partial_t (\rho E) + \nabla \cdot ((\rho E + p) \mathbf{u}) = 0 \end{cases}$$

Note $W = (\rho, \rho \mathbf{u}, \rho E)^T$. The numerical scheme can be written as

$$rac{d}{dt}W_i+rac{1}{|\Omega_i|}{\displaystyle\sum_{\Gamma_{ij}\subset\partial\Omega_i}}|\Gamma_{ij}|F(W_i,W_j,\mathbf{n}_{ij})=0.$$

The **low Mach** and the **all Mach** corrections consist to replace the flux $F(W_i, W_j, \mathbf{n}_{ij})$ with

$$F^{Cor}(W_i, W_j) = F^{Godunov}(W_i, W_j) - \frac{(1 - \kappa_{ij})\rho_{ij}c_{ij}}{2} \begin{pmatrix} 0 \\ [(\mathbf{u}_i - \mathbf{u}_j) \cdot \mathbf{n}_{ij}] \mathbf{n}_{ij} \\ 0 \end{pmatrix}$$

where respectively
$$\kappa_{ij}=0$$
 or $\kappa_{ij}={\sf min}\left(1,rac{|u_{ij}|}{c_{ij}}
ight).$

2D low Mach flow : vortex in a box

Tools :

- Mesh : the software Salome,
- Code : Librairy C++ CDMATH (http://www.cdmath.jimdo.com).

Initial condition :

- We test the accuracy of the **low Mach** and the **all Mach** scheme for a low Mach flow.
- $\bullet\,$ The initial state is given on the domain $[0,1]\times[0,1]$ by

$$\begin{cases} \rho = 1, \\ \mathbf{u} = \nabla \times \psi \quad \text{where} \quad \psi(x, y) = \frac{1}{\pi} \sin^2(\pi x) \sin^2(\pi y), \\ \rho = 1000. \end{cases}$$

- Wall boundary conditions.
- Final time of computation of $t_{final} = 0.125s$.
- Mach \approx 0.026.

Definition Results Conclusion and some tests in the non linear case with lpha=1

2D low Mach flow : vortex in a box

29/36

Definition Results Conclusion and some tests in the non linear case with $\alpha=1$

2D low Mach flow : vortex in a box

Initial condition and Godunov with $\kappa_{ij} = 1$ on a triangular mesh :

• The **low Mach** and the **all Mach** (AM) schemes are accurate at low Mach number.

2D compressible flow : 2D Riemann problem

- We test the stability of the **low Mach** and **all Mach** scheme for a compressible flow ($0 \le Mach \le 3.14$.).
- $\bullet\,$ The initial state is given on the domain $[0,1]\times[0,1]$ by

$$(\rho, u_x, u_y)(x, y) = \begin{cases} (0.1380, 1.206, 1.206), & \text{for } x < 0.5, & y < 0.5 \\ (0.5323, 0.000.1.206), & \text{for } x > 0.5, & y < 0.5 \\ (0.5323, 1.206, 0.000), & \text{for } x < 0.5, & y > 0.5 \\ (1.5000, 0.000, 0.000), & \text{for } x > 0.5, & y > 0.5. \end{cases}$$

(4 shock wave interaction).

- Exact boundary conditions.
- Final time of computation : $t_{final} = 0.4s$.

Definition Results Conclusion and some tests in the non linear case with $\alpha=1$

2D compressible flow : 2D Riemann problem

Godunov scheme at low Mach number

Jonathan Jung

Definition Results Conclusion and some tests in the non linear case with $\alpha=1$

2D compressible flow : 2D Riemann problem

- The **all Mach** scheme is stable on triangular and cartesian meshes for this compressible flow.
- The low Mach scheme is not stable for this compressible flow.

Carbuncle phenomena : supersonic flow around a cylinder

- We initialize with a Mach = 10 flow on a 80 \times 160 radial mesh.
- Physical solution, $\kappa_{ij} = 1$ and $\kappa_{ij} = \min\left(1, \frac{|u_{ij}|}{c_{ii}}\right)$ (AM) :

• The **all Mach** scheme is stable for a supersonic flow around a cylinder but also produces the carbuncle phenomena...

Final conclusion and perspective

Conclusion :

- We note the accuracy at low Mach number of finite volume schemes on triangular meshes in the linear and non-linear cases.
- We note the inaccuracy at low Mach number of the finite volume schemes on cartesian meshes in the linear and non-linear cases.
- The study of the linear case allows to propose a correction that gives an accurate scheme at low Mach number and gives the Godunov scheme when $M \ge 1$ on cartesian meshes.

Perpectives :

- $\bullet\,$ Test the scheme with a non-constant fonction α in the non-linear case.
- Study the stability of the corrected scheme.

Thank you for your attention !

S. Dellacherie, P. Omnes. On the Godunov scheme applied to the variable cross-section linear equation. FVCA6, (4) :313–321, 2011.