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In on Motivation

Many flows are partially in charge:Groundwater flow
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Introduction Motivation

Many flows are partially in charge: Flow under floe
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Introduction Motivation

Many flows are partially in charge: Urban flood through sewer
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Introduction Motivation

Many flows are partially in charge:  lceberg drift
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Introduction Motivation

any flows are partially in charge: Wave generator / wave energy converter
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Introduction Motivation

Many flows are partially in charge: Floating tidal turbin
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Introduction Partially free surface model

PARTIALLY FREE SURFACE MODEL WITH FRICTION AND VISCOSITY:
Starting from Navier-Stokes equations with gravity and roof
and following [Gerbeau, Perthame’00], we get

dch  + V-(hu) -0

+x,1
0c(hu) + V- (huou+ S h%1y) = —hV(gB+p)— —b K h>HY

ATE I +4uv-(hvu)
t h

h<H*, (H*-h)(p-Ps)=0.
R
le "
H* u
h —
H* || h
B

Unknowns: Given parameters:

h(t,x) water depth P (t,x) atmospheric pressure
R(t,x) bottom and roof level

=R - B maximum water depth

u(t,x) averaged horizontal velocity  B(t,x)

<
p(t,x) pressure at surface n=h+z, H*(t,x)

Martin PARISOT
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Introduction Partially free surface model

PARTIALLY FREE SURFACE MODEL:
Starting from Navier-Stokes equations with gravity and roof
and following [Gerbeau, Perthame’00], we get

dch  + V-(hu) -0

d¢ (hu) + V~(hu®u+%h2ld) = —hV(gB 1)

h<H*, (p-Ps)=0.
R
lg /\/a n
H* u
h _—
H* || h
B
/A\: Coupling approach
> In the part with free surface = Shallow water equations. hyperbolic
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Introduction Partially free surface model

PARTIALLY FREE SURFACE MODEL:
Starting from Navier-Stokes equations with gravity and roof
and following [Gerbeau, Perthame’00], we get

V~(H*u) = —0:H*

0tu + u-Vu+Vp = —gVR
h=H*,
R
ls "
H* u
h _—
H* || h
B
/A\: Coupling approach
> In the part with free surface = Shallow water equations. hyperbolic
» In the part in charge = Lake equations not hyperbolic
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Introduction Partially free surface model

PARTIALLY FREE SURFACE MODEL:

Starting from Navier-Stokes equations with gravity and roof
and following [Gerbeau, Perthame’00], we get
oth + V- (hu) =0
(sw*){ 9¢(hu) + V~(hu®u+%h21d) = —hV(gB+p)
h<H*, (H*=h)(p-Ps)=0.
R
I
lg 1o ) ] n
H* oy 1 \
h ' —> 1
[ 1 H* h 1
1 1 1 1
B
/A\: Coupling approach
» In the part with free surface = Shallow water equations. hyperbolic
» In the part in charge = Lake equations not hyperbolic

» What boundary condition at the interface A ? Dynamic of the interface 7
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Introduction Other example

CROWD MOTION MODEL: [MAURY, ROUDNEFF-CHUPIN, SAMTAMBROGIO’12]
dtp + V-(pu) =0
u +Vp =U
p=1 (1-p)p=0

Macro model (A. Roudneff-Chupin’11) Micro model (J. Venel'08)

Unknowns: Given parameter:

o(t,x) density of pedestrian

U(t,x) wished velocity
u(t,x) real velocity

R* =1 Maximum density
p(t,x) pressure

Martin PARISOT
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Introduction Other example

CROWD MOTION MODEL: [MAURY, ROUDNEFF-CHUPIN, SAMTAMBROGIO’12]

0tp + V- (pu) = 0 - _ 2 1
u _ PCP(U) with Cp—{veL (Q), Yge H,, fv-VqsO}

Vp - PCj-(U) and H%:{qe H1(Q), and q(ﬂp<1):0}

Macro model (A. Roudneff-Chupin’11) Micro model (J. Venel'08)

/A\: Numerical strategy
» Prediction step: numerical scheme without the constrain

» Correction step: projection on the set of admissible velocity
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Introduction Other example

CROWD MOTION MODEL: [MAURY, ROUDNEFF-CHUPIN, SAMTAMBROGIO’12]

0tp + V- (pu) = 0 - _ 2 1
u _ PCP(U) with Cp—{veL (Q), Yqe Hy, fv-VqsO}

Vp - PCj-(U) and H%:{qe H1(Q), and q(ﬂp<1):0}

Macro model (A. Roudneff-Chupin’11) Micro model (J. Venel'08)

/A\: Numerical strategy
» Prediction step: numerical scheme without the constrain

» Correction step: projection on the set of admissible velocity

» expensive numerical scheme
» not-easily adaptable for space-variable upper bound
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Introduction Relaxation and asymptotic analysis

RELAXED PARTIALLY FREE SURFACE MODEL:
Let us consider for any parameter € >0 the relaxed model:

dche  + V-(heu) =0
(swr)d Oc(heue) + V- (heve s ue + £ h214) = ~heV (gB+ pe)
‘ g(he—H*),
Pe = Pa+72
&

he —
H*

FORMAL CONVERGENCE: (SW}) —6(SW*)
—

@ In the part in charge h; > H*:
» The main term of momentum leads to the constrain he = H* + 0(52)
» The main term of the mass V-(H*ug)=—-0:H* + 0(52)

and the second order term of the momentum leads to the Lake equations
Otug +ug-Vug +V(pe) =—gVR+ 0(82)
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Introduction Relaxation and asymptotic analysis

RELAXED PARTIALLY FREE SURFACE MODEL:
Let us consider for any parameter € >0 the relaxed model:

dthe  + V- (heug) =0

(swr)] Ot (heve) + V-(hgug®ug+§h§1d) = —heV(gB+pe)
¢ g(hg—H*)+
Pe = Pa+72

£

he —
H*

FORMAL CONVERGENCE: (SW}) —6(SW*)
—

@ In the part in charge h; > H*: —(»)Lake
e—

@ In the part with free surface h < H*:
> We have p; = P, then for any ¢ we solve locally the Shallow Water equations
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Introduction Relaxation and asymptotic analysis

RELAXED PARTIALLY FREE SURFACE MODEL:
Let us consider for any parameter € >0 the relaxed model:

dche  + V-(heu) =0
(swr)d Oc(heue) + V- (heve s ue + £ h214) = ~heV (gB+ pe)
‘ g(he—H*),
Pe = Pa+72
&

he —
H*

FORMAL CONVERGENCE: (SWZ) — (SW™*)

e—0
@ In the part in charge h; > H*: —(»)Lake
e
@ In the part with free surface h < H*: —EJShaIIow Water
e

@ At the interface Ag:

» The flux are equals: hy = H* and pe = P,
»  Unknown is the position A (t).
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Introduction

Relaxation and asymptotic analysis
HYPERBOLICITY OF THE RELAXED MODEL (SW/"):

The relaxed model is an hyperbolic model with source term.

Eigenvalues: g * (1 " e%)ghg

/\: Hyperbolic equation with stiff potential force ~ low-Mach regime
» Modeling error, i.e. hy =h+ 0(82)

On a cartesian grid, the explicit Godunov-type solver

»  Large numerical diffusion, i.e. hgy = he + O(%)

luel+ 4 /(1+ e%)ghg) dt < Cdx

1
Theoretical optimal setting: €= O(dx§),

» Restrictive CFL condition

th:h+O(dx%), dt:O(dX%).

Martin PARISOT
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Introduction Relaxation and asymptotic analysis

HYPERBOLICITY OF THE RELAXED MODEL (SW/"):

The relaxed model is an hyperbolic model with source term.

Eigenvalues: ug + (1 + E%)ghg
/\: Hyperbolic equation with stiff potential force ~ low-Mach regime
» Modeling error, i.e. hy =h+ 0(82)

On a cartesian grid, the explicit Godunov-type solver

»  Large numerical diffusion, i.e. hgy = he + O(%)

luel+ 4 /(1+ e%)ghg) dt < Cdx

1 2 4
Theoretical optimal setting: ¢ = O(dxi), hgx=h+ O(dx§), dt= O(dx§).
/\: Potential wave celerity not fast enough.

» Restrictive CFL condition

Q. How produce a more efficient numerical scheme ?

a) first order accurate: hgq, =h+O(dx)

b) modeling error smaller than numerical error: €% < dx

c) stable under hyperbolic CFL condition: dt= O(dx)
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Introduction Relaxation and asymptotic analysis

HYPERBOLICITY OF THE RELAXED MODEL (SW/"):

The relaxed model is an hyperbolic model with source term.

Eigenvalues: ug + (1 + E%)ghg
/\: Hyperbolic equation with stiff potential force ~ low-Mach regime
» Modeling error, i.e. hy =h+ 0(82)

On a cartesian grid, the explicit Godunov-type solver

»  Large numerical diffusion, i.e. hgy = he + O(%)

luel+ 4 /(1+ e%)ghg) dt < Cdx

1 2 4
Theoretical optimal setting: ¢ = O(dxi), hgx=h+ O(dx§), dt= O(dx§).

/\: Potential wave celerity not fast enough.

» Restrictive CFL condition

Q. How produce a more efficient numerical scheme ?

a) first order accurate: hgq, =h+O(dx)
b) modeling error smaller than numerical error: €% < dx
c) stable under hyperbolic CFL condition: dt= O(dx)

A. Use an asymptotic preserving low-Mach scheme

Martin PARISOT / 7 06/11/15 Conservation laws with constraints



An asymptotic preserving low-Mach scheme General description of the CPR scheme

BILAYERS SHALLOW WATER MODEL: [Gill'82]

0t(o1h) +V-(p1hu1) =G

0t (p1h1u1) + V-(p1hiuy®u1) = Gup— 0/1: EL2LY (hy + by + B)
(SW%‘é) 0t (p2h2)  + V-(p2h2u?) =-G '

0t (o2hou2) + V- (p2haup ® u3) = —Guy - ,’_1 V(eih +02(h2+B))

température
@ Low-Froude number r P

» mean depth H>3000m F =V <103
» current speed V~1lm/s - =

VeH

@ Low-density stratification
» heating from above 91 3
» hot water lighter } 0<l-gp=0~107

profondeur



An asymptotic preserving low-Mach scheme General description of the CPR scheme

BILAYERS SHALLOW WATER MODEL: [Gill'82]

0:(h) + V(1) =G
0t (hyu1) + v'(f71u1®ul) = Gup-hVp
(SWi,é) (SWI 0) 61’( 2) V-(haup) - -G
Fr (h2u2) V-(hyup®up) = _GUn—h2V(p—h1)
hi+hy+B =0
@ Low-Froude number température
» mean depth H>3000m eV 103
» current speed V=1m/s r=ah

@ Low-density stratification
» heating from above 91 3
» hot water lighter } 0<l-gp=0~107

profondeur



An asymptotic preserving low-Mach scheme General description of the CPR scheme

A FEW REFERENCES ON ASYMPTOTIC PRESERVING LOW-MACH SCHEME:

[Liou, Steffen'93]: Advection Upstream Splitting Method (AUMS)
Splitting of the equation into the advection part and the potential forces (pressure).

[Dellacherie'10]: Consistency with the asymptotic waves equation
Centered discretization of the potential forces (at least when £ —0).

[Grenier, Vila, Villedieu'13]: Entropic stabilisation for linear potential
Regularization using the gradient of the mass

[Parisot, Vila'l5]: Generalization for multi-layers (multi-phasics) and non-conservative
products Regularization using the gradient of the potential ¢ (h,x)

Martin PARISOT VELOCITY FLOW 6/11/15 Conservation laws with constraints



An asymptotic preserving low-Mach scheme General description of the CPR scheme

Qb) How to get a first order (independently of €) space discretization error?

Numerical variables:

. 1
in cell: Yy = |Vk| Vu/
k
k
atedge:  2(w)r=wi+yx, and  2[y] [ =wi, -y
V f
parameters: ly = |7k| and ,u’; = L
|OVi] o Vi|

Step 1 Use an AUSM based scheme

hy Fh 0
at( )+iZ ! 'fo#:( )
hyug lk feFy f}f“ 2
with ﬂ;’:ffhgugda, g?u:ﬁ_hguE®UgdU and 2= |V |f ghe Ve dx.

Advect the velocity with an up-wind scheme

at(hkuk) + i fzr‘ (uk (9;7 N#)+ — U, (9}7 N;()_)[JI; =2
€l

@ Ensure the dissipation of the discrete kinetic energy (as a pollutant)

Martin PARISOT Low VELOCITY FLOWS 05-06/11/15 Conservation laws with constraints



An asymptotic preserving low-Mach scheme General description of the CPR scheme

Step 2 Use a centered discretization of the potential for any £¢>0

2 Z prNEIf|=-—K Z 91 NI

feFy

@ Leads to a consistent numerical scheme when ¢ goes to 0.

Step 3 Regularization using the potential jump (7 : time scale; A: regu. param.)

~ (hu)-1e() 1ol

@ Ensure : b the stability of the steady state at rest (¢ = Cst and u=0)
> the dissipation of the discrete potential energy

Sketch of proof:
The mass scheme can be formally interpreted as a discretization of:

Mass : 0th+V-(h(u—ATtVe)) =

Multiplying the mass conservation by ¢:
Pot. energy : 0t&+V-(hp(u—ATV®)) = —huV(,b—)Lrh|Vd)|2

6/11/15 Conservation laws with constraints
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An asymptotic preserving low-Mach scheme General description of the CPR scheme

Qc) How to get a stable scheme independently of ¢?
A Using an IMEX scheme: implicit for the water level h / explicit for the velocity u

Step 1 water level: implicit scheme of type non-linear advection-diffusion.

444£)f[¢n+1]:f)ﬂ§::0

n+1l pk
FgNg

pottopn s 98 5 ((h”*lu”)f.Nf—Adt
Ok k feF)

Step 2 velocity: explicit upwind scheme with source term.

_ K
hZ+1uz+1—h"uk+s—: Y ( Z(g;’+1-Nf)+—u2F (9;’*1.N"§) )p’;:—%hz-ﬂ' y [¢"+1]kf N
fE[Fk k fEFk

THEROREM: Entropy dissipation
Let A =1 and assume the following CFL-like condition is satisfies

hn+1 hn+l)
k 1 kf kf .
uf-N ‘ \/7/ ¢n+] dt< h”*1+h"+1 mln(ék,fkf)

then the discrete mechanic energy is decreasing.

Martin PARISOT / 7 06/11/15 Conservation laws with constraints 11/18



An asymptotic preserving low-Mach scheme General description of the CPR scheme

NON-LINEAR FIXED POINT :

— @

n0 _ ;n
— from hk _hk

we compute the time step

P k m|n "q 7 q)
ug - Nf‘ ,/ ¢nq f dts ————1~ nq+hnq min(ék,[kf)
we compute implicitly the scheme for h" q+1
h:,q+1 n Z ((hn,q+1un) Nk /ldt( ) [(»bn q+1] )ul; -0

k fE[Fk
we compute explicitly the scheme for u"l:”l

we estimate the variation of entropy E" W+l f(h:’q”,ul'("q“)

we test (E matl o E n—dt ﬂux) a posteriori stop test
if not new iteration
n+1 ,,n+1) _ (pmq+1 n'q+1)
(hk Uy )* (hk Uy

if yes, we set next time step

Converge with few iterations when the potential is regular enough.

Martin PARISOT / 7 06/11/15 Conservation laws with constraints
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An asymptotic preserving low-Mach scheme Waves equations

Equations des ondes

Rusanov couple

1.5
TN AAAANNNANNNNDNA A AN A
s NIV AN oW AW AWARAWAYAWAWAWAWAWAWAWAWAWAY
RV VA Y iVAvAwAvAvAvAvivivavavavEVRYEVEYE
=30 Y.V NV ARV AN A AN Y A A VA YA A ALV A Y A A
15
1.5
=42 ADNAANNA NN A A
¥,00 Avl V'V VHVHVHVA . AUL,\V vuv AN LLVI VL\UA A\
-0.5 v - . : : Y
S0/ YAY; v
15
=42 JAWA ATA JAWANN A
s LAV A AR A AL NN AN A
o3RSV v \vi \VA AW/ \WAW S ARG VA NN B
©03 \/ \WAAV/ ViV WAV,
-1.5
1.5
féjg A N\ ~
& 3L ANA P A - AAVA T NNA =
B\ Y \VA VA N~ \VawaA
=10 VN MM
15
1.5
10
T 8'8 AAA AN P-N ~7/ SN\
&05 AT D A A N4 TS
’ 0.00 0.02 0.04 time 0.06 0.08 0.10
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Waves equations

An asymptotic preserving low-Mach scheme
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o| &< < < < ¢ e
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Waves equations

An asymptotic preserving low-Mach scheme

- = 5
AIV < AM/ ¢ . v
<1 < nvn

Y < L\V e ) > > \
P 5 ||
&g > V 5 > a A S
< Mm M Aw
= > J
< < < AW
> >
Au AM ! Amv W
8 \_WV \WV T ~\ %
2 > > > S
o < < « <
s Auwv < , Mv Wv A o
g > > N Wv £
5 < < AW
of WV > >
U < < < ¢ s
AHVN AMY AM\ A / =]
> > 5 N
<K « < A/
> Nvﬂ N 3 f
AHHV < a < > ¢
<< < < ¢ ~
<1< s 51| S
< < < <
> > > V

< g < ¢
el AV 3 Mv

> > > > S

NONOWOW INOWNONOL OO INOWNONOW NOWOON

00T T 000 T m-O000 T m-O000 T T OO0 Q™

(Hs-'9) (Hp-2S) (He-ES) (He-"S) (H-S9)

13/18

o)
]
=
©
s
5
7]
2
o
o
4=
=
2
@
2
&
ke
=]
[
2
o]
@
2
5]
)
0
—
S
—
=
©
<
Iho)
o

Low VErLociTty FLows

Martin PARISOT




Waves equations

An asymptotic preserving low-Mach scheme
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An asymptotic preserving low-Mach scheme Waves equations

Equations des ondes

Lax-Wendroff couple

1.5
TOIN A A AN NNNNNNNA N NN AN N A
R W AWAWAWAWAWAWAWANAWAWAWAWAWAWAWAWAWAWAWAWA
RV AYAYEVEAVAVAVAYRYRYAVAYAVAVAVAVEVAVAYAY
R A VA VA V) VNNV VNV VY
-1.5

15
=42 ATNVA AN I A NI\ A ~ A Py
3,00 I\\// \// I\VI \/ ‘VA\ A\/AV“" VAN I\Vl \ll\\ll\\ll\\lﬂ\‘
%05 \J A - g S ;
gL A

15
=42 \ A A JAWA WA n
ER 1 W BAVAR Wa AN\ A ALY XN A NN A Fay
o3RSV VAN NINA Y \N\/V VY \N\ A /N
203N\ \/ \/ \/ V'V \VAV/
-1.5

15
fg)'g A\ A\ A\
& 03 LALLM N oA VA ~ YA A
B\ ~ \VAV N\ A/ AN
=10 M AVA 4

-15

1.5

1.0
T 08 [ AA I N SN
v 0.0 NN\ o a8
05 TAAL N SAAL S
-1.0

-1.5

0.00 0.02 0.04 time 0.06 0.08 0.10
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An asymptotic preserving low-Mach scheme Transcritical flow

2.0 g g
Analytical solution
—— CPRA=1 ——
\::1 Roe
15 N Lax-Wendroff
°
8 A
§1.0 \ A o
©
=
0.5
0.0 4——1|'lllllll..l.-__,
6.0

. 4l

4.0
g 7 |\
830
o
: /|
2.0 7
/\
10 - An — —
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Position
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An asymptotic preserving low-Mach scheme Transcritical flow

2.0 ‘ ‘
Analytical solution
CPR =1 ——
— — CPR A=10

15 N CPR =100 —— -
&
B 1.0 \ l\ .
(3]
g \

0.5 \

\,U

0.0 A

6.0

5.0 /\

4.0
z /A
830 /7N
7\
>

2.0

/ \ :
1.0 o~
0.0
0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1.0

Position
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An asymptotic preserving low-Mach scheme Lock exchange 6 =10~

5 x10° x10°
o Lax-Wendroff couple
Al Y —
¥ oe decouple =
< Rusanov couple ~—] =2 \ |
c 1 = 3
S BT -4
B ° N
50 A f 2 6 M
> T — 5
Q >
RN = v = 4
3 g
o -2 -10 14
o
LL_S i i i i 1 42 J

1 3
x 10 12 x 10 7

6
= ’>R‘ 10
o 5
sl g8
.2 N L
4 S 6 > |
g g NG
8.2 ~ S 4 #
8 ~—_ £ vd \
e gz
= i)

- 0 e

6 1 1 1 1 1 1 1 1 1

0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0 0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0
Position (Water elevations) Position (Velocities)
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An asymptotic preserving low-Mach scheme Application for the partially free surface model

PROPERTY: Energy conservation for (SW*) (steady bottom 8B =0)
For smooth enough solution,
the mechanic energy E =&+ % of the partially free surface model (SW™) satisfies

0:E+V-((H +h(g(h+B)+p))u)=—(p-Ps)d:H*
L2
(h+B).

with the kinetic energy £ =

o>

and the potential energy & =

N |

Sketch of proof:

Multiplying the momentum balance by u with the potential ¢ =g (h+ B)
Momentum : 0t (hu)+V-(hu®u)=-hV(d+p)
Kin. energy : 0t & +V-(H u) = huV(p+p)

Martin PARISOT Low VELOCITY FLOWS 05-06/11/15 Conservation laws with constraints



An asymptotic preserving low-Mach scheme Application for the partially free surface model

PROPERTY: Energy conservation for (SW*) (steady bottom 8B =0)
For smooth enough solution,
the mechanic energy E =&+ % of the partially free surface model (SW™) satisfies

0:E+V-((H +h(g(h+B)+p))u)=—(p-Ps)d:H*
L2
(h+B).

with the kinetic energy £ =

o>

and the potential energy & =

N |

Sketch of proof:

Multiplying the momentum balance by u with the potential ¢ =g (h+ B)
Momentum : 0t (hu)+V-(hu®u)=-hV(d+p)
Kin. energy : 0t & +V-(H u) = huV(p+p)

Multiplying the mass conservation by (¢ +p—P,):
Mass : 0th+V-(hu)=0
Pot. energy : 0:&+V-(h(¢p+p—Pa)u)=—huV(p+p)—(p—Pa)dtH* —(p—Ps)d¢ (h— H*)
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with the kinetic energy £ =
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and the potential energy & =

N |

Sketch of proof:

Multiplying the momentum balance by u with the potential ¢ =g (h+ B)
Momentum : 0t (hu)+V-(hu®u)=-hV(d+p)
Kin. energy : 0t & +V-(H u) = huV(p+p)

Multiplying the mass conservation by (¢ +p—P,):
Mass : 0th+V-(hu)=0
Pot. energy : 0:&+V-(h(¢p+p—Pa)u)=—huV(p+p)—(p—Pa)dtH* —(p—Ps)d¢ (h— H*)

Thanks to the condition: (p—P,)(h—H*)=0, we have
(p=P2)0t(h—H*)=(H* —h)d: (p— Pa) then (p—P5)d: (h—H*)=0.
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An asymptotic preserving low-Mach scheme Application for the partially free surface model

PROPERTY: Energy conservation for (SW}) (steady bottom 9:B=0)
For smooth enough solution,
the mechanic energy E; = & + # of the partially free surface model (SW;) satisfies

0tEc+V-((He+he (g (he +B)+pe))ug) = —(pe — Pa) 0t H*

1
with the kinetic energy #¢ = §h£|u£|2

and the potential energy & = % (he +B)?+ >
€

2
(he - H*)% )
Sketch of proof:
T
Multiplying the momentum balance by ug with the potential ¢ = g((h‘E +B)+ (hsgig)*
Momentum : 3¢ (heug) + V- (hetg ® ug) = —he Ve
Kin. energy : 0t Az + V- (Heue) = heug Ve
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Sketch of proof:
T
Multiplying the momentum balance by ug with the potential ¢ = g((h‘E +B)+ (hsgig)*
Momentum : 3¢ (heug) + V- (hetg ® ug) = —he Ve
Kin. energy : 0t Az + V- (Heue) = heug Ve

Multiplying the mass conservation by ¢;:
Mass : Othe +V-(hgug)=0
(he —H*),

Pot. energy : 0t8¢ + V- (hepeug) = —heugVipe — g 5 OtH*
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An asymptotic preserving low-Mach scheme Application for the partially free surface model

PROPERTY: Energy conservation for (SW}) (steady bottom 9:B=0)
For smooth enough solution,
the mechanic energy E; = & + # of the partially free surface model (SW;) satisfies

0tEc+V-((He+he (g (he +B)+pe))ug) = —(pe — Pa) 0t H*

1
with the kinetic energy #¢ = §h£|u£|2

and the potential energy & = % (he +B)?+

(he—H*)i)
82 ’

Sketch of proof:

_*
Multiplying the momentum balance by ug with the potential ¢ = g((h‘E +B)+ (hsgigh

Momentum : 3¢ (heug) + V- (hetg ® ug) = —he Ve
Kin. energy : 0t Az + V- (Heue) = heug Ve

Multiplying the mass conservation by ¢;:

Mass : Othe +V-(hgug)=0
he — H*
Pot. energy : 0t8¢ + V- (hepeug) = —heugVipe — wafH*
€
he — H*
By definition: pe— P, = 7g( £ 5 )+.
€
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Conclusion and perspectives

CENTERED-POTENTIAL REGULARIZATION SCHEME:

@ The CPR scheme is very robust:  » large number of unknowns
non-conservative product

stiff conservative source term (low-Mach)
easily adaptable to several physics

vVVvVvy

@ The CPR scheme is very stable:  » entropic stability

» well-balanced for steady state at rest
» not restrictive CFL condition

>

weak numerical dissipation

Prospects: » explicit version
> wet/dry transition
» non-conservative forces (Coriolis, surface tension...)

PARTIALLY FREE SURFACE FLOWS:
@ Derivation of a shallow water type model for partially free surface flows
@ Formal analysis and numerical resolution for regular solution

Prospects: > reduce the oscillation of pressure and the CFL condition at the interface
» modeling of the pressure in bubbles
» coupling with the dynamics of a buoy
» submerged object

Thank you for your attention
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