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Introduction Motivation

Many flows are partially in charge:Groundwater flow
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Introduction Motivation

Many flows are partially in charge: Urban flood through sewer
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Introduction Motivation

Many flows are partially in charge: Iceberg drift
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Introduction Motivation

Many flows are partially in charge: Wave generator / wave energy converter
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Introduction Motivation

Many flows are partially in charge: Floating tidal turbin
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Introduction Partially free surface model

Partially free surface model with friction and viscosity:
Starting from Navier-Stokes equations with gravity and roof
and following [Gerbeau, Perthame’00], we get


∂th + ∇·(hu) = 0

∂t (hu) + ∇·
(
hu⊗u+ g

2 h2Id

)
= −h∇(gB+p)− κb +κr 1h>H?

1+ κb+κr 1h>H?
3µ h

u+4µ∇·(h∇u)

h≤H?,
(
H?−h

)
(p−Pa)= 0.

g η

B

R

H?

h
H? h

u

Unknowns:
h(t ,x) water depth
u (t ,x) averaged horizontal velocity
p (t ,x) pressure at surface η= h+zb

Given parameters:
Pa (t ,x) atmospheric pressure

B (t ,x)≤R (t ,x) bottom and roof level
H? (t ,x)=R −B maximum water depth
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Introduction Partially free surface model

Partially free surface model:
Starting from Navier-Stokes equations with gravity and roof
and following [Gerbeau, Perthame’00], we get


∂th + ∇·(hu) = 0

∂t (hu) + ∇·
(
hu⊗u+ g

2 h2Id

)
= −h∇(gB+p)

h<H?,
(
H?−h

)
(p−Pa)= 0.

g η

B

R

H?

h
H? h

u

B: Coupling approach
In the part with free surface ⇒ Shallow water equations. hyperbolic

In the part in charge ⇒ Lake equations not hyperbolic
What boundary condition at the interface λ ? Dynamic of the interface ?
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∂tu + u ·∇u+∇p = −g∇R
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Introduction Partially free surface model

Partially free surface model:
Starting from Navier-Stokes equations with gravity and roof
and following [Gerbeau, Perthame’00], we get

(
SW?)


∂th + ∇·(hu) = 0

∂t (hu) + ∇·
(
hu⊗u+ g

2 h2Id

)
= −h∇(gB+p)

h≤H?,
(
H?−h

)
(p−Pa)= 0.

g η

B

R

H?

h
H? h

u

Γ

B: Coupling approach
In the part with free surface ⇒ Shallow water equations. hyperbolic
In the part in charge ⇒ Lake equations not hyperbolic
What boundary condition at the interface λ ? Dynamic of the interface ?
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Introduction Other example

Crowd motion model: [Maury, Roudneff-Chupin, Samtambrogio’12]
∂tρ + ∇·(ρu) = 0
u + ∇p = U

ρ ≤ 1 (1−ρ)p = 0

Macro model (A. Roudneff-Chupin’11) Micro model (J. Venel’08)

Unknowns:
ρ (t ,x) density of pedestrian
u (t ,x) real velocity
p (t ,x) pressure

Given parameter:
U (t ,x) wished velocity
R? = 1 Maximum density
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Introduction Other example

Crowd motion model: [Maury, Roudneff-Chupin, Samtambrogio’12]
∂tρ + ∇·(ρu) = 0
u = PCρ (U)

∇p = PC⊥
ρ
(U)

with Cρ =
{
v ∈L2 (Ω) , ∀q ∈H1

ρ ,
∫

v ·∇q ≤ 0
}

and H1
ρ =

{
q ∈H1 (Ω) , and q

(
1ρ<1

)
= 0

}

Macro model (A. Roudneff-Chupin’11) Micro model (J. Venel’08)

B: Numerical strategy
Prediction step: numerical scheme without the constrain

Correction step: projection on the set of admissible velocity

expensive numerical scheme
not-easily adaptable for space-variable upper bound

Martin PARISOT Low Velocity Flows 05-06/11/15 Conservation laws with constraints 4/18



Introduction Other example

Crowd motion model: [Maury, Roudneff-Chupin, Samtambrogio’12]
∂tρ + ∇·(ρu) = 0
u = PCρ (U)

∇p = PC⊥
ρ
(U)

with Cρ =
{
v ∈L2 (Ω) , ∀q ∈H1

ρ ,
∫

v ·∇q ≤ 0
}

and H1
ρ =

{
q ∈H1 (Ω) , and q

(
1ρ<1

)
= 0

}

Macro model (A. Roudneff-Chupin’11) Micro model (J. Venel’08)

B: Numerical strategy
Prediction step: numerical scheme without the constrain

Correction step: projection on the set of admissible velocity
expensive numerical scheme
not-easily adaptable for space-variable upper bound

Martin PARISOT Low Velocity Flows 05-06/11/15 Conservation laws with constraints 4/18



Introduction Relaxation and asymptotic analysis

Relaxed partially free surface model:
Let us consider for any parameter ε> 0 the relaxed model:

(
SW?

ε

)

∂thε + ∇·(hεuε) = 0
∂t (hεuε) + ∇·

(
hεuε⊗uε+ g

2 h2ε Id

)
= −hε∇(gB+pε)

pε = Pa +
g (hε−H?)+

ε2

g η

B

R

H?

hε
H? hε

uε

Formal convergence:
(
SW?

ε

) −→
ε→0

(
SW?)

In the part in charge hε >H?:
The main term of momentum leads to the constrain hε =H?+O

(
ε2

)
The main term of the mass ∇·(H?uε)=−∂tH?+O

(
ε2

)
and the second order term of the momentum leads to the Lake equations

∂tuε+uε ·∇uε+∇(pε)=−g∇R +O
(
ε2

)
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Introduction Relaxation and asymptotic analysis

Relaxed partially free surface model:
Let us consider for any parameter ε> 0 the relaxed model:

(
SW?

ε

)

∂thε + ∇·(hεuε) = 0
∂t (hεuε) + ∇·

(
hεuε⊗uε+ g

2 h2ε Id

)
= −hε∇(gB+pε)

pε = Pa +
g (hε−H?)+

ε2

g η

B

R

H?

hε
H? hε

uε

Formal convergence:
(
SW?

ε

) −→
ε→0

(
SW?)

In the part in charge hε >H?: −→
ε→0

Lake

In the part with free surface hε <H?:
We have pε =Pa then for any ε we solve locally the Shallow Water equations
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Introduction Relaxation and asymptotic analysis

Relaxed partially free surface model:
Let us consider for any parameter ε> 0 the relaxed model:

(
SW?

ε

)

∂thε + ∇·(hεuε) = 0
∂t (hεuε) + ∇·

(
hεuε⊗uε+ g

2 h2ε Id

)
= −hε∇(gB+pε)

pε = Pa +
g (hε−H?)+

ε2

g η

B

R

H?

hε
H? hε

uε

Formal convergence:
(
SW?

ε

) −→
ε→0

(
SW?)

In the part in charge hε >H?: −→
ε→0

Lake

In the part with free surface hε <H?: −→
ε→0

Shallow Water

At the interface λε:
The flux are equals: hε =H? and pε =Pa
Unknown is the position λε (t).
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Introduction Relaxation and asymptotic analysis

Hyperbolicity of the relaxed model (SW?
ε ):

The relaxed model is an hyperbolic model with source term.

Eigenvalues: uε±
√(

1+ 1
ε2

)
ghε

B: Hyperbolic equation with stiff potential force ∼ low-Mach regime

Modeling error, i.e. hε = h+O
(
ε2

)
On a cartesian grid, the explicit Godunov-type solver

Large numerical diffusion, i.e. hdx = hε+O
(

dx
ε

)
Restrictive CFL condition

(
|uε|+

√(
1+ 1

ε2

)
ghε

)
dt ≤C dx

Theoretical optimal setting: ε=O
(

dx
1
3
)

, hdx = h+O
(

dx
2
3
)

, dt =O
(

dx
4
3
)
.

B: Potential wave celerity not fast enough.
Q. How produce a more efficient numerical scheme ?

a) first order accurate: hdx = h+O (dx)

b) modeling error smaller than numerical error: ε2 < dx

c) stable under hyperbolic CFL condition: dt =O (dx)

A. Use an asymptotic preserving low-Mach scheme
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An asymptotic preserving low-Mach scheme General description of the CPR scheme

Bilayers Shallow Water model: [Gill’82]

(
SW δ

Fr ,δ

)


∂t (%1h1) + ∇·(%1h1u1) = G
∂t (%1h1u1) + ∇·(%1h1u1⊗u1) = Guη− %1h1

F2r
∇(h1+h2+B)

∂t (%2h2) + ∇·(%2h2u2) = −G
∂t (%2h2u2) + ∇·(%2h2u2⊗u2) = −Guη− h2

F2r
∇(%1h1+%2 (h2+B))

Low-Froude number
mean depth H > 3000m
current speed V ≈ 1m/s

}
⇒Fr = Vp

gH
≈ 10−3

Low-density stratification
heating from above
hot water lighter

}
⇒ 0< 1− %1

%2
= δ≈ 10−3
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An asymptotic preserving low-Mach scheme General description of the CPR scheme

Bilayers Shallow Water model: [Gill’82]

(
SW δ

Fr ,δ

)
→ (SW1,0)


∂t (h1) + ∇·(h1u1) = G
∂t (h1u1) + ∇·(h1u1⊗u1) = Guη−h1∇p
∂t (h2) + ∇·(h2u2) = −G
∂t (h2u2) + ∇·(h2u2⊗u2) = −Guη−h2∇(p−h1)

h1+h2+B = 0

Low-Froude number
mean depth H > 3000m
current speed V ≈ 1m/s

}
⇒Fr = Vp

gH
≈ 10−3
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An asymptotic preserving low-Mach scheme General description of the CPR scheme

A few references on asymptotic preserving low-Mach scheme:

[Liou, Steffen’93]: Advection Upstream Splitting Method (AUMS)
Splitting of the equation into the advection part and the potential forces (pressure).

[Dellacherie’10]: Consistency with the asymptotic waves equation
Centered discretization of the potential forces (at least when ε→ 0).

[Grenier, Vila, Villedieu’13]: Entropic stabilisation for linear potential
Regularization using the gradient of the mass

[Parisot, Vila’15]: Generalization for multi-layers (multi-phasics) and non-conservative
products Regularization using the gradient of the potential φ(h,x)
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An asymptotic preserving low-Mach scheme General description of the CPR scheme

Qb) How to get a first order (independently of ε) space discretization error?
Numerical variables:

in cell: ψk = 1∣∣Vk
∣∣
∫
Vk

ψdx

at edge: 2(ψ)f =ψk +ψkf and 2 [ψ]kf
k =ψkf −ψk

parameters: `k =
∣∣Vk

∣∣∣∣∂Vk
∣∣ and µk

f = |f |∣∣∂Vk
∣∣

k f Nk
f
kf

Step 1 Use an AUSM based scheme

∂t

( hk

hk uk

)
+ 1
`k

∑
f ∈Fk

 Fh
f

Fhu
f

 ·Nk
f µ

k
f =

( 0

Qk

)

with Fh
f =

∫
f

hεuεdσ, Fhu
f =

∫
f

hεuε⊗uεdσ and Qk =− 1∣∣Vk
∣∣
∫
Vk

ghε∇φεdx .

Advect the velocity with an up-wind scheme

∂t (hk uk )+
1
`k

∑
f ∈Fk

(
uk

(
Fh

f ·Nk
f

)
+−ukf

(
Fh

f ·Nk
f

)
−

)
µk

f =Qk

Ensure the dissipation of the discrete kinetic energy (as a pollutant)
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An asymptotic preserving low-Mach scheme General description of the CPR scheme

Step 2 Use a centered discretization of the potential for any ε> 0

Qk ≈−hk
`k

∑
f ∈Fk

φf Nk
f |f | = −hk

`k

∑
f ∈Fk

[φ]
kf
k Nk

f |f |

Leads to a consistent numerical scheme when ε goes to 0.

Step 3 Regularization using the potential jump (τ : time scale; λ : regu. param.)

Fh
f = (hu)f −λτ

( h
`

)
f
[φ]

kf
k Nk

f

Ensure : the stability of the steady state at rest (φ=Cst and u = 0)
the dissipation of the discrete potential energy

Sketch of proof:
The mass scheme can be formally interpreted as a discretization of:
Mass : ∂th+∇·(h(u−λτ∇φ))= 0

Multiplying the mass conservation by φ:
Pot. energy : ∂tE +∇·(hφ(u−λτ∇φ))=−hu∇φ−λτh

∣∣∇φ∣∣2
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An asymptotic preserving low-Mach scheme General description of the CPR scheme

Qc) How to get a stable scheme independently of ε?
A Using an IMEX scheme: implicit for the water level h / explicit for the velocity u

Step 1 water level: implicit scheme of type non-linear advection-diffusion.

hn+1
k −hn

k + dt
`k

∑
f ∈Fk

((
hn+1un

)
f
·Nk

f −λdt
(

hn+1
`

)
f

[
φn+1]kf

k

)
︸ ︷︷ ︸

Fn+1
f ·Nk

f

µk
f = 0

Step 2 velocity: explicit upwind scheme with source term.

hn+1
k un+1

k −hn
k un

k+
dt
`k

∑
f ∈Fk

(
un

k
(
Fn+1

f ·Nk
f

)+−un
kf

(
Fn+1

f ·Nk
f

)−)
µk

f =− dt
`k

hn+1
k

∑
f ∈Fk

[
φn+1]kf

k
Nk

f µ
k
f

Therorem: Entropy dissipation
Let λ≥ 1 and assume the following CFL-like condition is satisfies

∣∣∣un
f ·Nk

f

∣∣∣+
√
λ

2

√∣∣∣[φn+1]kf
k

∣∣∣
 dt ≤

min
(
hn+1

k ,hn+1
kf

)
hn+1

k +hn+1
kf

min
(
`k ,`kf

)

then the discrete mechanic energy is decreasing.
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An asymptotic preserving low-Mach scheme General description of the CPR scheme

Non-linear fixed point :
from hn,0

k = hn
k

we compute the time step∣∣∣un
f ·Nk

f

∣∣∣+
√
λ

2

√∣∣∣[φn,q ]kf
k

∣∣∣
 dt ≤

min
(
hn,q

k ,hn,q
kf

)
hn,q

k +hn,q
kf

min
(
`k ,`kf

)

we compute implicitly the scheme for hn,q+1
k

hn,q+1
k −hn

k + dt
`k

∑
f ∈Fk

((
hn,q+1un

)
f
·Nk

f −λdt
( hn,q

`

)
f

[
φn,q+1]kf

k

)
µk

f = 0

we compute explicitly the scheme for un,q+1
i ,k

we estimate the variation of entropy En,q+1
k = f

(
hn,q+1

k ,un,q+1
k

)
we test

(
En,q+1

k ≤En
k − dt flux

)
a posteriori stop test

if not new iteration
if yes, we set

(
hn+1

k ,un+1
k

)
=

(
hn,q+1

k ,un,q+1
k

)
next time step

Converge with few iterations when the potential is regular enough.
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An asymptotic preserving low-Mach scheme Waves equations
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An asymptotic preserving low-Mach scheme Waves equations
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An asymptotic preserving low-Mach scheme Transcritical flow
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An asymptotic preserving low-Mach scheme Lock exchange δ= 10−3
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An asymptotic preserving low-Mach scheme Application for the partially free surface model

Property: Energy conservation for (SW?) (steady bottom ∂tB = 0)
For smooth enough solution,
the mechanic energy E = E +K of the partially free surface model (SW?) satisfies

∂tE +∇·((K +h(g (h+B)+p))u)=−(p−Pa)∂tH?

with the kinetic energy K = 1
2h |u|2

and the potential energy E = g
2
(h+B)2.

Sketch of proof:
Multiplying the momentum balance by u with the potential φ= g (h+B)
Momentum : ∂t (hu)+∇·(hu⊗u)=−h∇(φ+p)
Kin. energy : ∂tK +∇·(K u)= hu∇(φ+p)

Multiplying the mass conservation by (φ+p−Pa):
Mass : ∂th+∇·(hu)= 0
Pot. energy : ∂tE +∇·(h(φ+p−Pa)u)=−hu∇(φ+p)−(p−Pa)∂tH?−(p−Pa)∂t

(
h−H?)

Thanks to the condition: (p−Pa)
(
h−H?)= 0, we have

(p−Pa)∂t
(
h−H?)= (

H?−h
)
∂t (p−Pa) then (p−Pa)∂t (h−H?)= 0.
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An asymptotic preserving low-Mach scheme Application for the partially free surface model

Property: Energy conservation for (SW?
ε ) (steady bottom ∂tB = 0)

For smooth enough solution,
the mechanic energy Eε = Eε+Kε of the partially free surface model (SW?

ε ) satisfies

∂tEε+∇·((Kε+hε (g (hε+B)+pε))uε)=−(pε−Pa)∂tH?

with the kinetic energy Kε = 1
2hε |uε|2

and the potential energy Eε = g
2

(
(hε+B)2+ (hε−H?)2+

ε2

)
.

Sketch of proof:
Multiplying the momentum balance by uε with the potential φε = g

(
(hε+B)+ (hε−H?)+

ε2

)
Momentum : ∂t (hεuε)+∇·(hεuε⊗uε)=−hε∇φε
Kin. energy : ∂tKε+∇·(Kεuε)= hεuε∇φε

Multiplying the mass conservation by φε:
Mass : ∂thε+∇·(hεuε)= 0

Pot. energy : ∂tEε+∇·(hεφεuε)=−hεuε∇φε−
g (hε−H?)+

ε2
∂tH?

By definition: pε−Pa = g (hε−H?)+
ε2

.

HLL ε= dx
1
3 CPR ε= dx2
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Conclusion and perspectives

Centered-Potential regularization scheme:
The CPR scheme is very robust: large number of unknowns

non-conservative product
stiff conservative source term (low-Mach)
easily adaptable to several physics

The CPR scheme is very stable: entropic stability
well-balanced for steady state at rest
not restrictive CFL condition
weak numerical dissipation

Prospects: explicit version
wet/dry transition
non-conservative forces (Coriolis, surface tension...)

Partially free surface flows:
Derivation of a shallow water type model for partially free surface flows
Formal analysis and numerical resolution for regular solution

Prospects: reduce the oscillation of pressure and the CFL condition at the interface
modeling of the pressure in bubbles
coupling with the dynamics of a buoy
submerged object

Thank you for your attention
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