Automorphisms of *p*-completed classifying spaces of groups of Lie type Bob Oliver

For any space X, let Out(X) be the group of homotopy classes of self homotopy equivalences of X. If G is a finite group, then the natural homomorphism $Out(G) \longrightarrow Out(BG)$ is an isomorphism: this is an easy consequence of elementary obstruction theory. However, if p is a prime and BG_p^{\wedge} denotes the Bousfield-Kan p-completion of BG, then $Out(BG_p^{\wedge})$ can be very different from $Out(BG) \cong Out(G)$.

In joint work with Carles Broto and Jesper Møller, we were surprised to find that when G is a finite simple group of Lie type, there is still a close relation between these two groups. If p is the defining characteristic of G, then $\operatorname{Out}(BG_p^{\wedge}) \cong \operatorname{Out}(G)$ (the natural homomorphism is an isomorphism) with just one exception: $G = SL_3(2)$. If p is different from the defining characteristic, then the natural homomorphism is in general neither surjective nor injective, but there is always another finite group G^* such that $BG_p^* \cong BG_p^{\wedge}$, and the natural map $\operatorname{Out}(G^*) \longrightarrow \operatorname{Out}(BG_p^*)$ is split surjective.

The methods used to prove this are partly geometric and partly algebraic.