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Introduction

Joint work with Thomas Krajewski and Vasily Sazonov, arXiv:1910.13261

Constructive loop vertex expansion for stable matrix models with (single
trace) interactions of arbitrarily high even order in the Hermitian case.

We prove analyticity in the coupling constant of the free energy for such
models in a domain uniform in the size N of the matrix.

It relies on a new and simpler method which can also be applied in the
general case of non-Hermitian matrices (which was earlier treated by the
same authors, arXiv:1712.05670).
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The H2p Model

dµ(H) GUE measure with iid covariance 1/N

dµ(H) =
1

πN2 e
−NTrH2

dH,

dH =
∏
i

dHii

∏
i<j

dHijdH̄ij .

The H2p model is defined with an action

S(λ,H) := λTrH2p, p ≥ 3.
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The H2p Model

The partition function and free energy of the model

Z(λ,N) :=

∫
dµ(H) e−NS(λ,H), (1)

F (λ,N) :=
1

N2
logZ(λ,N). (2)

Write

K := H
√

1 + λH2p−2, K 2 = H2 + λH2p, (3)

and put T := H2

K2 . The Fuss-Catalan equation is:

zT p(z)− T (z) + 1 = 0 , (4)

with z := −λK 2p−2. The change of variables inverts to H(K) := K
√

T (z).
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The H2p Model

Let us define

fλ(u) :=
√

T (−λu2p−2), hλ(u) := ufλ(u), kλ(v) := v
√

1 + λv 2p−2 (5)

hλ ◦ kλ(z) = kλ ◦ hλ(z) = z (6)

The Jacobian of the change of variables produces a new non-polynomial
interaction ∣∣∣ δH

δK

∣∣∣ =
∣∣∣detH ⊗ 1− 1⊗ H

K ⊗ 1− 1⊗ K

∣∣∣ . (7)
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The main Theorem

Theorem

For any ε > 0 there exists η small enough such that the expansion is absolutely
convergent and defines an analytic function of λ, uniformly bounded in N, in
the uniform in N “pacman domain”

P(ε, η) := {0 < |λ| < η, | arg λ| < π − ε} . (8)
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The H2p Model

A pacman domain with radius ≤ η and angular size ≤ 2π − 2ε.
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The LVE

We first expand the partition function as

Z(λ,N) =
∞∑
n=0

1

n!

∫
dµ(K)

n∏
a=1

S(λ,Ka) . (9)

Then we apply the BKAR formula. The BKAR formula is a Taylor expansion
formula with integral remainder in several variables. The result is a sum over
the set Fn of forests F on n labeled vertices

Z(λ,N) =
∞∑
n=0

1

n!

∑
F∈Fn

∫
dwF ∂FZn

∣∣∣
xab=xF

ab
(w)
, (10)

∫
dwF :=

∏
(a,b)∈F

∫ 1

0

dwab , ∂F :=
∏

(a,b)∈F

∂

∂xab
, (11)

Zn :=

∫
dµC(x)({K})

n∏
a=1

S(λ,Ka), (12)

xFab :=

{
min(k,l)∈PF

a↔b
wkl if PFa↔b exists ,

0 if PFa↔b does not exist .
(13)
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An example of the BKAR forest formula

The formidable-looking formula is in fact quite simple.

There is a BKAR formula for each complete graph:

Figure: The list of complete graphs up to order 7

Vincent Rivasseau Constructive Matrix Theory for Hermitian Higher Order Interaction



An example of the BKAR forest formula

For n = 2, there are two forests (including the empty one), and the BKAR
forest formula is simply

F (1) = F (0) +

∫ 1

0

dw F ′(w). (14)

We recognize the Taylor formula at order one with integral remainder!
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An example of the BKAR forest formula

For n = 3 there are seven forests. The formula decomposes into

the empty forest, which is always associated to 0, 0, ..., 0,

three singleton forests, (1, 0, 0), (0, 1, 0), (0, 0, 1) with a single parameter,

three doubleton forests (1, 1, 0), (1, 0, 1), (0, 1, 1) with two parameters.
This is where the min formula appears for the first time.

F (1, 1, 1) = F (0, 0, 0) +

∫ 1

0

dw1 ∂1F (w1, 0, 0) +

∫ 1

0

dw2 ∂2F (0,w2, 0)

+

∫ 1

0

dw3 ∂3F (0, 0,w3) +

∫ 1

0

∫ 1

0

dw1dw2 ∂
2
12F (w1,w2,min(w1,w2))

+

∫ 1

0

∫ 1

0

dw1dw3 ∂
2
13F (w1,min(w1,w3),w3)

+

∫ 1

0

∫ 1

0

dw2dw3 ∂
2
23F (min(w2,w3),w2,w3). (15)
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The LVE

Introducing the condensed notations

dµ = dµC(x)({K}), ∂K
F =

∏
(a,b)∈F

Tr
[ ∂

∂K †a

∂

∂Kb

]
, Sn =

n∏
a=1

S(λ,Ka), (16)

we obtain

Z(λ,N) =
∞∑
n=0

1

n!

∑
F∈Fn

AF (17)

AF = N−|F|
∫

dwF

∫
dµ ∂K

FSn
∣∣∣
xab=xF

ab
(w)
. (18)
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The LVE

The good thing is that the free energy F (λ,N) is computed by the same sum
of the same amplitude but made of spanning trees Tn

F (λ,N) =
1

N2

∞∑
n=1

1

n!

∑
T ∈Tn

AT , (19)

The statement “if the partition function is made of some discrete objects, the
logarithm is made of same objects but restricted to connected case” is true for
a much wider class than the class of graphs or the class of forests. It pertains
to the class of combinatoric species defined by André Joyal and developed by
Canadians mathematicians François Bergeron, Gilbert Labelle and Pierre
Leroux.

In essence it is an abstract, systematic method for counting discrete structures,
made of graphs, of permutations, of matroids ...

Vincent Rivasseau Constructive Matrix Theory for Hermitian Higher Order Interaction



Some applications of LVE

The constructive theory of matrices is the initial application of the LVE
(R, arXiv 2007...).

For φ4 models, any Schwinger function S is expressed in a constructive
way as simply a rearrangement of the perturbative series in the
intermediate expansion

√
λφ2σ

S =
∑
G

AG =
∑
G

∑
T⊂G

w(G ,T )AG =
∑
T

AT , AT =
∑
G⊃T

w(G ,T )AG . (20)

with ∑
T

|AT | < +∞ , (21)

where the tree weights w(G ,T ) are defined by the percentage of the
Hepp’s sectors from which the Kruskal tree is leading (R, Tanasa,
Zhituo...).
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Some applications of LVE

The constructive theory of tensor models bears on LVE still further
(Delepouve, Herbin, Gurau, Lahoche, Lionni, Magnen, Noui, R, Smerlak,
Tamaazousti, Vignes-Tourneret...).
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The Proof of the Theorem

We fix the tree (with at least n ≥ 2 nodes, the case n = 1 requiring a special
treatment).

We put g(u) = h(u)− u. Notice that gλ(u) vanishes at λ = 0, so that:

gλ(u) =

∫ λ

0

dt∂tgt(u) = −1

2

∫ λ

0

dt u2p−1 T
′(u)

T (u)
ft(u). (22)
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The Proof of the Theorem

We use factorization through holomorphic calculus

f (H) =

∮
Γ

dv
f (v)

v − H

provided the contour Γ encloses the full spectrum of H.

Γr , R ,ψ
H

R
ψ

xr

y

R

ψ

r

Here are shown a keyhole contour Γ encircling the spectrum of H, which, for H
Hermitian, lies on a real axis segment like the one shown in boldface.
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The Proof of the Theorem

k+1

k

k−1

k

k−1

half−edge

1+ Σ

(u−K)−1

−1( )

k

k

k+1

Here is a picture of a vertex with some of its corners operators, noted
Ock (uk , uk+1). There is only one operator K per vertex (this is due to the fact
that the formula BKAR depends only on a vertex). Therefore there is only one
eigenvector base, ea ⊗ eb, since the two borders factorize independently.
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The Proof of the Theorem

k+1

k

k−1

k

k−1

half−edge

1+ Σ

(u−K)−1

−1( )

k

k

k+1

The operator Ock (uk , uk+1) is diagonal on the basis ea ⊗ eb, with eigenvalues

Ock
ab (uk , uk+1) =

[
1⊗ + Σ

]−1

ab

[ 1

uk − µa

1

uk+1 − µa
⊗ 1

uk − µb

+
1

uk − µa
⊗ 1

uk − µb

1

uk+1 − µb

]
. (23)

with the two tensors terms being symmetric of each other.
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The Proof of the Theorem

k+1

k

k−1

k

k−1

half−edge

1+ Σ

(u−K)−1

−1( )

k

k

k+1

Calling νa = hλ(µa), Σ is defined by

(1⊗ + Σ)−1
ab =

kλ(νa)− kλ(νb)

νa − νb
. (24)

The label k indicates the corresponding contour variable. The upper left corner
between the two half-edges indicating by the t symbols contains three 1

u−K

operators with indices k, k and k + 1.
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The Proof of the Theorem

The following lemmas are a bit technical; I could give some explanations during
the questions.

The theorem depends on a key lemma:

Lemma (1)

On the contour Γ we have the bound

|gλ(u)| ≤ O(1)|λ|
1

4p2 |u|1+ 1
2p
− 1

2p2 . (25)

The next lemma bounds (1⊗ + Σ)−1
ab

Lemma (2)

For complex λ such that |arg(λ)| ≤ π− ε there exists some constant O(1) such
that

|(1⊗ + Σ)−1
ab | ≤ O(1) sup{1,Λab} (26)

Λab := |λ|
1

2p sup{|µa|, |µb|}1− 1
p . (27)
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The Proof of the Theorem

Lemma (3)

For complex λ such that |arg(λ)| ≤ π − ε

‖Ock (uk , uk+1)‖ ≤ O(1)
1

(1 + |uk |)1+ 1
p

1

1 + |uk+1|
. (28)

Lemma (4)

There exists some constant O(1) such that

|AT | ≤ [O(1)]n
∏
v

m(v)∏
k=1

∮
Γ

|gλ(uk)|
[

1

1 + |uk |

]2+ 1
p

duk . (29)

Lemma (5)

There exists some constant O(1) such that∮
Γ

|gλ(u)|
[

1

1 + |u|

]2+ 1
p

du ≤ O(1)|λ|
1

4p2 . (30)
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Conclusion

With the five preceding lemmas the proof is now complete.

The LVE expresses the free energy constructively: it has the great
advantage of being a convergent sum, while perturbative techniques in
Feyman graphs fail in this respect.

The trick of involving a parameter for each corner of each vertex is the key
of this theorem. It simplifies also the non-Hermitian complex case or the
case of symmetric or symplectic matrices.

As was said, the case n = 1 required a special treatment. It is actually
quite subtile; it involves five terms each with a different structure. I could
again give some explanations during the questions.
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Conclusion

Thank you for your attention !
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Sketch of n = 1 case

u

B1

B4

u

v

w w

w

B2

u

v v

B3

u

v

ww

w

B5

u

v

w w

(1+ Σ)
−1

(u−K)
−1

d
K

R

u

v

Figure: The five terms B1, B2, B3, B4 and B5. The arrow indicates the action of the
∂K matrix derivative.
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Sketch of n = 1 case

We define Rdiag and (1⊗ + Σ)−1
diag as the diagonal “single thread” N by N

matrix with eigenvalue Ra
diag := Raa or (1⊗ + Σ)−1

aa on ea, and perform a careful
analysis of the tensor threads involved, hopefully helped by Figure 2. It gives

A2 = N−3

∫
dµ

∫ λ

0

dt

∮
Γ

du

∮
Γ′
dv ∂tφ(t, u, v)

[
B1 + B2 + B3 + B4 + B5

]
, (31)

where the first two terms are obtained when ∂K hits
[

1
u−K
⊗ 1

v−K

]
, giving

B1 = Tr⊗3

[[
R⊗ 1

][ 1

u − K
⊗ 1

v − K
⊗ 1

u − K

]]
, (32)

B2 = Tr Rdiag
1

(u − K)(v − K)2
, (33)

The last three terms B3, B4 and B5 come from ∂K hitting R

∂KR = ∂K (1⊗ f )(1 + Σ)−1 (34)

= −R [∂KΣ] (1 + Σ)−1 + [1⊗ ∂K f ](1 + Σ)−1. (35)
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Proof of Lemma 1

We can use the rather standard estimates on Tp and Ep(z) =
T ′p
Tp

(z). In

particular it is proven there that in a domain avoiding a small angular opening
ε around the cut of Tp we have

Tp(z) ≤ (1 + |z |)−
1
p , Ep(z) ≤ O(1)

(1 + |z |) . (36)

In our case this means that on our contour Γ, for any 0 < δ < 1 there is a
constant Cδ such that

|et ft(u)| ≤ Cδ

[|t||u|2p−2](1+ 1
2p

)(1−δ)
, (37)

Choosing δ = 1
2p

gives (25).
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Proof of Lemma 2

Calling νa = hλ(µa), (23) means that

(1⊗ + Σ)−1
ab =

kλ(νa)− kλ(νb)

νa − νb
. (38)

hence it is bounded by supν∈[νa,νb ] |k ′λ(ν)| where the sup is taken along the
[νa, νb] segment. k ′λ can be explicitly computed and from the large z behavior
of the function T (z) ∼ z−1/p derived from its functional equation (4). The
bound follows easily on the pacman domain.
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Proof of Lemma 3

Suppose eg Λab = |λ
1

2p ||µa|1−
1
p . We bound the 1

uk−µa
factor in (23) as∣∣∣∣ 1

uk − µa

∣∣∣∣ ≤ [ 1

1 + |uk |

]1/p[
1

1 + |µa|

]1−1/p

. (39)

Combining with (26) leads to

|Ock
ab (uk , uk+1)| ≤ O(1)

[
1

1 + |uk |

]1+1/p
1

1 + |uk+1|
. (40)

The other cases Λab = |λ
1

2p ||µb|1−
1
p or Λab = 1 are obviously similar. Since the

bound (40) is independent of a and b, it implies (28), with Cε,2 = 2Cε[Cε,1]3.
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Proof of Lemma 4

We bound recursively all tree traces. The simplest way to understand how it
works is to start from a leaf f , which has r = m = 1. The associated operator
is therefore a single contour-corner operator Oc whose norm, by (28), is

bounded by O(1)[ 1
1+|uk |

]2+ 1
p . The amplitude for AT contains a partial trace on

one H factor of the tensor product H⊗H of the leaf vertex, leading to a

simpler operator on H only, with norm bounded by NO(1)[ 1
1+|uk |

]2+ 1
p . After

gluing this factor between the two appropriate corners in the parent vertex v(f )
we can find a new leaf and iterate. This leads to the bound. Indeed this
induction collects exactly n + 1 factors N (since the last vertex of the tree
brings two such factors). This exactly compensates with the N−n−1 factor in
(19). Finally the

∫
dwT

∫
dµC(x)({K}) integrals are normalized so do not add

anything to the bounds.
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Proof of Lemma 5

Inserting (25) proves (30) since the integral
∮

Γ
|u|

1+ 1
2p
− 1

2p2

(1+|u|)
2+ 1

p
du is absolutely

convergent and bounded by a constant at fixed p.
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