Formes normales sphériques pour les points fixes paraboliques de $\overline{\mathbb{C}}$ Wébinaire EFI

Loïc Teyssier (Université de Strasbourg)

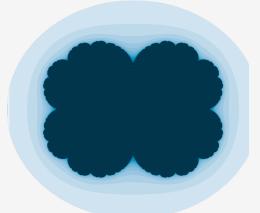
9 juin 2020

Contexte

Systèmes dynamiques holomorphes de la sphère de Riemann $\overline{\mathbb{C}}$

Contexte

Systèmes dynamiques holomorphes de la sphère de Riemann $\overline{\mathbb{C}}$



$$\mathtt{Julia}\left(z\mapsto z^2+\tfrac{1}{4}\right)$$

Contexte

Systèmes dynamiques holomorphes \emph{locaux} de la sphère de Riemann $\overline{\mathbb{C}}$

Dynamique de points fixes paraboliques $\Delta \in \mathrm{Diff}\,(\mathbb{C},0)$

$$\Delta : z \longmapsto \alpha z + \cdots , \alpha \in \mathbb{C}^{\times}$$

$$\Delta : z \longmapsto \alpha z + \cdots , \alpha \in \mathbb{C}^{\times}$$

 $\alpha \notin \mathbb{S}^1$: localement linéarisable

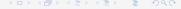
$$\exists \varphi \in \text{Diff} (\mathbb{C}, 0) : \varphi^* \Delta := \varphi^{-1} \circ \Delta \circ \varphi = \alpha \text{ Id}$$

$$\Delta : z \longmapsto \alpha z + \cdots , \alpha \in \mathbb{C}^{\times}$$

 $oxed{1} \quad \alpha
otin \mathbb{S}^1$: localement linéarisable

$$\exists \varphi \in \text{Diff}(\mathbb{C}, 0) : \varphi^* \Delta := \varphi^{-1} \circ \Delta \circ \varphi = \alpha \text{ Id}$$

 \blacksquare \longrightarrow Fatou si $|\alpha| < 1$ (point fixe attractif)



$$\Delta : z \longmapsto \alpha z + \cdots , \alpha \in \mathbb{C}^{\times}$$

$$\exists \varphi \in \text{Diff}(\mathbb{C}, 0) : \varphi^* \Delta := \varphi^{-1} \circ \Delta \circ \varphi = \alpha \text{ Id}$$

- lacksquare Fatou si |lpha| < 1 (point fixe attractif)
- lacksquare Julia si |lpha|>1 (point fixe répulsif)

$$\Delta : z \longmapsto \alpha z + \cdots , \alpha \in \mathbb{C}^{\times}$$

 $oxed{1} lpha
otin \mathbb{S}^1$: localement linéarisable

$$\exists \varphi \in \text{Diff}(\mathbb{C}, 0) : \varphi^* \Delta := \varphi^{-1} \circ \Delta \circ \varphi = \alpha \text{ Id}$$

- lacksquare Fatou si |lpha| < 1 (point fixe attractif)
- lacksquare Julia si |lpha|>1 (point fixe répulsif)
- $\alpha \in \mathbb{S}^1$:

$$\Delta : z \longmapsto \alpha z + \cdots , \alpha \in \mathbb{C}^{\times}$$

 $oxed{1} \quad \alpha
otin \mathbb{S}^1$: localement linéarisable

$$\exists \varphi \in \text{Diff}(\mathbb{C}, 0) : \varphi^* \Delta := \varphi^{-1} \circ \Delta \circ \varphi = \alpha \text{ Id}$$

- \blacksquare Fatou si $|\alpha| < 1$ (point fixe attractif)
- lacksquare Julia si |lpha|>1 (point fixe répulsif)
- $\alpha \in \mathbb{S}^1$:
 - localement linéarisable $\iff \Delta$ stable i.e. $\exists U$ vois. de $0:\Delta(U)\subset U$ \longrightarrow Fatou (disque de Siegel...)

$$\Delta : z \longmapsto \alpha z + \cdots , \alpha \in \mathbb{C}^{\times}$$

 $\alpha \notin \mathbb{S}^1$: localement linéarisable

$$\exists \varphi \in \text{Diff}(\mathbb{C}, 0) : \varphi^* \Delta := \varphi^{-1} \circ \Delta \circ \varphi = \alpha \text{ Id}$$

- \blacksquare Fatou si $|\alpha| < 1$ (point fixe attractif)
- lacksquare Julia si |lpha|>1 (point fixe répulsif)
- $\alpha \in \mathbb{S}^1$:
 - localement linéarisable $\iff \Delta$ stable i.e. $\exists U$ vois. de $0:\Delta(U)\subset U$ \longrightarrow Fatou (disque de Siegel...)
 - sinon : classes locales « très » nombreuses e.g.

$$\{z\mapsto z+\cdots\}/_{\mathrm{Diff}(\mathbb{C},0)}\simeq\bigoplus_{\mathbb{N}}\mathrm{Diff}\left(\mathbb{C},0\right)$$

$$\Delta \in \mathsf{Parab} := \{z \longmapsto z + \cdots\} \setminus \{\mathrm{Id}\}$$

$$\Delta \in \mathsf{Parab} := \{z \longmapsto z + \cdots\} \setminus \{\mathrm{Id}\}$$

Stratification par l'ordre de tangence à Id

$$\Delta \in \mathsf{Parab} := \{z \longmapsto z + \cdots\} \setminus \{\mathrm{Id}\}$$

Stratification par l'ordre de tangence à Id

$$\begin{aligned} \mathsf{Parab} &= \coprod_{k \in \mathbb{N}_{>0}} \mathsf{Parab}_k \\ &= \coprod_{k \in \mathbb{N}_{>0}} \left\{ z \longmapsto z + *z^{k+1} + \cdots \; , \; * \in \mathbb{C}^\times \right\} \end{aligned}$$

$$\Delta \in \mathsf{Parab} := \{z \longmapsto z + \cdots\} \setminus \{\mathrm{Id}\}$$

Stratification par l'ordre de tangence à Id

$$\begin{aligned} \mathsf{Parab} &= \coprod_{k \in \mathbb{N}_{>0}} \mathsf{Parab}_k \\ &= \coprod_{k \in \mathbb{N}_{>0}} \left\{ z \longmapsto z + *z^{k+1} + \cdots \;, \; * \in \mathbb{C}^\times \right\} \end{aligned}$$

lacksquare $k \geq 1$ invariant topologique : nombre de pétales attractifs

$$\mathsf{Parab}_k = \mathsf{Parab} \cap (\mathsf{Homeo}\,(\mathbb{C},0)^*\,\mathsf{Parab}_k)$$

$$\Delta : z \longmapsto \frac{z}{1-z} \in \mathsf{Parab}_1$$

$$\Delta \ : \ z \longmapsto \frac{z}{1-z} \ \in \mathsf{Parab}_1$$

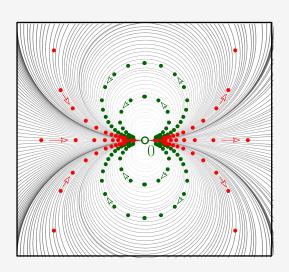
 Modèle topologique pour Parab₁

$$\Delta \ : \ z \longmapsto^{\displaystyle \frac{z}{1-z}} \quad \ \in \mathsf{Parab}_1$$

- Modèle topologique pour Parab₁
- Orbites organisées sur des cercles

$$\Delta : z \longmapsto \frac{z}{1-z} \in \mathsf{Parab}_1$$

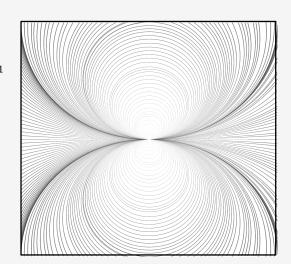
- Modèle topologique pour Parab₁
- Orbites organisées sur des cercles



$$\Delta : z \longmapsto \frac{z}{1-z} \in \mathsf{Parab}_1$$

 Δ flot au temps 1 de $z^2 \frac{\partial}{\partial z}$:

$$\dot{x}(t) = x(t)^2$$
, $x(0) = z$
 $x(1) = \Delta(z)$



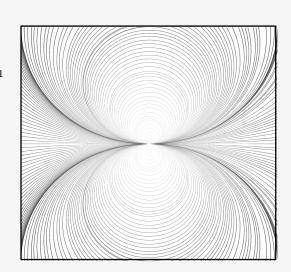
$$\Delta : z \longmapsto \frac{z}{1-z} \in \mathsf{Parab}_1$$

 Δ flot au temps 1 de $z^2 \frac{\partial}{\partial z}$:

$$\dot{x}(t) = x(t)^{2}, x(0) = z$$
$$x(1) = \Delta(z)$$

$$n \in \mathbb{Z}$$

$$\Delta^{\circ n}(z) = \frac{z}{1 - nz} = x(n)$$



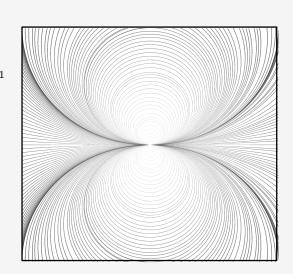
$$\Delta : z \longmapsto \frac{z}{1-z} \in \mathsf{Parab}_1$$

 Δ flot au temps 1 de $z^2 \frac{\partial}{\partial z}$:

$$\dot{x}(t) = x(t)^{2}, x(0) = z$$
$$x(1) = \Delta(z)$$

$$\alpha \in \mathbb{C}$$

$$\Delta^{\circ\alpha}(z) = \frac{z}{1 - \alpha z} = x(\alpha)$$



Définition

 $\begin{array}{l} \Delta \in \mathrm{Diff}\,(\mathbb{C},0) \text{ est plongeable dans un flot} \\ \Longleftrightarrow \exists X \text{ champ de vecteurs holomorphe sur } (\mathbb{C},0) : \Delta = \Phi^1_X \end{array}$

Définition

 $\begin{array}{l} \Delta \in \mathrm{Diff}\left(\mathbb{C},0\right) \text{ est plongeable dans un flot} \\ \Longleftrightarrow \exists X \text{ champ de vecteurs holomorphe sur } \left(\mathbb{C},0\right) : \Delta = \Phi^1_X \end{array}$

Question

Tout $\Delta \in \mathrm{Diff}\,(\mathbb{C},0)$ est plongeable dans un flot?

Définition

 $\begin{array}{l} \Delta \in \mathrm{Diff}\,(\mathbb{C},0) \text{ est plongeable dans un flot} \\ \Longleftrightarrow \exists X \text{ champ de vecteurs holomorphe sur } (\mathbb{C},0) : \Delta = \Phi^1_X \end{array}$

Question

Tout $\Delta \in \mathrm{Diff}\,(\mathbb{C},0)$ est plongeable dans un flot ?

Réponse

Non. Exemple de Baker (1962)

 $\exp -\mathrm{Id}$

Définition

 $\Delta \in \mathrm{Diff}\,(\mathbb{C},0)$ est plongeable dans un flot $\iff \exists X \text{ champ de vecteurs holomorphe sur } (\mathbb{C},0): \Delta = \Phi^1_X$

Lemme

Tout $\Delta \in \mathrm{Diff}\,(\mathbb{C},0)$ est plongeable dans un **flot formel** :

$$\Delta = \Phi_{\widehat{X}}^1 \quad , \ \widehat{X} \in \mathbb{C}[[z]] \frac{\partial}{\partial z}$$

i e la série

$$\sum_{n\in\mathbb{N}}\frac{t^n}{n!}\left(\widehat{X}\cdot^n\operatorname{Id}\right)=:\Phi_{\widehat{X}}^t$$

converge sur $(\mathbb{C},0)$ vers Δ pour t:=1

Théorème (Écalle, 1975)

$$\Gamma_\Delta := \left\{ t \in \mathbb{C} \; : \; \Phi^t_{\widehat{X}} \; \mathsf{converge} \; \mathsf{en} \; \mathsf{0}
ight\} < (\mathbb{C}, +)$$

Théorème (Écalle, 1975)

$$\Gamma_{\Delta}:=\left\{t\in\mathbb{C}\ :\ \Phi_{\widehat{X}}^{t}\ ext{converge en }0
ight\}<\left(\mathbb{C},+
ight)$$

$$\ \ \, \big(\exists f\in \mathrm{Diff}\left(\mathbb{C},0\right),\ \alpha\in\mathbb{C}^{\times}\ :\ f^{\circ\alpha}=\Delta\big)\Longleftrightarrow \frac{1}{\alpha}\in\Gamma_{\Delta}\ \mathrm{et}\ f=\Phi_{\widehat{X}}^{1/\alpha}$$

Théorème (Écalle, 1975)

$$\Gamma_{\Delta}:=\left\{t\in\mathbb{C}\ :\ \Phi_{\widehat{X}}^{t}\ ext{converge en }0
ight\}<\left(\mathbb{C},+
ight)$$

- $oldsymbol{\mathsf{2}}$ $oldsymbol{\Delta}$ plongeable dans un flot $\Longleftrightarrow \mathsf{\Gamma}_{oldsymbol{\Delta}} = \mathbb{C}$

Théorème (Écalle, 1975)

$$\Gamma_{\Delta}:=\left\{t\in\mathbb{C}\ :\ \Phi_{\widehat{X}}^{t}\ ext{converge en }0
ight\}<\left(\mathbb{C},+
ight)$$

- $(\exists f \in \mathrm{Diff}(\mathbb{C},0), \ \alpha \in \mathbb{C}^{\times} : \ f^{\circ \alpha} = \Delta) \Longleftrightarrow \frac{1}{\alpha} \in \Gamma_{\Delta} \ \mathsf{et} \ f = \Phi_{\widehat{X}}^{1/\alpha}$
- $oldsymbol{oldsymbol{oldsymbol{\Delta}}}$ plongeable dans un flot \Longleftrightarrow $\Gamma_{\Delta}=\mathbb{C}$
- lacksquare Ou bien $\Gamma_\Delta=\mathbb{C}$ ou bien $\Gamma_\Delta=rac{1}{n}\mathbb{Z}$ pour $n\in\mathbb{N}_{>0}$

Théorème (Écalle, 1975)

Pour $\Delta = \Phi^1_{\widehat{X}} \in \mathsf{Parab}$ posons

$$\Gamma_{\Delta}:=\left\{t\in\mathbb{C}\ :\ \Phi_{\widehat{X}}^{t}\ ext{converge en }0
ight\}<\left(\mathbb{C},+
ight)$$

- $(\exists f \in \mathrm{Diff}(\mathbb{C},0), \ \alpha \in \mathbb{C}^{\times} : \ f^{\circ \alpha} = \Delta) \Longleftrightarrow \frac{1}{\alpha} \in \Gamma_{\Delta} \ \mathsf{et} \ f = \Phi_{\widehat{X}}^{1/\alpha}$
- $oldsymbol{eta}$ $oldsymbol{\Delta}$ plongeable dans un flot $\Longleftrightarrow oldsymbol{\mathsf{\Gamma}}_{oldsymbol{\Delta}} = \mathbb{C}$
- lacksquare Ou bien $\Gamma_\Delta=\mathbb{C}$ ou bien $\Gamma_\Delta=rac{1}{n}\mathbb{Z}$ pour $n\in\mathbb{N}_{>0}$

Remarque

En général $\Gamma_{\Delta}=\mathbb{Z}$

Hypothèses sur Δ

Dans la suite de l'exposé

$$\mathcal{P}:=\{\Delta\}$$

Hypothèses sur Δ

Dans la suite de l'exposé

 ${\color{red} {\color{blue} {\bf 1}}} \ \Delta \in \mathsf{Parab}_1$

$$\mathcal{P}:=\{\Delta\}$$

Hypothèses sur Δ

Dans la suite de l'exposé

- $oldsymbol{1}$ $\Delta \in \mathsf{Parab}_1$
- 2 $\Delta = \Phi^1_{\widehat{X}}$ avec $\widehat{X} \in \mathbb{C}\left[[z]\right] \frac{\partial}{\partial z}$ formellement conjugué à $z^2 \frac{\partial}{\partial z}$ ($\Longleftrightarrow \Delta$ formellement conjugué à $\frac{\mathrm{Id}}{1-\mathrm{Id}}$) $\mathcal{P} := \{\Delta\}$

Hypothèses sur Δ

Dans la suite de l'exposé

- $oldsymbol{1}$ $\Delta \in \mathsf{Parab}_1$
- 2 $\Delta = \Phi^1_{\widehat{X}}$ avec $\widehat{X} \in \mathbb{C}\left[[z]\right] \frac{\partial}{\partial z}$ formellement conjugué à $z^2 \frac{\partial}{\partial z}$ ($\Longleftrightarrow \Delta$ formellement conjugué à $\frac{\mathrm{Id}}{1-\mathrm{Id}}$) $\mathcal{P} := \{\Delta\}$

Hypothèses sur Δ

Dans la suite de l'exposé

- 2 $\Delta = \Phi^1_{\widehat{X}}$ avec $\widehat{X} \in \mathbb{C}\left[[z]\right] \frac{\partial}{\partial z}$ formellement conjugué à $z^2 \frac{\partial}{\partial z}$ ($\Longleftrightarrow \Delta$ formellement conjugué à $\frac{\mathrm{Id}}{1-\mathrm{Id}}$) $\mathcal{P} := \{\Delta\}$

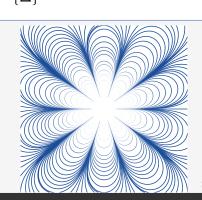
Modèle $z^5 \frac{\partial}{\partial z}$ pour Parab₄

Hypothèses sur Δ

Dans la suite de l'exposé

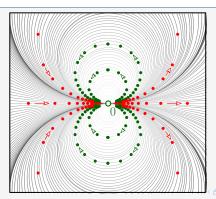
- 2 $\Delta = \Phi_{\widehat{X}}^1$ avec $\widehat{X} \in \mathbb{C}\left[[z]\right] \frac{\partial}{\partial z}$ formellement conjugué à $z^2 \frac{\partial}{\partial z}$ ($\Longleftrightarrow \Delta$ formellement conjugué à $\frac{\mathrm{Id}}{1-\mathrm{Id}}$) $\mathcal{P} := \{\Delta\}$

Modèle $z^5 \frac{\partial}{\partial z}$ pour Parab₄



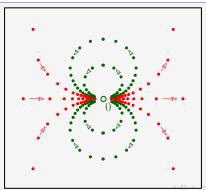
Heuristique

classe conforme de $\Delta = {\sf classe}$ conforme de l'espace des orbites de $\Delta \longrightarrow {\sf domaine}$ fondamental



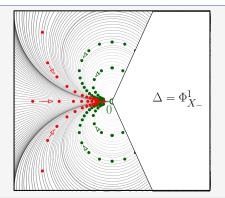
Heuristique

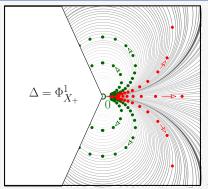
classe conforme de $\Delta=$ classe conforme de l'espace des orbites de $\Delta\longrightarrow$ domaine fondamental



Heuristique

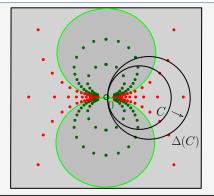
classe conforme de $\Delta=$ classe conforme de l'espace des orbites de $\Delta-$ domaine fondamental

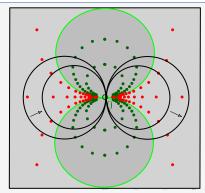




Heuristique

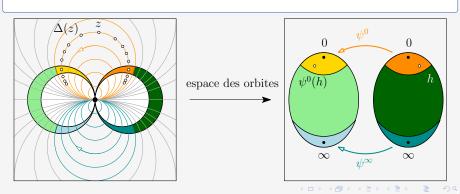
classe conforme de $\Delta=$ classe conforme de l'espace des orbites de $\Delta-$ domaine fondamental





Heuristique

classe conforme de $\Delta=$ classe conforme de l'espace des orbites de Δ $\longrightarrow \mathsf{domaine\ fondamental}$



Théorème (Birkhoff 1939-Écalle 1975-Voronin 1981)

La flèche :

$$\begin{array}{c} \mathrm{BEV} \; : \; \mathcal{P}/_{\mathrm{Diff}(\mathbb{C},0)} \longrightarrow \mathsf{Parab} \times \mathsf{Parab}/_{\mathbb{C}^{\times}} \\ [\Delta] \longmapsto \left[\left(\psi^0, \psi^\infty \right) \right] \end{array}$$

est bien définie et injective

Théorème (Birkhoff 1939-Écalle 1975-Voronin 1981)

La flèche :

$$\begin{array}{ccc} \mathrm{BEV} \; : \; \mathcal{P}/_{\mathrm{Diff}(\mathbb{C},0)} \longrightarrow \mathsf{Parab} \times \mathsf{Parab}/_{\mathbb{C}^{\times}} \\ & [\Delta] \longmapsto \left[\left(\psi^0, \psi^\infty \right) \right] \end{array}$$

est bien définie et injective

Remarque

$$\operatorname{BEV}\left(\frac{\operatorname{Id}}{1-\operatorname{Id}}\right)=\left(\operatorname{Id},\operatorname{Id}\right)$$

Lemme

 $\exp\left(2\mathrm{i}\pi\Gamma_{\Delta}\right)\simeq\mathit{Centre}\left(\Delta\right)$

```
\mathsf{Lemme} \mathsf{exp}\,(2\mathrm{i}\pi\mathsf{\Gamma}_\Delta)\simeq \mathit{Centre}\,(\Delta)
```

```
Preuve.
```

Lemme

$$\exp\left(2\mathrm{i}\pi\Gamma_{\Delta}\right)\simeq\mathit{Centre}\left(\Delta\right)$$

Preuve.

 $lacksquare g \in \mathsf{Centre}\left(\Delta
ight) \mathsf{induit} \ g^* \ : \ \overline{\mathbb{C}} \stackrel{\simeq}{\longrightarrow} \overline{\mathbb{C}} \mathsf{ fixant} \ \{0,\infty\}$

<ロ > ← □ > ← □ > ← 亘 > 一 亘 ● り Q ()・

Lemme

 $\exp\left(2\mathrm{i}\pi\Gamma_{\Delta}\right)\simeq\mathit{Centre}\left(\Delta\right)$

Preuve.

- $\blacksquare \ g \in \mathsf{Centre} \, (\Delta) \ \mathsf{induit} \ g^* \ : \ \overline{\mathbb{C}} \stackrel{\simeq}{\longrightarrow} \overline{\mathbb{C}} \ \mathsf{fixant} \ \{0, \infty\}$
- $lacksquare g^*: h\mapsto ch$ pour $c\in\mathbb{C}^ imes$ donc $g=\Phi_{\hat{X}}^{rac{\log c}{2i\pi}}$



Corollaire

Corollaire

I Si $\Gamma_{\Delta} \neq \mathbb{C}$ alors il existe $n \in \mathbb{N}_{>0}$ et $\varphi^{0,\infty} \in \mathbb{C} \{w\}$ tels que

$$\psi^{0,\infty}$$
: $h \longmapsto h \varphi^{0,\infty}(h^n)$ et $\Gamma_{\Delta} = \frac{1}{n}\mathbb{Z}$

Corollaire

I Si $\Gamma_{\Delta} \neq \mathbb{C}$ alors il existe $n \in \mathbb{N}_{>0}$ et $\varphi^{0,\infty} \in \mathbb{C} \{w\}$ tels que

$$\psi^{0,\infty}$$
: $h \longmapsto h \varphi^{0,\infty}(h^n)$ et $\Gamma_{\Delta} = \frac{1}{n}\mathbb{Z}$

 Σ Si $\Gamma_{\Delta} = \mathbb{C}$ alors BEV Δ = (Id, Id)

Corollaire

1 Si $\Gamma_{\Delta} \neq \mathbb{C}$ alors il existe $n \in \mathbb{N}_{>0}$ et $\varphi^{0,\infty} \in \mathbb{C}\{w\}$ tels que

$$\psi^{0,\infty}$$
: $h \longmapsto h \varphi^{0,\infty}(h^n)$ et $\Gamma_{\Delta} = \frac{1}{n}\mathbb{Z}$

2 Si $\Gamma_{\Delta} = \mathbb{C}$ alors BEV $(\Delta) = (\mathrm{Id}, \mathrm{Id})$

Preuve.

Corollaire

1 Si $\Gamma_{\Delta} \neq \mathbb{C}$ alors il existe $n \in \mathbb{N}_{>0}$ et $\varphi^{0,\infty} \in \mathbb{C} \{w\}$ tels que

$$\psi^{0,\infty}$$
: $h \longmapsto h \varphi^{0,\infty}(h^n)$ et $\Gamma_{\Delta} = \frac{1}{n}\mathbb{Z}$

2 $Si \Gamma_{\Delta} = \mathbb{C} \ alors \ \mathrm{BEV} (\Delta) = (\mathrm{Id}, \mathrm{Id})$

Preuve.

• $t \in \Gamma_{\Delta} \longmapsto c := \exp(2i\pi t) \in \text{Centre}(\Delta) \text{ avec } c\psi(h) = \psi(ch)$

Corollaire

1 Si $\Gamma_{\Delta} \neq \mathbb{C}$ alors il existe $n \in \mathbb{N}_{>0}$ et $\varphi^{0,\infty} \in \mathbb{C} \{w\}$ tels que

$$\psi^{0,\infty}$$
: $h \longmapsto h \varphi^{0,\infty}(h^n)$ et $\Gamma_{\Delta} = \frac{1}{n}\mathbb{Z}$

2 $Si \Gamma_{\Delta} = \mathbb{C} \ alors \ \mathrm{BEV} (\Delta) = (\mathrm{Id}, \mathrm{Id})$

Preuve.

- $t \in \Gamma_{\Delta} \longmapsto c := \exp(2i\pi t) \in \text{Centre}(\Delta) \text{ avec } c\psi(h) = \psi(ch)$
- $\Psi(h) = h \sum_{p>0} \alpha_p h^p$ avec $\alpha_0 \neq 0$:

$$\alpha_p \neq 0 \Longrightarrow c^p = 1$$

Problème inverse

Problème inverse

Surjectivité de BEV?

Problème inverse

Problème inverse

Surjectivité de BEV?

Théorème (Écalle-Voronin)

La flèche :

$$\begin{array}{ccc} \mathrm{BEV} \,:\, \mathcal{P}/_{\mathrm{Diff}(\mathbb{C},0)} \longrightarrow \mathsf{Parab} \times \mathsf{Parab}/_{\mathbb{C}^{\times}} \\ & \left[\Delta\right] \longmapsto \left[\left(\psi^{0},\psi^{\infty}\right)\right] \end{array}$$

est bijective

lacksquare On se donne $\mathbb{C}^{ imes}\coprod\mathbb{C}^{ imes}/_{(\psi^0,\psi^\infty)}$ à réaliser

- 1 On se donne $\mathbb{C}^{\times} \coprod \mathbb{C}^{\times}/_{(\psi^0,\psi^{\infty})}$ à réaliser
- 2 On équipe V^\pm du champ $x^2 \frac{\partial}{\partial x}$ et de la coordonnée orbitale

$$H: V^{\pm} \longrightarrow \mathbb{C}^{\times}$$
$$x \longmapsto h = \exp \frac{-2i\pi}{x}$$

- 1 On se donne $\mathbb{C}^{\times} \coprod \mathbb{C}^{\times}/_{(\psi^0,\psi^{\infty})}$ à réaliser
- 2 On équipe V^\pm du champ $x^2 \frac{\partial}{\partial x}$ et de la coordonnée orbitale

$$H: V^{\pm} \longrightarrow \mathbb{C}^{\times}$$
$$x \longmapsto h = \exp \frac{-2i\pi}{x}$$

lacksquare On forme la variété V en recollant V^+ et V^- par $\left(\psi^{0}\circ H,\psi^{\infty}\circ H\right)$

- 1 On se donne $\mathbb{C}^{\times} \coprod \mathbb{C}^{\times}/_{(\psi^{0},\psi^{\infty})}$ à réaliser
- 2 On équipe V^\pm du champ $x^2 \frac{\partial}{\partial x}$ et de la coordonnée orbitale

$$H: V^{\pm} \longrightarrow \mathbb{C}^{\times}$$
$$x \longmapsto h = \exp \frac{-2i\pi}{x}$$

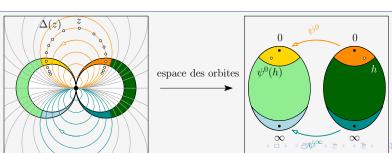
- lacksquare On forme la variété V en recollant V^+ et V^- par $\left(\psi^0\circ H,\psi^\infty\circ H\right)$
- $\Phi^1_{X^2 \frac{\partial}{\partial x}}|_{V^{\pm}} \text{ agit sur } V$

- 1 On se donne $\mathbb{C}^{\times} \coprod \mathbb{C}^{\times}/_{(\psi^0,\psi^{\infty})}$ à réaliser
- 2 On équipe V^\pm du champ $x^2 \frac{\partial}{\partial x}$ et de la coordonnée orbitale

$$H: V^{\pm} \longrightarrow \mathbb{C}^{\times}$$
$$x \longmapsto h = \exp \frac{-2i\pi}{x}$$

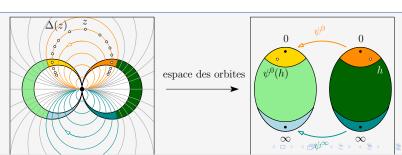
- lacksquare On forme la variété V en recollant V^+ et V^- par $\left(\psi^0\circ H,\psi^\infty\circ H
 ight)$
- $\Phi^1_{X^2 \frac{\partial}{\partial X}}|_{V^{\pm}} \text{ agit sur } V$
- lacksquare Ahlfors-Bers : $V\simeq (\mathbb{C},0)$ muni de $\Delta\in \mathcal{P}$

Points techniques



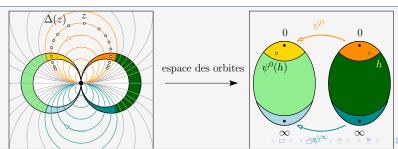
Points techniques

- lacksquare On forme la variété V en recollant V^+ et V^- par $\left(\psi^{\mathbf{0}}\circ H,\psi^{\infty}\circ H\right)$
 - \longrightarrow Contrôle de la taille de $H(V^+ \cap V^-)$ \longrightarrow Taille de $V^+ \cap V^- \cap (\mathbb{C},0)$



Points techniques

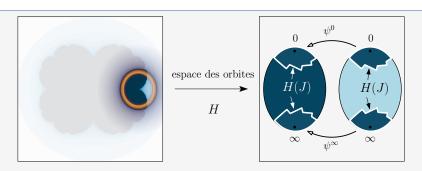
- lacksquare On forme la variété V en recollant V^+ et V^- par $\left(\psi^0\circ H,\psi^\infty\circ H\right)$
 - \longrightarrow Contrôle de la taille de $H(V^+ \cap V^-)$
 - \longrightarrow Taille de $V^+ \cap V^- \cap (\mathbb{C},0)$
- lacksquare Ahlfors-Bers : $V\simeq (\mathbb{C},0)$ muni de $\Delta\in \mathcal{P}$
 - \longrightarrow Pas de contrôle de la « forme » de Δ
 - →Pas de choix privilégié (forme normale)



Taille du recollement : cas global

Théorème (Epstein? 1993)

Soit R rationnelle, avec un point fixe parabolique en 0 et Julia $(R) \neq \emptyset$. Alors $\mathrm{BEV}(R)$ a une frontière naturelle.



Formes normales sphériques

Théorème

Étant donné (ψ^0,ψ^∞) , pour tout $\lambda>0$ assez petit il existe une <u>unique</u> série $F\in z\mathbb{C}\left[[z]\right]$ satisfaisant les propriétés suivantes. Soit

$$X_0(z) := \frac{\lambda z^2}{1+z^2} \frac{\partial}{\partial z}$$
 , $\widehat{X} := \frac{1}{1+X_0 \cdot F} X_0$

Formes normales sphériques

Théorème

Étant donné (ψ^0,ψ^∞) , pour tout $\lambda>0$ assez petit il existe une <u>unique</u> série $F\in z\mathbb{C}\left[[z]\right]$ satisfaisant les propriétés suivantes. Soit

$$X_0(z) := \frac{\lambda z^2}{1+z^2} \frac{\partial}{\partial z}$$
 , $\widehat{X} := \frac{1}{1+X_0 \cdot F} X_0$

 $\ \ \, \mathbf{1}\ \, \Delta := \Phi^1_{\widehat{X}} \in \mathcal{P}\ \, \textit{et}$

BEV
$$(\Delta) = (\psi^0, \psi^\infty)$$

Formes normales sphériques

Théorème

Étant donné (ψ^0,ψ^∞) , pour tout $\lambda>0$ assez petit il existe une <u>unique</u> série $F\in z\mathbb{C}\left[[z]\right]$ satisfaisant les propriétés suivantes. Soit

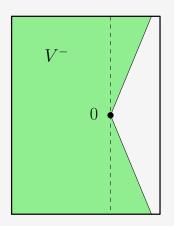
$$X_0(z) := \frac{\lambda z^2}{1+z^2} \frac{\partial}{\partial z}$$
 , $\widehat{X} := \frac{1}{1+X_0 \cdot F} X_0$

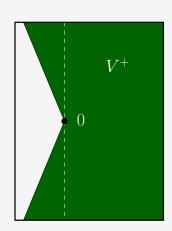
 $\ \ \, \mathbf{1}\ \, \Delta := \Phi^1_{\widehat{X}} \in \mathcal{P}\ \, \textit{et}$

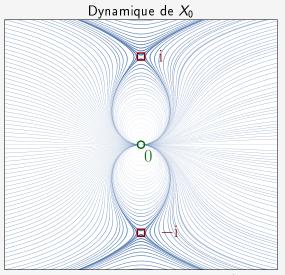
BEV (
$$\Delta$$
) = (ψ^0, ψ^∞)

2 La série F est 1-sommable de 1-somme (f^+, f^-) holomorphes et bornées sur les secteurs infinis

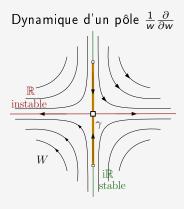
$$V^{\pm}:=\left\{z
eq0\ :\ \left| \mathsf{arg}\left(\pm z
ight)
ight| <rac{5\pi}{8}
ight\}$$

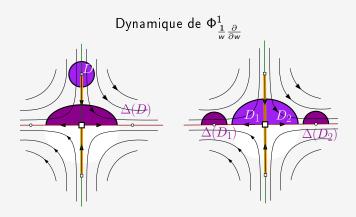


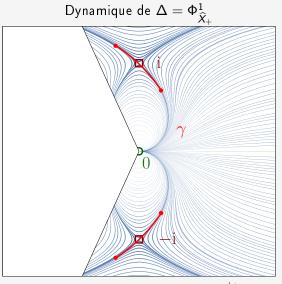




taille de
$$H\left(V^{+}\cap V^{-}\right)=\mathrm{O}\left(\mathrm{e}^{-1/\lambda}\right)$$







 Δ holomorphe et injective sur $V^{\pm} \setminus \gamma$

Dynamique antipodale

 Δ définit une dynamique « compagnon » au voisinage de l'infini.

Proposition

$$\mathrm{BEV}_{\infty}\left(\Delta\right) = \mathrm{BEV}_{0}\left(\Delta\right)^{\circ -1}$$

Dynamique antipodale

Écalle (2005) a construit également des **formes normales sphériques** ayant des propriétés similaires.

«As already pointed out, our twisted monomials have much the same behavior at both poles of the Riemann sphere. The exact correspondence has just been described [...] using the so-called antipodal involution: in terms of the objects being produced, this means that canonical object synthesis automatically generates two objects: the "true" object, local at ∞ and with exactly the prescribed invariants, and a "mirror reflection", local at 0 and with closely related invariants. Depending on the nature of the [...] invariants (verification or non-verification of an "overlapping condition"), these two objects may or may not link up under analytic continuation on the Riemann sphere.»

Application : point fixe renormalisation parabolique

Corollaire

Étant donné $\psi^\infty\in {\it Parab}$ il existe une unique forme normale $\Delta\in {\cal P}$ qui vérifie

$$BEV(\Delta) = (\Delta, \psi^{\infty})$$